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Abstract: Based on the Lyapunov stability theorem, a sliding mode controller is proposed in this paper
for a class of uncertain multi-input multi-output (MIMO) nonlinear systems to solve regulation problems.
The perturbed plant contains partly unmeasurable states and unknown mismatched and matched
perturbations. By utilizing the designed auxiliary dynamic equations for state estimation, the proposed
sliding mode controller is able to drive the state’s trajectory towards a designated sliding surface in finite
time and achieve asymptotic stability. Furthermore, the upper bounds of perturbations are not required in
the design process due to some adaptive mechanisms are embedded in the auxiliary dynamic equations
and controller. A numerical example is also demonstrated for showing the applicability of the proposed
design technique.
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1. INTRODUCTION

In many practical applications the state variables of the control
systems are not available for measurement. Therefore, design
of observers, or utilization of output feedback control tech-
nique, has been carried out by many researchers. Chen and
Kano [2002] designed a new state observer for a class of linear
systems to estimate the true state so that the estimated errors are
bounded. Praly [2003], Krishnamurthy et al. [2003], Boizot
et al. [2010], Hammouri et al. [2010], Farza et al. [2011],
Ménard et al. [2010] designed the high-gain observers, but all
these works did not consider the effects of perturbations. Xiong
and Saif [2001], Chen and Chen [2007], Walcott and Zak
[1987], Ha et al. [2003] discussed the state observation but only
for systems with matched perturbations. Jiang and Wu [2002],
Kung and Chen [2005] designed perturbation observer and
observer-based indirect adaptive fuzzy sliding mode controller
respectively for single-input single-output (SISO) nonlinear
systems. A higher order sliding mode observer was developed
by Floquet and Barbot [2007] for a class of MIMO locally
weakly observable, nonlinear systems with unknown inputs.
Kalsi et al. [2010] also designed sliding-mode observers for
systems with unknown inputs, the state estimation error was
shown to be uniformly ultimately bounded. Spurgeon [2008]
surveyed some observers for systems with mismatched pertur-
bation, but these observers may only be directly applied to sys-
tems where the upper bounds of perturbations have to be known
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in advance. Several different high gain sliding mode observers
were proposed by Veluvolu et al. [2007], Veluvolu and Soh
[2009], Veluvolu et al. [2011] for nonlinear systems with mis-
matched model uncertainties and/or perturbations. However,
these observers may only be applied to the systems where the
upper bound of disturbance distribution vector has to be known
in advance, and the disturbance distribution vector must be
in a special form (Veluvolu et al. [2007], Veluvolu and Soh
[2009]), or must be bounded by a known upper bound (Veluvolu
et al. [2011]).

As for applying the output feedback control technique, Yan et
al. [2010] studied a robust stabilization problem for a class of
linear time-varying delay systems with time-delayed nonlinear
disturbances. Cheng et al. [2006] proposed an adaptive output
feedback variable structure tracking controller for a class of
MIMO dynamic systems with mismatched uncertainties and
disturbances. By constructing output feedback stabilizers, Zhai
et al. [2013] stabilized a class of large-scale uncertain non-
linear systems. Liu et al. [2011] studied an adaptive output
feedback control for uncertain SISO nonlinear systems with
partial unmeasured states. Qian and Du [2012] developed a
sampled-data output feedback controller to stabilize a class of
nonlinear systems.

In this paper we propose a design methodology of sliding mode
controllers for a class of mismatched uncertain nonlinear sys-
tems with unmeasurable states in order to achieve asymptotic
stability. It is well known that if mismatched perturbations are
present in the systems, the famous invariant property of sliding
mode control is lost, that is, these mismatched perturbations
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will still affect the dynamics of the system during the sliding
mode (Hu et al. [2000], Sam et al. [2004]). Hence stabilizing
the control systems with mismatched perturbations is not an
easy task, lots of studies using SMC technique have been car-
ried out (Chan et al. [2000], Choi [2003], Tao et al. [2003],
Chang and Cheng [2007], Cheng and Chang [2008]). How-
ever, all these methodologies required that the state variables
are measurable. It is also observed that the aforementioned
observers and output feedback control techniques can not be
directly applied to the systems we considered in this paper.
Therefore, in this study we designed an auxiliary dynamic
equations so that the proposed sliding mode controllers are able
to utilize their estimated states to achieve asymptotic stability.
Furthermore, the upper bounds of perturbations are not required
to know during the design process due to some adaptive mech-
anisms are embedded in both the proposed controller and the
auxiliary dynamic equations. An example is also illustrated for
showing the feasibility of the proposed control technique.

