
Passivity-based Integral Sliding Mode
Active Suspension Control ?

Lingfei Xiao ∗ Yue Zhu ∗∗

∗ Jiangsu Province Key Laboratory of Aerospace Power Systems,
College of Energy and Power Engineering, Nanjing University of

Aeronautics and Astronautics, Nanjing, China. (e-mail:
lfxiao@nuaaa.edu.cn)

∗∗ College of Engineering, Nanjing Agricultural University, Nanjing,
China. (e-mail: zhuyue jin@163.com)

Abstract: A novel passivity-based sliding mode controller for active suspension system with
uncertainties is presented in this paper to decrease vibration and increase robustness. Based on
the characteristics of the suspension system, interconnection and damping assignment passivity-
based control approach is used to construct integral sliding surface. By elaborately designing
desired interconnection matrix, damping matrix and energy function, an original integral sliding
surface is completed and a subcontroller is obtained to achieve sliding mode dynamic. A
simplified form of subcontroller is provided when some of designable parameters are chosen
properly. Combining the subcontroller with a nonlinear component, passivity-based sliding
mode controller is created. Robustness analysis is given and it is proofed that the integral
sliding surface is robustly stable and can be reached. Simulation under three cases circumstances
validates the effect of the proposed method.

1. INTRODUCTION

Because vehicles often suffer from vibration caused by
uneven ground, vehicle suspensions play important roles
in keeping vehicles to have satisfactory performances.
Though all of passive /semi-active /active suspension sys-
tems have been investigated since 1970s, active suspen-
sions attract much more attention[1],[2]. Many researchers
have shown that active suspension can effectively isolate
road-induced vibration, reduce unwell shake and noise in
the vehicle body, improve ride comfort [3]–[9]. Due to
some of performance requirements in vehicles are contra-
dictory, such as decreasing suspension acceleration and
tyre displacement at same time, and restricting suspension
vibration while keeping active suspension system to be
stable, many investigations are developed to deal with
those confliction and a various of control methods are
introduced into active suspension system, including LQ
optimal control [1], robust control [3]–[5], adaptive control,
fuzzy control and sliding mode control [6]–[9].

Because suspension systems are inevitable confronted with
different loads, while aging problem is unavoidable and
unmodeled dynamics are inescapable, it is necessary to
take the uncertainties of the suspension systems into con-
sideration. As an effective control method with strong
robustness, sliding mode control (SMC) strategy has been
applied to active suspension systems recently. [6] proposed
an adaptive fuzzy sliding mode controller to suppress the
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Funds for the Central Universities Jiangsu Province Key Laboratory
of Aerospace Power System (NJ20140022), Project Funded by the
Priority Academic Program Development of Jiangsu Higher Educa-
tion Institutions and Talent Introduction Foundation of Engineering
College Nanjing Agricultural University (Rcqd11-06).

sprung mass position oscillation. By taking suspension
system as a plant with two loops, [7] introduced a dy-
namic sliding-mode controller in the outer loop so that to
alleviate the discontinuous jump in the inner loop. In [8],
a complex controller design algorithm was presented for
an active suspension system based on adaptive, fuzzy and
SMC approaches. All of these three work was based on
linear sliding surface, thus the dynamic performance on
sliding mode is quite normal. On the basis of a traditional
integral sliding surface, an adaptive sliding mode controller
was given in [9].

In this paper, a novel integral sliding surface will be cre-
ated to improve the sliding mode dynamic of suspension
system by passivity-based control (PBC) concept. PBC is
a design methodology to achieve stabilization by rendering
the system passive with respective to a desired storage
function and injecting damping [10]. In [11], [12], Ortega
et.al developed Interconnection and Damping Assignment
Passivity-based Control (IDA-PBC). One of distinguish-
ing benefits of IDA-PBC is that the closed-loop energy
function can be obtained via solving a partial differential
equation which is as a result of selecting desired inter-
connections matrix and damping matrix. Since IDA-PBC
be proposed, many theoretical extensions and practical
applications have been reported [10]–[14]. Therefore, the
PBC method is a ideal option to be employed to construct
sliding surface for active suspension systems.

