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Abstract: Robust model predictive control algorithms often suffer from a high computational
complexity due to the large number of variables and constraints involved in the optimiztion
problems that are solved at every sampling instant. In this paper we propose an approximate
control scheme for polytopic systems based on the interpolation of offline computed robust
invariant tubes. The feasible set of the control scheme is the convex hull of all the sets in
the invariant tubes. Online, the current control input is computed by interpolating between
the control laws associated with these tubes. This interpolation requires the solution of an
optimization problem. Compared with a direct solution of a robust model predictive control
problem, the interpolation approach proposed in this paper requires much less computation
time.

1. INTRODUCTION

The basic idea in model predictive control (MPC) is to
include a simulation model in the controller that maps a
sequence of predicted inputs onto a sequence of predicted
states. At every sampling instant an optimization problem
is solved with the predicted inputs as decision variables.
Performance criteria and constraints on the inputs or
states can be included explicitly in the optimization prob-
lem. This feature makes MPC very attractive for control
applications, as it is one of the few control methods able
to handle hard constraints on the inputs and states. For
an overview of MPC, see for example Rawlings and Mayne
[2009].

If uncertainty is present in the system to be controlled,
the predictions of the system states become set-valued.
Predicting the exact worst case evolutions of the system
can result in an exponentially growing complexity in the
prediction horizon, see for example Langson et al. [2004]
and the references therein. In this paper, we restrict our
considerations to uncertain linear time-varying systems,
where the system matrices are contained in a polytope. In
the past, multiple approaches have been proposed where
the worst case evolution of the system is overapproxi-
mated by sets of fixed complexity, allowing a trade-off
between the computational effort and the conservativeness
of the predictions, thereby obtaining tractable optimiza-
tion problems. A notable example is Kothare et al. [1996],
where the uncertain predicted states of the system are
contained in ellipsoids centered at the origin. An approach
based on general ellipsoidal predictions was proposed in
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Brooms et al. [2001]. Robust MPC schemes based on
polytopes instead of ellipsoids were for example proposed
in Lee and Kouvaritakis [2000] and Langson et al. [2004].

Common to these robust control schemes is that they,
implicitly or explicitly, define at every sampling instant
a “tube” in the state space, which is a sequence of sets
(X0,X1,X2, . . .) with an associated sequence of control
laws (κ0, κ1, κ2, . . .). For any given state x in a set Xi in the
tube, the control law κi(x) ensures that for all realizations
of the uncertainty the state at the next sampling instant
will be contained in the set Xi+1. This definition of robust
invariant tubes was proposed in Langson et al. [2004].
While ensuring constraint satisfaction and stability under
the worst case uncertainty, these MPC schemes often still
suffer from a high computational effort due to a large
number of variables in the optimization problems. One
way to decrease computation time is to solve optimization
problems parametrically offline as proposed in Besselmann
et al. [2012a], where the optimal controller is obtained by
a dynamic programming iteration.

In this paper, we propose an approach to decrease the
computational effort based on the ideas presented in
Brunner et al. [2013] for systems without uncertainty.
The main observation made in that paper was that given
a trajectory satisfying convex constraints on the inputs
and states and terminating in an invariant set, then the
convex hull of the invariant set and the states on this
trajectory is control invariant. Moreover, a stabilizing
controller and a Lyapunov function can be defined on
this convex hull. Extending these results to the uncertain
case is the main objective of this paper. Specifically, it
will be shown that the convex hull of sets Xi in one
(or multiple) robust invariant tubes is robust control
invariant. A robustly stabilizing controller on the convex
hull is obtained by interpolating between the control
laws κi online depending on the current system state. The
multipliers defining the interpolation are the solution of an
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optimization problem which is far less complex than the
optimization problem in a direct tube MPC approach. The
main reason for this is that the uncertainty description
is not included explicitly in the optimization problem
yielding the multipliers. Robustness is induced by the
robust invariance of the tubes which are computed offline.
If the tubes between which the interpolation takes place
are computed by solving a tube MPC problem, then the
interpolated control law can be seen as an approximation
of the control law obtained by solving the MPC problem
directly. A similar approach based on the interpolation
between offline computed tubes has for example been
proposed in Lee and Kouvaritakis [2002] for a specific
parameterization of the sets Xi and controllers κi. In Bacic
et al. [2003], Pluymers et al. [2005], and Ding and Rossiter
[2007] large invariant sets for MPC are constructed by
taking the convex hull of multiple invariant sets centered
on the origin. See also the references therein. A recent
robustly stabilizing control scheme based on interpolation
was proposed in Nguyen et al. [2013].