2. SYSTEMS DESCRIPTION AND PROBLEM
FORMULATIONS

Consider a class of MIMO nonlinear dynamic systems with
mismatched perturbations governed by the following equations

Px1 D A11x1 C f1.t; x2/ C �p1.t; x/; (1)

Px2 D f2.t; x/ C B2u C �p2.t; x/; (2)

where x D ŒxT
1 xT

2 �T represents the state of the system,
x1 2 Rn�m is not available for measurement, whereas x2 2 Rm

is measurable. The constant matrices A11, B2 2 Rm�m are
known, and the vector u 2 Rm is the control input. The vector
�p1.t; x/ represents the unknown mismatched model uncer-
tainty and/or nonlinearity, and the vector �p2.t; x/ denotes the
unknown matched nonlinearity and/or external disturbance.

In order to control the plant (1) and (2) successfully, the
following assumptions are assumed to be valid throughout this
paper:

A1. The matrix A11 has stable eigenvalues. The input gain
matrix B2 is invertible.

Remark 1. In this paper the output of the plant can be treated
as y D x2. Suppose that the number of the output is q, then
q D m in this paper. If A11 is not stable and m < q, then
under certain conditions, it is possible for one to stabilize A11

first by using output feedback method (Edwards and Spurgeon
[1998]). Then apply the proposed method to stabilize the whole
control system.

A2.(Edwards and Spurgeon [1998]) There exist unknown
positive constants ci .i D 0; 1; 2/ such that the following
inequalities

k�p1.t; x/k 6 c2kx2k; k�p2.t; x/k 6 c0 C c1kxk

are satisfied in the domain of interest.

Remark 2. Since �p2.t; x/ is dependent on full state x, its up-
per bound is also assumed to be dependent on full state x. How-
ever, the upper bound of mismatched perturbation �p1.t; x/ is
assumed to be dependent only on the state x2, this constraint
indicates that the stability guaranteed by the proposed control
scheme is in local sense. In fact this idea (the upper bound
of perturbation depends only on partial state) has been used
by many researchers, especially those who designed the robust

observers or output feedback control scheme, for example, Ed-
wards and Spurgeon [1998], Ha et al. [2003], Kwan [1996],
Cheng et al. [2006]. In fact one can relax the constraints of the
upper bounds of �p1.t; x/ and �p2.t; x/ as

k�p1.t; x/k 6
1
X

j D1

ǰ kx2kj ; �p2.t; x/ 6
2
X

j D0

�j kxkj ; (3)

where ǰ and �j are unknown positive constants, 1 and 2

are designed positive constants. Although 1 D 1 and 2 D 1
were assumed in this paper for simplicity, the design of the
controllers under the constraints (3) can be proceeded in a
similar way.

A3. The upper bound of the known nonlinear vector f1.t; x2/
satisfies the inequality kf1.t; x2/k � g.x2/, where g.x2/ is a
vanishing function, and g.x2/ is bounded if x2 is bounded. The
function f2.t; x/ is Lipschitz in x in the domain of interest.

Remark 3. The proposed method can still be directly applied
to the case where the number of unmeasurable states is smaller
than n � m.

The objective of this paper is to design a sliding mode controller
for the dynamic equations (1) and (2) under the conditions that
state x1 is unmeasurable and the perturbations �p1, �p2 exist,
so that the full state variable x is able to approach zero as
t ! 1. The proposed design methodology is presented in the
following sections.

