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Abstract: The paper deals with robust output feedback continuous control design for time-continuous 

linear plants under parametric uncertainties and external bounded disturbance. A parallel reference model 

(auxiliary loop) to the plant is used for obtaining the uncertainties acting on the plant. The proposed 

algorithm tracks the output of the plant to the reference output with the required accuracy. We apply the 

algorithm to the control of lateral movement of an aircraft under parametric and external disturbances. We 

also compare the proposed algorithm with the H

 control and speed-gradient algorithm. The simulation 

results illustrate the efficiency and robustness of the suggested control system. 
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1. INTRODUCTION 

Modern highly maneuverable aircrafts, such as fighters, 

operate over a wide range of flight conditions, which vary 

with altitude, Mach number, angle of attack, and engine 

thrust. The mechanical characteristics of an airframe, such as 

the centre of gravity, change as well. The aircraft autopilot 

has to be able to produce a response that is accurate and fast 

despite sever variations in speed and altitude of the airframe 

or, in other words, in the face of large parametric uncertainty 

(Belkharraz and Sobel, 2007; Gurfil, 2001; Singh, Steinberg, 

and Page, 2003; Tsourdos and White, 2001) and external 

disturbances (Bukov, 2006). The adaptive and robust 

methods have to meet the conflicting requirements on the 

tuning rate and performance quality under conditions of lack 

of aircraft state measurements (Ben Yamin, Yaesh, and 

Shaked, 2007; Schumacher and Kumar, 2000; Singh et al., 

2003). 

The auxiliary loop method was introduced in Tsykunov 

(2007) for control of continuous-time plant under parametric 

uncertainties and external disturbance. Later related 

structures were used for control of nonlinear plants with 

structure uncertainty (Furtat and Tsykunov, (2008)), robust 

suboptimal control (Furtat, (2009)), control of dynamical 

networks (Furtat (2011), Furtat, Fradkov, and Tsykunov 

(2011), Furtat, Fradkov, and Tsykunov (2013), Furtat, 

(2014)). Usage of auxiliary loop algorithm based flight 

control is motivated by its simplicity and its properties of 

good compensation of perturbations. The idea of this method 

consists of implementation of an auxiliary loop with desired 

parameters parallel to a plant. The difference between the 

output of plant and the output of auxiliary loop gives a 

function which depends on parametric and external 

disturbances. This function is then used as input the the 

control law that guaranties required accuracy of the control 

system. 

In this study, the auxiliary loop algorithm is applied for 

robust control of lateral movement of an aircraft in landing 

mode. For illustration of the effectiveness of this algorithm 

we compare the simulation results with H

 control and speed-

gradient algorithm. 

The paper is organized as follows. The problem statement is 

presented in Section 2. Some essentials of the auxiliary loop 

method are in Section 3. Section 4 describes the given model 

of the aircraft. In Section 5 the control of the model of the 

aircraft without disturbances is considered. Section 6 is 

devoted to the application of the auxiliary loop method for 

robust control of flexible aircraft. In Section 7 the 

comparison of the simulation results for auxiliary loop 

algorithm, H

 control, and speed-gradient algorithm are 

presented. Concluding remarks are given in Section 8. 

Appendix A gives the proof of the auxiliary loop algorithm. 

2. PROBLEM STATEMENT 

Consider the plant model 

,...,,1,)0(

),()()()()(

0
1 niyyp

tftupkRtypQ

i
i 




   (1) 

where y(t)  R is an output, u(t)  R is an input, f(t)  R is a 

uncontrollable bounded disturbance, Q(p), R(p) are linear 

differential operators with unknown coefficients, 

deg Q(p) = n, deg R(p) = m,  = n – m  1,  is a relative 

degree, k > 0, y0i are unknown initial conditions. 
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We study (1) under the following assumptions. 

Assumptions.  

1. Unknown coefficients of the operators Q(p), R(p) and 

unknown coefficient k belong to a known bounded set . 

2. Only signals y(t) and u(t) are available for measurement. 

3. The plant (1) is minimum phase. 

Consider the reference (nominal) model 

),()()()( 0 tupRtypQ NNN    (2) 

where RtyN )(  is an output, Rtu )(0  is a command bounded 

signal, QN(p) and RN(p) are linear differential operators with 

known coefficients, RN() is Hurwitz polynomial,  is a 

complex variable, deg QN(p) = n, deg RN(p) = m. 

The goal is to design a control law which provides the 

following condition 

 )()( tyty N  for Tt  ,  (3) 

where 0  is a small enough scalar. 