The remainder of the paper is structured as follows. The
problem setup is given in Section 2. In Section 3 a tube
MPC scheme based on Langson et al. [2004] is described
which yields the robust invariant tubes necessary for our
control method. Section 4 contains our main results, that
is the definition of the optimization problem that is solved
online in order to obtain the control input. In Section 5
it is shown how under certain conditions this optimiza-
tion problem can be formulated as a linear program. In
Section 6 several ways to simplify the optimization prob-
lem are described. Section 7 contains a discussion of the
complexity of the optimization problem when compared
to a direct tube MPC approach. Further, some possible
extensions are described. Section 8 contains a simulation
example and Section 9 concludes the paper.

Notation: Given natural numbers a, b ∈ N with a ≤ b, the
sets {k ∈ N | a ≤ k} and {k ∈ N | a ≤ k ≤ b} are denoted
by N≥a and N[a,b], respectively. The set of nonnegative real
numbers is denoted by R≥0. For any n ∈ N, a compact and
convex subset of Rn containing the origin is called a C -
set. A C -set is called proper if it contains the origin in
its (nonempty) interior. Given a set Z ⊆ Rn and a scalar
a ∈ R, define aZ := {x ∈ Rn | ∃z ∈ Z : x = az}.
Given sets Y,Z ⊆ Rn, define the Minkowski set addition
by Y ⊕ Z := {x ∈ Rn | ∃y ∈ Y, ∃z ∈ Z : x = y + z}.
Given a set Z ⊂ Rn and a vector v ∈ Rn, define further
v⊕Z := Z⊕v := Z⊕{v}. Given a set Z ⊆ Rn, the convex
hull of Z is denoted by convh(Z).

2. PROBLEM SETUP AND PRELIMINARIES

We consider uncertain linear time-varying systems of the
form

x+ = Φ(x, u, θ) (1)

where for all x ∈ Rn, all u ∈ Rm, and all θ ∈ Rr it holds
that

Φ(x, u, θ) =

r∑
i=1

θi(Aix+Biu) (2)

for given matrices Ai, Bi. The parameter θ is not mea-
surable, may change at any time step, but known to
satisfy θ ∈ Θ, where Θ = {θ ∈ Rr | ∀i ∈ N[1,r] : θi ≥
0,
∑r
i=1 θi = 1}.

Remark 1. For any x, y ∈ Rn, any u, v ∈ Rm, any a, b ∈ R,
and any θ ∈ Rr it holds that Φ(ax + by, au + bv, θ) =
aΦ(x, u, θ) + bΦ(y, v, θ).

Further, define with slight abuse of notation

Φ(x, u) := convh

(
r⋃
i=1

{Aix+Biu}
)
,

such that for all x ∈ Rn, all u ∈ Rm and all θ ∈ Θ it
holds that x+ ∈ Φ(x, u). The goal is to stabilize the origin
of (1), while satisfying the mixed constraints (xT, uT)T ∈ Y
where Y ⊂ Rn×Rm is a proper C -set. Additionally, given
a stage cost function ` and an initial state x0, we are
interested in minimizing the worst case infinite horizon
cost function

Vsup(x0, κ) = sup
θ∈Θ

∞∑
k=0

`(xk, uk),

where κ : Rn → Rm is the chosen control law which is
to be optimized, θ = (θ0, θ1, . . .) is the sequence of future
realizations of the uncertainty, further Θ = Θ × Θ × · · · ,
uk = κ(xk), and xk+1 = φ(xk, uk, θ

k) for all k ∈ N. The
control scheme in this note requires a proper C -set Xf ,
called the terminal set, a terminal control law κf : Xf →
Rm and a terminal cost function Vf : Xf → R satisfying
the following standing assumptions.

Assumption 2. The functions ` and Vf are positive definite
and convex.

Assumption 3. For all x ∈ Xf it holds that (xT, κf(x)T)T ∈
Y. Furthermore, for all x ∈ Xf it holds that Φ(x, κf(x)) ⊆
Xf and Vf(x

+) ≤ Vf(x) − `(x, κf(x)) for all x+ ∈
Φ(x, κf(x)).

Definition 4. (Compare Langson et al. [2004]). A robust
invariant tube TN is given by TN =

(
(X0, . . . ,XN−1),

(κ0, . . . , κN−1)
)
, where for all i ∈ N[0,N−1] it holds that

Xi ⊆ Rn and κi : Xi → Rm. For all i ∈ N[0,N−1] and any

x ∈ Xi it holds that (xT, κi(x)T)T ∈ Y. Further, for all i ∈
N[0,N−2] and any x ∈ Xi it holds that Φ(x, κi(x)) ⊆ Xi+1.
Finally, for any x ∈ XN−1 it holds that Φ(x, κN−1(x)) ⊆
Xf .