3. DESIGN OF THE ROBUST SLIDING MODE
CONTROLLERS

Since the state variable x1 is unmeasurable, we first introduce
an auxiliary dynamic equations to estimate the state x1, so that

the estimation error ex1
, x1 � Ox1 is capable of reaching zero

as t ! 1 when the proposed controller is employed. These
auxiliary dynamic equations are given by

POx1 D A11 Ox1 C f1.t; x2/; (4)

PhD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

f2.t; Ox/ C B2u; for eh D 0;

f2.t; Ox/ C B2u C
eh

kehk

�

Ǫ0.t/ C Ǫ1.t/kOxk C Ǫ2.t/kx2k

C Ǫ3.t/kx2kkOxk
�

C �eh ; for eh 6D 0;

(5)

where eh , x2 � h, Ox , ŒOxT
1 xT

2 �T , and � is a designed positive
constant. The time-varying gains Ǫ i.t/, .i 2 I; 0 � i � 3/ are
computed from the following adaptive laws

PǪ0.t/ D

�

0; for eh D 0;

1; for eh 6D 0:
PǪ1.t/ D

�

0; for eh D 0;

kOxk; for eh 6D 0:

PǪ2.t/D

�

0; for eh D 0;

kx2k; for eh 6D 0:
PǪ3.t/D

�

0; for eh D 0;

kx2kkOxk; for eh 6D 0:

(6)

According to the previous auxiliary equations, one can easily
obtain the error dynamic equations as

Pex1
D A11ex1

C �p1.t; x/; (7)

Peh D

8

ˆ

ˆ

<

ˆ

ˆ

:

f2.t; x/ � f2.t; Ox/ C �p2.t; x/; for eh D 0;

f2.t; x/ � f2.t; Ox/�
eh

kehk

�

Ǫ0.t/ C Ǫ1.t/kOxk � �eh

C Ǫ2.t/kx2kC Ǫ3.t/kx2kkOxk
�

C�p2; for eh 6D 0;

(8)
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To achieve the objective of regulation of the state variable x, we
design the sliding function and the controller respectively as

s.t/ D h.t/; (9)

u.t/ D .B2/�1
h

uf .t/ C us.t/ C uadp.t/
i

; (10)

where uf .t/ D �f2.t; Ox/ � �eh.t/, and

us.t/ D

8

<

:

0; for s.t/ D 0;

��
s.t/

ks.t/k
; for s.t/ 6D 0;

uadp.t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; for eh.t/ D 0;

�
eh

kehk

�

Ǫ0.t/ C Ǫ1.t/kOxk C Ǫ2.t/kx2k

C Ǫ3.t/kx2kkOxk
�

; for eh.t/ 6D 0;

� is a designed positive constant, which determines the time
required by the controlled system entering the sliding mode.
The adaptive laws Ǫ i .t/ are given by (6).

Noted that the adaptive mechanisms (6) are intentionally em-
bedded in both controller (10) and auxiliary dynamic equations
(5) to overcome the mismatched and/or matched perturbations
whose upper bounds are unknown. The effectiveness of the
proposed controller as well as the auxiliary dynamic equations
is demonstrated in the next section.

4. ROBUSTNESS OF SYSTEM’S STABILITY

In this section we prove that the stability of overall controlled
systems is guaranteed under the proposed control scheme.
Firstly the following theorem shows that the trajectories of
controlled system will be driven into the designated sliding
surface s.t/ D 0 within a finite time.

Theorem 1: Consider the systems (4) and (5) with the assump-
tions A1 to A3. If the sliding function (9) and the controller (10)
are used, then the state trajectories will be driven towards the
sliding hyperplane s.t/ D h.t/ D 0 within a finite time tf .

Proof: A Lyapunov function candidate is chosen as V1 D ksk.
Now we consider the following three cases:

(1) s 6D 0, eh 6D 0: By using (5) and (10), one computes the
time derivative of V1 along the trajectory of (5) as

PV1 D
sT

ksk

h

f2.t; Ox/ C B2u C
eh

kehk

�

Ǫ0.t/ C Ǫ1.t/kOxk

C Ǫ2.t/kx2k C Ǫ3.t/kx2kkOxk
�

C �eh

i

D �
sT

ksk

h s

ksk
�
i

D �� < 0

(2) s 6D 0, eh D 0: The time derivative of V1 is PV1 D
sT

ksk

�

f2.t; Ox/ C B2u
�

D �� < 0.