3. ROBUST ALGORITHM 

Let us represent the system in terms of error with the nominal 

model. Represent the operators R(p) and Q(p) in the form 

)()()( pRpRpR N  , )()()( pQpQpQ N  .   (4) 

Here R() and Q() are polynomials with parametric 

uncertainties of (1), deg Qi(p) < n, deg Ri(p) < m. Taking 

into account (1) and (4) write the tracking error e(t) = y(t) –

 yN(t) in the form 

)()()()()( ttupkRtepQ NN  ,  (5) 

where 

)()()(~)( typQtt NN , 

).()()()()(~ tftypQtRukt   

The function (t) depends on parametric uncertainty and 

external disturbances on (1). If 0)(~ t  in (5), then we 

obtain a nominal plant (2). However, 0)(~ t  in (1) from 

Problem statement. Therefore, we adopt the method from 

Tsykunov (2007) for compensation of (t). Introduce the 

auxiliary loop 

),()()()(0 tupRtepQ Na    (6) 

where )(tea  is an output of the auxiliary loop, 0  is a 

designed parameter, Q0() is a desired polynomial for the 

closed-loop system. The auxiliary loop is a parallel model 

which characterizes the desired behaviour of the transients in 

the closed-loop system. Therefore, taking into account (5) 

and (6), form the error function )()()( tetet a  as 

)()()()(0 tpRtpQ N   ,   (7) 

where 

  )(
)(
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)()(
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pR
te
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tukt

NN

N  


  

is a new function which depends on a parametric uncertainty 

and disturbances on (1). 

If derivatives of the signal )(t  are accessible for 

measurement, then the ideal control law )(tu  is defined by 

)()()()( 0
11 tpQpRtu N   .  (8) 

Substituting (8) in (5) we obtain the equation of a closed-loop 

system 

.0)()(0 tepQ    (9) 

However, according to assumption 2, the derivatives of the 

signal )(t  are not available for measurement. Therefore, we 

rewrite the ideal control law (8) as 

 ,)()(
~

)()()()( 0
1

0
1 tpQpRtpQtu N     (10) 

where )(t  is an estimate of the function )(t , 

)(deg 0 pQ , mpQ )(
~

deg 0 . 

Substituting (10) in (5) and taking into account (8) rewrite the 

equation of a closed-loop system of the form 

)()()()(0 tpRtepQ N                   (11) 

where )()()( ttt   . 

For implementation of (10) consider the following observer 

(Atassi and Khalil (1999)) 

  )()(,)()()()( 00 tLtttDtGt   , (12) 

where  Rt )( , 











00

0 1
0

I
G , 1I  is an identity 

matrix of order 1 ,  T2
2

1
10 ,...,, 

   dddD , 

the coefficients ddd ,...,, 21  are chosen such than the 

matrix DLGG  0  is Hurwitz,  T21 ,...,, dddD  , 

0 . 

Consider the vector  )()()( 1 ttГt    , where 

 1,,...,, 21    diagГ , 

 T)( )(,...),(),()( tttt   . From (12), take the derivative 

of )(t  

)(
~

)()( )1(1 tbtGt    , )()( 1 tLt    , 
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where  T1,0,...,0
~
b . Rewrite last equations in the form 

)()()( 1 tbtGt     , )()( 1 tLt    . (13) 

Here )()()( )1(1 ttt ii
ii

   , ,2i , )()( 11 tt   , 

 T2 0,...,0, b . The two last equations are equivalent 

because )()( 11 tt    and 

  ).()(... 1
11

1 tptdpdp  


    

Taking into account (13) rewrite equation (11) as 

.0)0(),()(

),()()(

1

1
0








 

tLte

tgbtAt
  (14) 

where A0, b  and L1 are obtained from transformation of the 

transfer function RN() / Q0() to system (14), 

  T111 )(,...),(),()( tttt
  , g

T
 is a vector consisting of 

coefficients of the operator )(0 pQ . 

Theorem (Tsykunov (2007)). Let Assumptions 1-3 hold. 

Then there exist a scalar 00   such that for 0   the 

control systems (6), (10), (12) provide the goal (3). 

Remark. It is seen from the theorem’s proof in Appendix that 

the value  in (3) can be overbounded as follows 

   
0

11
min 1)0()(   tt eVeP , (15) 

where )()()()()( TT tHttPttV   , 0T  PP , 

0T  HH  are solutions of equations 10
T
0 QPAPA  , 

2
T QHGHG  , 0T

11 QQ , 0T
22 QQ , 










)(

)(
,

)(

)(
min

max

4min

max

3min

H

Q

P

Q








 , 

 T1
013 2 gbPgbPQQ



 , HHbbQQ T2

024  , 

 2
2

2
0

2
12 kk




 , )(sup1 tk
t

 , )(sup2 tk
t

 ,  ≤ µ0. 

It follows from (15) that the value  explicitly depend on  

and . Moreover, the value  in (3) can be reduced by 

decreasing of the values  and . 

Results are illustrated in the following on the aircraft 

example. 