3. TUBE MODEL PREDICTIVE CONTROL

In this section, we give an example of how robust invariant
tubes can be constructed. The parameterization and the
optimization problem have been adapted from Langson
et al. [2004]. The sets Xi are polytopes defined by Xi =

convh
(⋃qi

j=1{vij}
)

for vij ∈ Rn. The controllers κi are

parameterized as vertex controllers. Given a set Xi =

convh
(⋃qi

j=1{vij}
)

and associated inputs uij ∈ Rm, for

any x ∈ Xi the control input κi(x) is defined by the
optimization problem

(λ?1, . . . , λ
?
qi) = argmin

λ1,...,λqi

`

(
x,

qi∑
j=1

λjuij

)
(3a)

s. t. ∀j ∈ N[1,qi] : λj ≥ 0 (3b)
qi∑
j=1

λj = 1,

qi∑
j=1

λjvij = x (3c)

κi(x) =

qi∑
j=1

λ?juij . (3d)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11061



A particular parameterization of the sets Xi is Xi =

zi ⊕ aiX for a fixed polytope X = convh
(⋃q

j=1{vj}
)

where zi, vj ∈ Rn and ai ∈ R≥0. With this param-
eterization, the vertices vij are given by vij = zi +
aivj . Furthermore, a polytopic terminal set Xf is assumed
to be given. Summarizing, for fixed X ,Xf the parame-
ters of the tube are ai, zi, and uij . In order to satisfy
Definition 4, these parameters are defined as the solu-
tion of an optimization problem for a given x ∈ Rn.
Let dN = (z1, . . . , zN−1, a1, . . . , aN−1, u01, . . . , u0q, . . . ,
uN−11, . . . , uN−1q) denote the optimization variables. The
constraints are given by

x ∈ z0 ⊕ a0X (4a)

∀i ∈ N[0,N−1] : ai ≥ 0 (4b)

∀i ∈ N[0,N−1] : ∀j ∈ N[1,q] :

(zi + aivij , uij) ∈ Y (4c)

∀l ∈ N[1,r] : ∀i ∈ N[0,N−2] : ∀j ∈ N[1,q] :

Al(zi + aivij) +Bluij ∈ zi+1 ⊕ ai+1X (4d)

∀l ∈ N[1,r] : ∀j ∈ N[1,q] :

Al(zN−1 + aN−1vij) +BluN−1j ∈ Xf . (4e)

The cost function of the optimization problem is defined
by

JTMPC
N (dN ) =

N−1∑
i=0

max
j∈N[1,q]

`(zi + aivij , uij)

+ max
j∈N[1,q]

l∈N[1,r]

Vf(Al(zN−1j + aN−1vN−1j) +BluN−1j)

Finally, the optimization problem is given by

d?N (x) = argmin
dN

JTMPC
N (dN )

s. t. (4a) to (4e).
(5)

4. APPROXIMATE PREDICTIVE CONTROL

This section contains our main results. That is, it is
shown how a stabilizing controller can be defined on the
convex hull of a robust invariant tube. For the sake of
simplicity, only a single tube is used in the construction
of the controller in this section. The extension to multiple
tubes is obvious and is briefly discussed in Section 7. Note
that the results in this section are not dependent on the
parameterization of the sets Xi and the controllers κi. In
particular, it is not necessary that the sets and controllers
are parameterized as in Section 3.

Given an invariant tube TN where all Xi are convex and
compact sets, define the set

XE := convh

(
N−1⋃
i=0

Xi ∪ Xf

)
.

By the definition of the convex hull of a set as the union of
all convex combinations in the set it holds that for any x ∈
XE there exists x̂i ∈ Xi, x̂f ∈ Xf , and scalars ρi, ρf ≥ 0 with∑N−1
i=1 ρi+ρf = 1, such that x =

∑N−1
i=0 ρix̂i+ρf x̂f . Hence

it holds that XE = {x ∈ Rn | Γ(x) 6= ∅}, where

Γ(x) :=

{
(ρ0, . . . , ρN−1, ρf , x̂0, . . . , x̂N−1, x̂f)

∈ R× . . .× R× Rn × . . .× Rn
∣∣∣∣∣

∀i ∈ N[0,N−1] : ρi ≥ 0, ρf ≥ 0,

N−1∑
i=0

ρi + ρf = 1,

∀i ∈ N[0,N−1] : x̂i ∈ Xi, x̂f ∈ Xf , x =

N−1∑
i=0

ρix̂i + ρf x̂f

}
.