(3) s D 0: PV1 D 0 since V1 D 0.

From the above three cases, it can be seen that no matter what
the value of eh is, the value of V1 is bounded for t � t0, and
its value will decay until s D 0. It can also be verified that
the sliding variable s, and hence h, will approach zero within a

finite time tf � t0 C V1.t0/
�

. �

The following theorem proves that the error dynamic systems
(7) and (8) will be asymptotically stable, and the stability
of overall controlled systems is guaranteed if the proposed
controller (10) is employed.

Theorem 2: Consider the dynamic equations (7), (8) with
assumptions A1, A2, and the proposed controller (10). Suppose

that kOek , kx � Oxk � g0 C g1kOxk, where g0 and g1 are
unknown constants. Then
(a) the state variables eh and x2 will approach zero as t ! 1;
(b) the estimation error ex1

will approach zero as t ! 1;
(c) both the estimated state Ox1.t/ and the state x1.t/ will
approach zero after the controlled system enters the sliding
mode;
(d) there exist finite constants ˛i1 such that limt!1 Ǫ i.t/ D
˛i1 .i D 0; 1; 2; 3/; and
(e) the stability of overall controlled system is guaranteed.
Proof: Since A11 is a stable matrix, the Lyapunov equation

AT
11P C PA11 D �Q (11)

has a unique symmetric and positive definite solution P for any
given positive definite symmetric matrix Q (Chen [1999]). This
also implies that

eT
x1

PA11ex1
D eT

x1
AT

11Pex1
D �

1

2
eT

x1
Qex1

: (12)

Since kOek D kex1
k � g0 C g1kOxk, from assumption A2 it can

be seen that

k�p2k � c0 C c1kOe C Oxk � c0 C c1.g0 C g1kOxk/ C c1kOxk

� r0 C r1kOxk; (13)

where r0 , c0 C c1g0, r1 , c1g1 C c1 are two unknown
constants.
(a) Let ˛0 , r0 C Lg0, ˛1 , r1 C Lg1, ˛2 , c2g0kPk,

˛3 , c2g1kPk be four unknown constants to be adapted,
where L is the Lipschitz constant. Define a Lyapunov function
candidate as

V D kehk C
1

2

 

eT
x1

Pex1
C

3
X

iD0

Q̨ 2
i .t/

!

; (14)

where Q̨ i.t/ , Ǫ i .t/ � ˛i , 0 � i � 3, are the adaptive errors.

Note also that PQ̨ i.t/ D PǪ i.t/. In this part we consider the
following three cases:
case 1: eh 6D 0
By using (11), (12), (13), (6), and assumption A3, the derivative
of V along the trajectories of (7) and (8) is

PV D
eT

h

kehk
Peh C eT

x1
PPex1

C

3
X

iD0

Q̨ PǪ i

� eT
x1

PA11ex1
C keT

x1
kkPkk�p1k C kf2.t; x/ � f2.t; Ox/k

� �kehk �
�

Ǫ0 C Ǫ1kOxk C Ǫ2kx2k C Ǫ3kOxkkx2k
�

C k�p2k C

3
X

iD0

Q̨ PǪ i

� �
1

2
eT

x1
Qex1

C kex1
kkPkc2kx2k C Lkx � Oxk � �kehk

�
�

Ǫ0 C Ǫ1kOxk C Ǫ2kx2k C Ǫ3kOxkkx2k
�

C r0 C r1kOxk
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C

3
X

iD0

Q̨ PǪ i

� �
1

2
eT

x1
Qex1

� �kehk �
�

Ǫ0 C Ǫ1kOxk C Ǫ2kx2k

C Ǫ3kOxkkx2k
�

C .r0 C Lg0/ C .r1 C Lg1/kOxk

C .c2g0kPk/kx2k C .c2g1kPk/kOxkkx2k C . Ǫ0 � ˛0/

C . Ǫ1 � ˛1/kOxk C . Ǫ2 � ˛2/kx2k C . Ǫ3 � ˛3/kOxkkx2k

� �
1

2
eT

x1
Qex1

� �kehk < 0:

Case 2: eh D 0 and t < tf

In this case, V D
�

eT
x1

Pex1
C
P3

iD0 Q̨ 2
i .t/

�

=2 in accordance
with (14). Then from (7), (12), and assumption A2

PV D eT
x1

P
�

A11ex1
C �p1

�

� �eT
x1

Qex1
=2 C c2kex1

kkPkkx2k

� ��min.Q/kex1
k2=2 C c2kex1

kkPkkx2k: (15)

case 3: eh D 0 and t � tf
According to Theorem 1, eh D x2 8 t � tf , hence x2 D eh D 0
in this case. From (15) it is seen

PV � ��min.Q/kex1
k2=2:

The above analysis all implies that eh will approach zero as
t ! 1. From Theorem 1 it is known that the sliding variable
s D h will approach zero within a finite time tf , the equation
eh D x2 � h indicates that the state variable x2 will also be
asymptotically stable.
(b) It is easy to see that in case 1 and case 3, ex1

will approach

zero as t ! 1. In case 2 if kex1
k > 2c2kPkkx2k

�min.Q/
then PV <

0. Although the magnitude of ex1
may increase if kex1

k <
2c2kPkkx2k

�min.Q/
, this will only last at most finite time tf . Since x2

is asymptotically stable as proved in (a), the trajectory of ex1

will still reach zero as t ! 1.
(c) For analyzing the stability of (4), another Lyapunov function
candidate is chosen as V2 D OxT

1 POx1=2. The time derivative of
V2 along the trajectory of (4) is

PV2 D OxT
1 PPOx1 D OxT

1 P
�

A11 Ox1 C f1.t; x2/
�

� �OxT
1 QOx1=2 C kOxT

1 kkPkkf1.t; x2/k

� ��min.Q/kOx1k2=2 C kOx1kkPkg.x2/; (16)

It is easy to verify that if kOx1k > 2kPkg.x2/
�min.Q/

then PV2 < 0. Since

x2 is bounded and is asymptotically stable for t � tf as proved
in part (a) (g.x2/ is vanishing function), Ox1 must be bounded
and will reach zero as t ! 1. According to the equation
ex1

D x1 � Ox1 and part (b), x1 will also be asymptotically stable
for t � tf since ex1

and Ox1 are asymptotically stable.

(d) From part (a) it is shown in case 1 and case 3 that PV � 0,

hence V is bounded in these two cases. In case 2 PV may be

greater than zero if kex1
k < 2c2kPkkx2k

�min.Q/
and t < tf . Since

tf is a finite number and V is continuous, V is still bounded
in this case. Hence Ǫ i.t/ 2 L1, 0 � i � 3, for all time.
From (6), it is known that Ǫ i.t/ are monotonically increasing
functions, and these functions are all bounded, therefore, ac-
cording to the Proposition 2.14 in Tao [2003], one can conclude
that there exist finite constants ˛i1, 0 � i � 3, such that
limt!1 Ǫ i.t/ D ˛i1.
(e) From (a) to (d), it is seen that not only the state variable
x.t/ D ŒxT

1 .t/ xT
2 .t/�T is bounded, but also it is asymptotically

stable when the controlled system is in the sliding mode. Both
Ox1 and h are asymptotically stable too, and all the adaptive gains

Ǫ i .t/, 0 � i � 3, are bounded and will reach constants ˛i1,
respectively. Therefore, the control input function (10) will be
bounded, and one can conclude that the stability of overall
controlled system is guaranteed. �

Theorem 2 clearly shows that the proposed controller as well
as the auxiliary dynamic equations are effective in dealing with
systems which contain mismatched and/or matched perturba-
tions since the overall controlled system is able to achieve
asymptotic stability. From part (b) and (c) of Theorem 2, it is
also seen that the stability of x2 is very crucial to the success of
the proposed control scheme. The auxiliary dynamic equations
may not be employed alone to estimate state variable x1 since
they need the controller to drive the sliding variable s D h to
zero within a finite time. Then the asymptotic stability of the
state x2 is guaranteed. Another key factor for the success of the
proposed control scheme is the finite time tf . Since V may be

unbounded if kex1
k < 2c2kPkkx2k

�min.Q/
and tf is not finite.