4. MODEL OF THE LATERAL MOTION OF AN 

AIRCRAFT IN LANDING MODE 

Consider the linearized model of the lateral motion of an 

aircraft in landing mode (Letov (1969), Bukov (2006)) 

 
,)0(),()(

),()()()(

0

T

xxtLxty

tfkBtuBtxcBAtx NNNN



 
 (16) 

where  T)(),(),(),()( ttttztx x   and )(tu  are state 

vector and control of the linearized model of the aircraft 

without sliding, f(t) is an unaccounted disturbance, )(tz  is a 

value of the lateral deviation of the aircraft of a mass center 

of a longitudinal axis of a landing strip, )(t  is an angle 

between a longitudinal axis of the landing strip and the 

horizontal projection of a aircraft velocity vector, )(t  is a 

change on the roll angle of the aircraft, )(tx  is a change in 

angular velocity of the aircraft relative to the longitudinal 

axis, )(tu  is the aileron deviation from balancing position. 

The matrix AN and the vector BN  in (16) are equal to 

,

2000

1000

012.000

00850





















NA    





















4.3

0

0

0

NB . (17) 

The matrices (17) are obtained in Letov (1969) for an aircraft 

speed equal to 85 m/s, c = 0,  = 1, and k = 0. According to 

Bukov (2006), parametric uncertainties are presented by 

 

.1)(,11,05.0

,17/2017/20,000





tfk

c




 (18) 

According to (Letov ( 1969 ), Bukov ( 2006)), it is enough to 

use the aileron deviation from balancing position for control 

of the lateral motion of an aircraft in landing mode. 

5. NOMINAL MODEL OF THE AIRCRAFT 

Here we explain the choice of the parameters of the nominal 

plant (2). According to Bukov (2006), consider the following 

performance index 

 




0

2
0

2 )()( dttrutQyJ ,  (19) 

where 



















 





31000

0200

0020

0001025.6 6

Q  and 93r . (20) 

For minimization of the quadratic coast (19) the optimal 

control u0(t) to be used in (2) is (Athans and Falb (1966)) 

)()( 00 txKtu N , 

where HBrK N
T1

0
  and the matrix 0T  HH  is a 

solution of the Riccati equation 

QHBHBrHAHA NNNN   T1T . With respect to (17) and 

(20), we calculate the matrix K0 and get 

 3438.03218.03737.00003.00 K .      (21) 
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6. AUXILIARY LOOP ALGORITHM 

Let  0000)0(T a , 4.0 . According to (17) and (21), 

we take the matrix A0 as 

.

3.1688-1.0941-1.2707-         0.0009-

1000

00.1200

00850
00





















 KBAA NN

 

Rewrite auxiliary loop (5) as follows 

 
).(68.344.0

)(009.01525.00941.11688.3 234

tu

tepppp a




 

Let  T62550015020D  and 01.0 . Then the observer 

(12) is defined by 

 )()(102)()( 1
3

21 tttt   , 

 )()(105.1)()( 1
6

32 tttt   ,  

 )()(105)()( 1
8

43 tttt   , 

 )()(1025.6)( 1
10

4 ttt   , 

0)0(  . 

Finally, the control law (10) is given by 


.)(0009.0)(1525.0

)(0941.1)(1688.3)(68.345.2)(

12

344

tt

ttttu







 
 

7. SEMULATION RESULTS 

We assume that initial conditions )0()0( zzN   and 

0)0()0()0(  x  are set before landing mode is 

started. Consider three uncertainty cases (Bukov (2006)). 

Case 1. Let  = –20 / 17,  = 0 and ttf 1.0sin01.005.0)(   

in (18). 

Case 2. Let  = 20 / 17,  = 0, k = 1 and 

ttf 2.0sin05.005.0)(   in (18). 

Case 3. Let  = 20 / 17,  = –0.5 (it means that the 

effectiveness of the ailerons is half of its nominal value), 

k = 1 and ttf 05.0sin01.0)(   in (18). 

For comparison we also consider the synthesis of control 

systems using H

 control and speed-gradient algorithm. 

The H

 control is obtained by using Matlab procedures for 

the transfer function 



















1

4.3

1

2

68.34

1

1

34 pp
. 

It allows minimization of the error in equation (5). 

According to Fradkov and Andrievsky (2011), the speed-

gradient algorithm is presented by the following equations 

 

 
)(

1

11.0
)(

3

2

tu
p

p
tec




 , 

   )()(1331
T

tete ct  , 

 )()(10)( 3 tetetk ct   , 

  tc tetetktu sgn1.0)()()()( T  . 