For any x ∈ XE and any p ∈ Γ(x) define the control law

κp
E(p) :=

N−1∑
i=0

ρiκi(x̂i) + ρfκf(x̂f), (6)

where p = (ρ0, . . . , ρN−1, ρf , x̂0, . . . , x̂N−1, x̂f). Further, for
all i ∈ N[0,N−1] define functions Ji : Xi → R. The following
assumption holds throughout the remainder of the section.

Assumption 5. For all i ∈ N[0,N−2], all x ∈ Xi and

all x+ ∈ Φ(x, κi(x)) it holds that

Ji+1(x+)− Ji(x) ≤ −`(x, κi(x)).

For all x ∈ XN−1 and all x+ ∈ Φ(x, κN−1(x)) it holds that

Vf(x
+)− JN−1(x) ≤ −`(x, κN−1(x)).

Remark 6. Multiple ways of defining functions Ji satis-
fying Assumption 5 will be discussed in Section 5 and
Section 6.

Given now any x ∈ XE and any p ∈ Γ(x), define the cost
function

V p
E (p) :=

N−1∑
i=0

ρiJi(x̂i) + ρfVf(x̂f).

The next lemma establishes invariance of the set XE for
any parameter p in the control law κp

E(p). Further, it is
shown that there always exists a choice of the parameter p,
such that the cost function V p

E (p) decreases along the
trajectories of the closed-loop system.

Lemma 7. Given any x ∈ XE and any p ∈ Γ(x), then for
any x+ ∈ Φ(x, κp(p)) there exists a p+ ∈ Γ(x+), such that
V p

E (p+)− V p
E (p) ≤ −`(x, κp

E(p)).

Proof. Let x+ = Φ(x, κp(p), θ) for a given θ. Let p ∈
Γ(x) with p = (ρ0, . . . , ρN−1, ρf , x̂0, . . . , x̂N−1, x̂f) and
define p+ := (ρ+

0 , . . . , ρ
+
N−1, ρ

+
f , x̂

+
0 , . . . , x̂

+
N−1, x̂

+
f ). In

particular, let ρ+
0 = 0, ρ+

i = ρi−1 for all i ∈ N[1,N−1]

and ρ+
f = ρN−1 + ρf . It obviously holds that ρ+

i ≥ 0 for

all i ∈ N[0,N−1], ρ
+
f ≥ 0, and

∑N−1
i=0 ρ+

i + ρ+
f = 1. Let

further x̂+
0 be any state in X0 and for all i ∈ N[1,N−1]

let x̂+
i = Φ(x̂i−1, κi−1(x̂i−1), θ). By the definition of TN

it holds that x̂+
i ∈ Xi for all i ∈ N[0,N−1]. Further, if

ρN−1 + ρf = 0 define x̂+
f = 0, which implies x̂+

f ∈ Xf .
Otherwise, define

x̂+
f =

ρN−1

ρN−1 + ρf
Φ(x̂N−1, κN−1(x̂N−1), θ)

+
ρf

ρN−1 + ρf
Φ(x̂f , κf(x̂f), θ). (7)

By the definition of TN and by Assumption 3 it holds
that Φ(x̂N−1, κN−1(x̂N−1), θ) ∈ Xf and Φ(x̂f , κf(x̂f), θ) ∈
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Xf , such that x̂+
f in (7) is a convex combination of states

in Xf and hence satisfies x̂+
f ∈ Xf . Further, it holds that

x+ = Φ

(
N−1∑
i=0

ρix̂i + ρf x̂f ,

N−1∑
i=0

ρiκi(x̂i) + ρfκf(x̂f), θ

)

=

N−1∑
i=0

ρiΦ(x̂i, κi(x̂i), θ) + ρfΦ(x̂f , κf(x̂f), θ)

=

N−2∑
i=0

ρix̂
+
i+1 + ρN−1Φ(x̂N−1, κN−1(x̂N−1), θ)

+ ρfΦ(x̂f , κf(x̂f), θ)

=

N−1∑
i=1

ρi−1x̂
+
i + ρ+

f x̂
+
f =

N−1∑
i=0

ρ+
i x̂

+
i + ρ+

f x̂
+
f .