The purpose of this paper is to decrease vibration induced
by uneven road and to increase robustness when suspen-
sion system suffers from various uncertainties, caused by
stiffness variation, dumping perturbation, mess changing
and so on. Meanwhile, reducing input consumption is also
expected. Hence, according to SMC principle, the closed-
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Fig. 1. Mechanical model of quarter vehicle active suspen-
sion system

loop active suspension system design has two steps: firstly,
a passivity-based integral sliding surface is created to make
sliding mode possess favorable performance, for the sake of
analyzing the characteristics of suspension system elabo-
rately and selecting desired interconnection matrix, damp-
ing matrix and ideal energy function carefully; secondly, an
appropriate passivity-based sliding mode controller with
low input consumption is constructed to force the states of
suspension system to origin along with the sliding surface
no matter of the influence of uncertainties. After obtaining
approving controller, a sufficient condition is given to guar-
antee the closed-loop active suspension system is robustly
stable.

The remainder of this paper is organized as follows: Section
1 shows the considered active suspension system with un-
certainties. Section 2 produces the main results, including
the constructing of passivity-based integral sliding mode
surface, the obtaining of passivity-based sliding mode con-
troller and the robustness analysis. Simulation results are
shown in Section 3. Section 4 draws the conclusions of this
paper.

2. PROBLEM FORMULATION

In this paper, a kind of quarter vehicles are considered, as
shown in Fig. 1.

In the figure, m2 is sprung mass, m1 is unsprung mass; k2

and c2 are the coefficients of stiffness and damping of the
suspension system, respectively; k1 stands for compress-
ibility of the pneumatic tyre; z2 and z1 are the displace-
ments of the sprung and unsprung masses, respectively; z0

is vertical ground displacements caused by road uneven-
ness; and fa is the active input force of the suspension
system.

The ideal dynamic equations of the sprung and unsprung
masses are

m2z̈2 + c2(ż2 − ż1) + k2(z2 − z1) = fa

m1z̈1 + c2(ż1 − ż2) + k2(z1 − z2) + k1(z1 − z0) = −fa

(1)

Let q = [z2, z1]T, p = [ż2, ż1]T, x = [qT, pT]T denotes
states, u = fa represents input. Then (1) can be rewritten
to

ẋ = Ax + Bu + Bwz0

=
[
02×2 I2×2

A21 A22

] [
q
p

]
+

[
02×1

b2

]
u +

[
02×1

bw2

]
z0

where

A =




0 0 1 0
0 0 0 1
−k2

m2

k2

m2

−c2

m2

c2

m2
k2

m1

−k2 − k1

m1

c2

m1

−c2

m1




,

A21 =



−k2

m2

k2

m2
k2

m1

−k2 − k1

m1


 , B =




0
0
1

m2−1
m1




, Bw =




0
0
0
k1

m1




A22 =



−c2

m2

c2

m2
c2

m1

−c2

m1


 , b2 =




1
m2−1
m1


 , bw2 =

[ 0
k1

m1

]

with I2×2 is identity matrix with appropriate dimension,
02×2 and 02×1 are zero matrices with appropriate dimen-
sions.

Obviously, the masses mi, stiffness coefficients ki (i =
1, 2) and dumping coefficients c2 of active suspension
system are inevitable to suffer from perturbation and
unmodeled nonlinearities dynamics, the quarter vehicle
active suspension system with uncertainties is described
as

ẋ = (A + ∆A)x + (B + ∆B)u + (Bw + ∆Bw)z0

= Ax + Bu + d
(2)

where ∆A,∆B,∆Bw are the uncertainties of A,B, Bw,
respectively. d = ∆Ax+∆Bu+∆Bwz0 represents dumped
uncertainties.

The corresponding nominal system of (2) is
ẋ = f(x) + g(x)u (3)

f(x) =
[

p
A21q + A22p

]
,




f1(x)
f2(x)
f3(x)
f4(x)


 (4)

g(x) = B =
[
02×1

b2

]
(5)

Assumption 1: The parameters perturbations of active
suspension system are bounded, namely,|∆mi| ≤ δmimi,
|∆ki| ≤ δkiki, |∆c2| ≤ δc2c2, where δmi > 0, δki >
0,(i=1,2), δc2 > 0 are known constants.