Let z(0) = 400 m. In Fig. 1-6 the transients are presented for 

the tracking errors e(t) and control signals u(t) which are 

obtained by auxiliary loop algorithm, H

 control, and speed-

gradient algorithm for each of three cases. In Fig.1-6 black 

curve, blue curve, and red curve correspond to the cases 1, 2, 

and 3 respectively. In Fig. 2, 4, 6 green line corresponds to 

the optimal control u0(t) for the nominal plant. 

 

Fig. 1. Transients of e(t) with using auxiliary loop method 

 

Fig. 2. Transients of u(t) with using auxiliary loop method 

 

Fig.3. Transients of e(t) with using H

 control (red line is not 

in Figure because the closed-loop system is unstable for case 

3) 

 

m),(te

s,t

rad),(tu

s,t

s,t
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Fig. 4. Transients of u(t) with using H

 control (red line is not 

in Figure because the closed-loop system is unstable for case 

3) 

 

Fig. 5. Transients of e(t) with using the speed-gradient 

method 

 

                   Zoom 

 

Fig. 6. Transients of u(t) with using the speed-gradient 

method 

The analysis of simulation results shows that the smallest 

amplitude of the tracking error is obtained by H

 control. 

However, the closed-loop system is unstable for case 3; it 

follows that a control system is sensitive to parametric 

uncertainty in effectiveness of ailerons. The speed-gradient 

algorithm is stable for all parametric uncertainty but is highly 

sensitive to external disturbances. The auxiliary loop 

algorithm takes the middle place between H

 control and 

speed-gradient algorithm. It allows to compensate parametric 

and external disturbances with moderate amplitude of the 

tracking error e(t) and moderate deviation of the control 

signal. It follows from simulations that decrease of  and 

increase of  the value  in (3) can be reduced. 

8. CONCLUSIONS 

The robust method for disturbances compensation is applied 

for robust flight control system design. It is shown that an 

auxiliary loop allows to extract plant uncertainties and 

process these simolfuneously with perturbations. An example 

is considered illustrating a typical design procedure for 

control of the lateral motion of an aircraft in landing mode. 

Simulation results demonstrate the efficiency and robustness 

of the suggested control method. 
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APPENDIX A. 

Proof of Theorem. Rewrite equations (13) and (14) in the 

form 

),()()(

),()()(

21

1
20

tbtGt

tgbtAt



 










  (22) 

where   21 . Consider following Lemma (Furtat, 

Fradkov, and Tsykunov (2013)). 

Lemma (Furtat, Fradkov, and Tsykunov (2013)). Let the 

system be described by the following differential equation 

),,,( 21 txfx  ,  (23) 

where 1sRx , 2),(col 21
s
R  , f(x, µ1, µ2, t) is 

Lipchitz continuous function in x. Let (23) have a bounded 

closed set of attraction  = {x | P(x) ≤ C} for µ2 = 0, where 

P(x) is piecewise-smooth, positive definite function in 1sR . 

In addition let there exist some scalars C1 > 0 and 01   

such that the following condition holds 

11

T

)(),0,,(,
)(

sup
11

CCxPtxf
x

xP
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







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
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














. 

Then there exists µ0 > 0 such that the system (23) has the 

same set of attraction  for µ2 ≤ µ0. 

According to Lemma, consider system (22) when 02  . 

Since the matrixes 0A  and G  are Hurwitz solutions of 

system (22) are asymptotically stable. According to Lemma, 

the signals )(t , )(t , )(t , )(t  are bounded. Therefore, 

all signals in the closed-loop system are bounded. 

However, from asymptotic stability of (22) when 02   it 

does not follow asymptotic stability of (22) for 02  . Let 

021    in (22). Choose Lyapunov function V(t) as in 

Remark. Take the derivative of V(t) along the trajectories 

(22), we get 

).()(2)()(

)()(2)()()(
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 (24) 

Consider the following estimates 

 

  ;2)()(2

)(2)()(2

)()(2

2
2

1
0

TT1
0

21
0

TT1
0

T1
0

ktgbPgbPt

ttgbPgbPt

tgbPt

























 

.2)()(2

)(2)()(2)()(2

2
10

T
0

2

0
T

0
T

0

ktHHbbt

ttHHbbttHbt

T

T







 
 

Taking into account the estimates, (24) rewrites as 

  )()()()()( 4
TT

3
T tQttQttV , (25) 

Obviously, there exist 00   such that 03 Q  and 04 Q . 

Rewrite (25) if the form 

 0)()(  tVtV . 

Solving this inequality with respect to V(t), we get 

   
0

1 1)0()( tt eVetV   , 

and  1)(lim 


tV

t
. Taking into account the structure of 

V(t), we get 

   
0

11
min 1)0()()()(   tt eVePtte .   (24) 

From (24) the inequality (15) is obtained. Obviously, the 

right hand side of (15) depends on the value of 0. Therefore, 

the error e(t) can be reduced by decreasing of the value of 0. 

The theorem is proved. 
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