It is proved in the previous theorem that the trajectory of eh

will reach zero as t ! 1, and all the adaptive rules ˛i .t/ are
bounded. However, these adaptive rules given by (6) in general
might not be acceptable since in most practical applications
eh will not be exactly equal to zero due to the computing
accuracy and noise in the control system. It also means that
these adaptive rules may increase as time increases. A simple
remedy of this problem is to utilize the dead-zone technique
(Slotine and Li [1991]), i.e.,

PǪ0.t/D

�

1; for kehk > �;

0; otherwise;
PǪ1.t/D

�

kOxk; for kehk > �;

0; otherwise;

PǪ2.t/D

�

kx2k; for kehk > �;

0; otherwise;
PǪ3.t/D

�

kx2kkOxk; for eh 6D 0

0; otherwise;

(17)

where � is a designed small positive constant. Note also that
increasing the value of � will drive the trajectory of eh toward
zero faster.

5. EXAMPLE AND SIMULATION

Consider the perturbed dynamic equations in the form of (1)

and (2) with x1 , Œx1 x2 x3�T , x2 , Œx4 x5�T , and

A11 D

"

�1 1 0
0 �2 3
0 �4 �2

#

; f1 D

"

x4x5

3x5 sin.2t/
2x5 cos.2x4/

#

;

f2 D

�

2x2x4 cos.2t/
3x1x3

�

; B2 D

�

1 1
0 1

�

:

Note that x1, x2, and x3 are unmeasurable states, whereas x4

and x5 are measurable. For demonstrating the robustness of
the proposed control scheme and computer simulation, it is as-
sumed that the mismatched and matched lumped perturbations
�p1, �p2 are

�p1 D

"

0:2x4 cos.x1x2/
0:5x5 sin.2t/

�0:3x4 sin.x1x3x5/

#

; �p2 D

�

0:2x1x4 cos.2t/
0:5x2x3 C0:3 sin t

�

:

The objective of this example is to use the proposed control
scheme so that all the states x1.t/ to x5.t/ can be driven to zero
as t ! 1. The sliding surface function, auxiliary dynamic
equations, and the controller are designed in accordance with
(9), (4), (5), and (10) respectively. The adaptive rules (17) are
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employed with � D 0:001. The design parameters are set to be
� D 10, � D 1.

The simulation results with calculation step size 1m sec and
initial conditions h.0/ D Œ�5 5�T and x.0/ D Œ2 5 �
4 3 � 1�T are shown from Fig. 1 to Fig. 7. It is clearly shown
that all the state variables are asymptotically stable in Fig. 1
and Fig. 2. Note that the measurable states x4 and x5 are forced
to be asymptotically stable after tf � 0:7 sec, which is the
time when sliding variables reach zero. The estimation error ex1

shown in Fig. 3 and trajectory of eh in Fig. 4 all approach zero
as t ! 1. Fig. 5 depicts the sliding variables all reaching zero
in finite time tf . The control input functions u1.t/ and u2.t/
displayed in Fig. 6 are all bounded. Fig. 7 clearly illustrates that
each adaptive gain Ǫ i.t/ approaches a constant respectively.
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Fig. 1. The state variables x1, x2 and x3.
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Fig. 2. The state variables x4 and x5.
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6. CONCLUSIONS

In this study a methodology of designing sliding mode con-
trollers is successfully proposed for a class of mismatched
perturbed MIMO nonlinear systems with unmeasurable states.
Although the designed auxiliary dynamic equations need the
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0â

1â
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aid of proposed controller to estimate the unmeasurable states,
the proposed control scheme is capable of achieving asymptotic
stability. For future study, relaxing the constraint in assumption
A1 is worth considering.
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