3. PASSIVITY-BASED SLIDING MODE ACTIVE
SUSPENSION CONTROL

According to sliding mode control theory, a sliding surface
with desired performance should be created first of all,
and then a suitable control law is required to drive states
to origin along with the sliding surface. In the following,
we will create a suitable sliding surface on the basis
of passivity-based control theory and then obtain the
corresponding sliding mode controller.

3.1 Passivity-based integral sliding surface design

Design a integral sliding surface for the considered active
suspension system as follows,

s(t) = σx(t)− σx(0)− σ

∫ t

0

Fd(x)∇Hd(x)dτ (6)
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where σ is chosen according to linear sliding mode design
theory[15], and Fd(x), Hd(x) are selected as

Fd(x) = Jd(x)−Rd(x), Hd(x) =
1
2
xTPx,

Jd(x) =




0 q12 q13 0
−q12 0 0 q24

−q13 0 0 0
0 −q24 0 0


 , P =




P11 0 0 0
0 P22 0 0
0 0 P33 0
0 0 0 P44




Rd(x) =




q11 0 0 0
0 q22 0 0
0 0 q33 0
0 0 0 q44


 ,

(7)

with ∇ = ∂T

∂x ‖ · ‖ is vector differential operator, and

qii > 0, (i = 2, 3, 4), Pii > 0, (i = 1, 2, 3, 4)

q11 =
q22P

2
22z

2
1

P 2
11z

2
2

, q12 =
q22P22z1

P11z2

q13 = P−1
33 , q24 = P−1

44

(8)

Theorem 1. The sliding surface (6) of system (3), is stable
robustly to the equilibrium x? = 0 under control law

u0 = [c2ż2 + (m1q44P44 − c2)ż1 + k2z2

+ (m1P22P
−1
44 − k2)z1 − k1z1]

+ [(c2 −m2q33P33)ż2 − c2ż1

+ (k2 −m2P11P
−1
33 )z2 − k2z1]

(9)

Proof : According to (7) and (8), there exists

Jd(x) + JT
d (x) = 0, Rd(x) = RT

d (x) ≥ 0 (10)

Fd(x) =



−q11 q12 q13 0
−q12 −q22 0 q24

−q13 0 −q33 0
0 −q24 0 −q44


 ,




Fd1(x)
Fd2(x)
Fd3(x)
Fd4(x)


 (11)

∇Hd(x) = Px, ∇2Hd(x) = P, P = PT > 0 (12)
∇Hd(x?) = 0, ∇2Hd(x?) > 0 (13)

where x? is the equilibrium of system (3).

Suppose the g⊥(x) is a full-rank left annihilator of g(x),
i.e., g⊥(x)g(x) = 0, according to (5), one of optical
candidates of g⊥(x) can be

g⊥(x) =
[
γ1 0 0 0
0 γ2 0 0

]

with γ1 > 0, γ2 > 0. From (3), (5) and (7), it yields

g⊥(x)[f(x)− Fd(x)∇Hd(x)] =
[
γ1(ż2 − Fd1(x)∇Hd(x))
γ2(ż1 − Fd2(x)∇Hd(x))

]

Since
ż2 − Fd1(x)∇Hd(x) = ż2 + q11P11z2 − q12P22z1 − q13P33ż2

ż1 − Fd2(x)∇Hd(x) = ż1 + q12P11z2 − q22P22z1 − q24P44ż1

Because of (8), it is clear that the following equation (14)
is held.

g⊥(x)[f(x)− Fd(x)∇Hd(x)] = 0 (14)

According to Interconnection and Damping Assignment
Passivity-based Control (IDA-PBC) theory [11],[12], when
conditions (10), (12), (13) and (14) are held, there exists
a controller u0

u0 = −{[gT(x)g(x)]−1gT(x)}[f(x)− Fd(x)∇Hd(x)] (15)

such that the closed-loop nominal system (3) is asymptot-
ically stable to the equilibrium x? = 0, and the system
can be transformed to port-controlled hamiltonian (PCH)
form

ẋ = [Jd(x)−Rd(x)]∇Hd(x) (16)

From (2) and (5), it is obviously [gT(x)g(x)]−1gT(x) =
[0, 0,m2,−m1], thus according to (4), (11) and (12), (15)
can be written to

u0 = −[m2,−m1]
[
f3(x)− Fd3(x)∇Hd(x)
f4(x)− Fd4(x)∇Hd(x)

]

= [c2(ż2 − ż1) + k2(z2 − z1)− k1z1]
−m1(−q24P22z1 − q44P44ż1)
− [−c2(ż2 − ż1)− k2(z2 − z1)]
+ m2(−q13P11z2 − q33P33ż2)

Based on (8), yields
u0 = [c2ż2 + (m1q44P44 − c2)ż1 + k2z2

+ (m1P
−1
44 P22 − k2)z1 − k1z1]

+ [(c2 −m2q33P33)ż2 − c2ż1

+ (k2 −m2P
−1
33 P11)z2 − k2z1]

namely (9). Therefore, under the controller (9), (16) can
be substituted into (6) and the sliding surface (6) is
transformed to

s(t) = σx(t)− σx(0)− σ

∫ t

0

ẋdτ

and the derivative of s(t) is ṡ(t) = σẋ(t)−σẋ(t). Obviously,
s(t) = 0 and ṡ(t) = 0 are held for nominal system (3).

Because of integral sliding mode theory [16], the sliding
model surface (6) is stable asymptotically.

Remark 1: According to (8) and (12), (11) can be
rewritten to

Fd(x) =



−q22(P22P−1

11 z1z−1
2 )2 q22(P22P−1

11 z1z−1
2 ) P−1

33 0

−q22(P22P−1
11 z1z−1

2 ) −q22 0 P−1
44

−P−1
33 0 −q33 0

0 −P−1
44 0 −q44




thus, with the controller (9), system (3) can be turn to the
PCH form system

ẋ = Fd(x)∇Hd(x) =




ż2

−2q22P22z1 + ż1

−P−1
33 P11z2 − q33P33ż2

−P−1
44 P22z1 − q44P44ż1


 (17)

Remark 2: In (11), if z2 = 0 happens, let z2 = ξ with
ξ = 10−6, in order to avoid being divided by zero in Fd(x).

Such a replacement is carried out only in (11). Because
z−1
2 is not appear in (9) and (17), the replacement will

not influence the controller u0 and the sliding surface (6).
Therefore, it is feasible to replace z2 by ξ in (11) when
z2 = 0 occurs.

Remark 3: According to IDA-PBC theory, Jd(x) can be
view as the desired interconnection matrix, Rd(x) can be
taken as desired damping matrix, Hd(x) is ideal energy
function and the Lyapunov function of system (3) as well.

Remark 4: Because Jd(x), Rd(x) and Hd(x) are choosing
elaborately according to the characteristics of the con-
sidered active suspension system, the problem of solving
partial differential equations which often brings trouble
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to conventional passivity-based control [10], [14], is not
troublesome in this paper. The relative partial differential
equations are convenient to be solved as shown by (10)–
(16).

3.2 Passivity-based sliding mode control (PB-SMC)

Consider the suspension system with uncertainties, namely
system (2), on the basis of the passivity-based integral
sliding surface (6) designed in subsection 2.1, taking u0 as
a subcontroller which is one part of sliding mode controller,
and then adding u0 with a nonlinear subcontroller un =
−ρ(σB)−1sgn(s) so to make the sliding surface can be
reached, hence the passivity-based sliding mode controller
is given as

u = u0 + un = u0 − ρ(σB)−1sgn(s) (18)
Theorem 2. Under the controller (18) and sliding surface
(6), the uncertain active suspension closed-loop control
system (2) is robustly stable, if the following condition
(19) is held.

ρ ≥ ‖σd‖ (19)

Proof : Consider the derivative of sliding surface (6) and
system (2), gives

ṡ = σẋ− σFd(x)∇Hd(x)
= σ[f(x) + Bu + d]− σFd(x)∇Hd(x)

(20)

Substituting (18) into (20), yields

ṡ = σ{f(x)+B[u0−ρ(σB)−1sgn(s)]+d}−σFd(x)∇Hd(x)
According to (3), (7), (15) and (16), one can see that under
the action of u0, there exists f(x) + Bu0 = Fd(x)∇Hd(x),
then

ṡ = σ[−Bρ(σB)−1sgn(s) + d]

Select Lyapunov function as V = 1
2s2, gives V̇ = sṡ =

sσ[−Bρ(σB)−1sgn(s) + d] = −ρssgn(s) + sσd

Because of condition (19), it is clear that V̇ = −ρs +
sσd < 0 is held when s > 0 and V̇ = ρs + sσd < 0
is held when s < 0. Therefore, sṡ < 0 is held. Then,
according to sliding mode control theory[15], the states
of suspension system can reach the sliding surface (6) and
keep on it thereafter. The closed-loop active suspension
control system (2) is robustly stable under the control law
(18).

Remark 5: Because of the Assumption 1, ‖σd‖ will be
known after σ be set. Hence, the condition (19) can be
satisfied.

Remark 6: According to sliding mode theory, chattering
may be occur because of the existence of discontinuous
term sgn(·). In order to reduce chattering, there are lots
of functions can be used to approximate sgn(·), such as
saturation function sat(·), arc-tangent function arctan(·)
and so on. In the simulation Section 3, 2

πarctan(
s

0.001 ) is
applied to instead sgn(s).

Remark 7: From (2), one can find that A21 6= I2×2, A21 6=
AT

21 and A22 6= 02×2. Besides, uncertainties are taken into
consideration during the system design process. Therefore,
the considered system (2) is different from the classical
mechanic models which considered in typical IDA-PBC
theory. Hence, the method presented in this paper not only

has contribution to SMC theory and its application, but
also extends IDA-PBC theory and its application as well.

4. SIMULATION

In this section, the simulation will be given on a quarter-
car model [17] with parameters are m2 = 310kg, m1 =
70kg, k2 = 27.358kN/m, k1 = 309.511kN/m, c2 =
0.984kN · s/m.

In order to evaluate the performance of the designed
closed-loop active suspension system, we consider three
typical cases.

Case 1: Consider the case of an isolated bump in an
otherwise smooth road surface. The corresponding ground
displacement is given by

z0(t) =





Az0

2
[1− cos(

2πv

Lz0
t)], if 0 ≤ t ≤ Az0

Lz0

0, if t ≥ Az0

Lz0

where Az0 and Lz0 are the height and the length of
the bump respectively, v is the vehicle forward velocity.
Assume the bump is both high and long, with Az0 = 0.5m,
Lz0 = 5m, and v = 30km/h. The corresponding road
excitation is show in Fig.2.

Case 2: Consider road excitation z0 as a vibration, which is
consistent and typically specified as random process with
a ground displacement power spectral density (PSD) of
Gq(f) = 4π2Gq(n0)n2

0v, where Gq(n0) stands for the road
roughness coefficient, n0 is the reference spatial frequency,
v is the vehicle forward velocity [3]. Select the road
roughness as Gq(n0) = 1024 × 10−6m3, n0 = 0.1, which
corresponds to very poor ground, assume v = 7km/h.

Case 3: Consider the parameters of suspension system
suffer from perturbations

∆m2 = 50%m2,∆k2 = −30%k2,∆c2 = −30%c2

∆m1 = −20%m1,∆k1 = −30%k1,

Suppose the road roughness as Gq(n0) = 256 × 10−6m3,
and v = 50km/h. The corresponding road excitation is
show in Fig.3.

Let the parameters in the presented PB-SMC controller
are q22 = 1, q33 = 0.5, q44 = 20, P11 = 1, P22 = 1, P33 = 6,
P44 = 0.075, σ = [1.0000,−208.1644, 310.6718, 0.1517].

The corresponding Fd(x)∇Hd(x) is

Fd(x)∇Hd(x) =




0 0 1 0
0 −2 0 1

−1/6 0 −3 0
0 −10/3 0 −3/2


x , Āx

the eigenvalues of Ā are [−0.0566, −2.9434, −1.7500 +
3.6429i, −1.7500 − 3.6429i]. Obviously, all of eigenvalues
are on the left-half s-plane, which means the stability can
be achieved.

To make comparison, we choose traditional integral sliding
surface s = σx−σx(0)−∫ t

0
[f(x) + g(x)u(τ)]dτ and apply

reaching law ṡ = −5s − 0.1sgn(s) to construct integral
sliding mode controller (ISMC). Similar to the statement
in Remark 6, sgn(s) is replaced by 2

πarctan(
s

0.001 ) in
ISMC.
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Fig. 3. Road excitation (Case 3)
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Fig. 4. Input u (Case 1)
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Fig. 5. Suspension acceleration z̈2 (Case 1)

The simulation results are show in Fig.5–Fig.7. Table.1
shows the improvement percentage of PB-SMC compared

with ISMC in the RMS values RSMy =

√∫ T

0
y2dt

T , the
maximum absolute values max |y| and the total input
consumption

∑
u2.

From Fig. 4 and Fig. 5, one can find that under the PB-
SMC method, the suspension acceleration z̈2 and input u
have lower peak values. According to Fig. 7 and Fig. 8,
it is obvious that under the PB-SMC method, the overall
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Fig. 6. Tyre displacement z1 (Case 1)
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Fig. 7. Input u (Case 3)
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Fig. 8. Suspension acceleration z̈2 (Case 3)
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Fig. 9. Suspension acceleration z̈2 PSD (Case 3)

Table 1. Improvement Percentage of PB-SMC
compared with ISMC

(
(1− PB SMC

ISMC )× 100%
)

Case 1 Case 2 Case 3

RMS z2 9.5304 7.7489 51.4681

RMS z1 -7.8666 -0.5825 -0.7409

RMS z̈2 4.7343 4.2401 48.8345

max |z2| 8.9889 8.2514 51.6568

max |z1| -17.1251 -2.0978 -0.7355

max |z̈2| 17.4170 3.1368 50.6583∑
u2 12.5941 14.4626 39.0697
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Fig. 10. Tyre displacement z1 (Case 3)

value of the suspension acceleration z̈2 and input u are
lower than that of in ISMC method. Fig. 9 shows the power
spectral density (PSD) of z̈2 is lower in PB-SMC method
for the frequency band 4–8 Hz, which is widely accepted
ride comfort closely related frequency range.

Although Fig. 6 indications the peak value of tyre displace-
ment z1 in Case 1 is a bit higher with PB-SMC than that
of by ISMC, and Fig. 10 shows z1 in Case 3 almost are
the same in the two methods, Table.1 illustrate that the
proposed PB-SMC method improves all values of RMS
z2, RMS z̈2, max |z2|, max |z̈2| and

∑
u2 greatly, while

increases RMS z1 and max |z1| small, particularly in Case
2 and Case 3.

Therefore, the PB-SMC method optimizes suspension ac-
celeration, has stronger robustness and decreases input
consumption, possesses better performance in the whole.

5. CONCLUSIONS

In this paper, a novel passivity-based sliding mode con-
troller for a quarter vehicle active suspension system with
uncertainties is proposed. By employing the interconnec-
tion and damping assignment passivity-based control ap-
proach, and according to the characteristics of suspen-
sion system, desired interconnection matrix Jd(x), desired
damping matrix Rd(x) and ideal energy function Hd(x)
are constructed, and an original passivity-based integral
sliding surface is determined. The control law u0 which is
used to achieve sliding mode dynamic, is obtained simul-
taneously. In order to drive states to the sliding surface
and keep on it thereafter, passivity-based sliding mode
controller u is created by combining u0 with a nonlinear
term, and the robustness of the closed-loop suspension
uncertain system are proofed subsequently. A simplified
form of u0 are given when some of designable parameters
are chosen appropriately. Simulation results show that
with the presented passivity-based sliding mode controller,
the closed-loop active suspension system possesses favor-
able performance, such as strong robustness, optimized
suspension acceleration and lower input consumption.
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