Considering all of the above, it holds that p+ ∈ Γ(x+) and
hence x+ ∈ Xf . Due to lack of space, only a sketch of the
proof for the decrease of the cost function is given here. It
holds that

V p
E (p+)− V p

E (p) =

N−1∑
i=0

ρ+
i Ji(x̂

+
i )−

N−1∑
i=0

ρiJi(x̂i)

+ ρ+
f Vf(x̂

+
f )− ρfVf(x̂f).

By plugging in the definition of ρ+
i , ρ

+
f , x̂

+
i , and x̂+

f , using
Assumption 3 and Assumption 5 and the convexity of the
functions ` and Vf , it follows that

V p
E (p+)− V p

E (p)

≤ −
N−1∑
i=0

ρi`(x̂i, κi(x̂i))− ρf`(x̂f , κf(x̂f))

≤ −`(x, κp
E(p)),

completing the proof. 2

Lemma 7 suggests a control algorithm based on the follow-
ing optimization problem. Given an invariant tube TN ,
associated functions Ji, and any state x ∈ XE, prob-
lem PE(x) is defined by

VE(x) := min
p∈Γ(x)

V p
E (p)

p0(x) := argmin
p∈Γ(x)

V p
E (p)

The controller resulting from the solution of PE(x) is
defined as κE(x) := κp

E(p0(x)). The closed-loop system for
this control law is

x+ = Φ(x, κE(x), θ). (9)

Theorem 8. The origin of (9) is asymptotically stable with
a region of attraction XE. Furthermore, for all x ∈ XE it
holds that (xT, κE(x)T)T ∈ Y. Finally, if x0 ∈ XE is an
arbitrary initial state of the system, it holds that

Vsup(x0, κE) ≤ VE(x0). (10)

Proof. By Lemma 7, for all x ∈ Xf and all x+ ∈
Φ(x, κE(x)) it holds that

VE(x+) ≤ VE(x)− `(x, κE(x)). (11)

Positive definiteness of ` and Vf imply positive definiteness
of VE. Together with (11) this implies asymptotic stability
of the origin. As the region where PE(x) is feasible is
exactly XE, this set is at the same time the region of
attraction of the origin. Further, the definition of the

controller in (6) implies by the definition of TN that
for all x ∈ XE the vector (xT, κE(x)T)T is a convex
combination of points in Y and is hence contained in Y.
Finally, summing up inequality (11) from 0 to ∞ yields
the performance bound (10), as (11) holds for any x+ ∈
Φ(x, κE(x)). This completes the proof. 2

5. LINEAR PROGRAMMING SOLUTION

In this section we describe how problem PE(x) can be
solved by linear programming for a certain choice of the
sets Xi, the controllers κi and the functions ` and Vf . Let
the following additional assumption hold throughout this
section.

Assumption 9. The sets Xi and the set Xf are polytopes
in Rn. For all i ∈ N[0,N−1] the functions `(x, κi(x))
are piecewise affine and convex functions. Likewise, Vf is
piecewise affine.

The functions Ji are defined in the following iterative way
in order to satisfy Assumption 5. By Assumption 9, these
functions are convex.

∀x ∈ XN−1 :

JN−1(x) := `(x, κN−1(x)) + max
z∈XN−1

z+∈Φ(z,κN−1(z))

Vf(z
+) (12a)

∀i ∈ N[0,N−2] : ∀x ∈ Xi :
Ji(x) := `(x, κi(x)) + max

z∈Xi

z+∈Φ(z,κi(z))

Ji+1(x+). (12b)

Remark 10. A less conservative way to define the functions
would be

∀x ∈ XN−1 :

JN−1(x) := `(x, κN−1(x)) + max
x+∈Φ(x,κN−1(x))

Vf(x
+)

∀i ∈ N[0,N−2] : ∀x ∈ Xi :
Ji(x) := `(x, κi(x)) + max

x+∈Φ(x,κi(x))
Ji+1(x+).

This definition is also used in Besselmann et al. [2012a]
where the controllers κi are obtained by dynamic program-
ming. However, we require the functions Ji to be convex
and hence restrict ourselves to the more conservative def-
inition in (12).

Remark 11. If the controllers κi are defined as in (3)
and the stage cost ` is piecewise affine, then the func-
tions `(x, κi(x)) are convex and piecewise affine by defini-
tion. Furthermore, the functions κi are piecewise affine in
that case.

Assumption 9 implies that there exists matrices Fij , Ffj ∈
R1×n and scalars gij , gfj ∈ R, where i ∈ N[0,N−1] and j ∈
N[1,q̂i] and j ∈ N[1,q̂f ], respectively, for some q̂i, q̂f ∈ N,
such that for all i ∈ N[0,N−1], all x̂i ∈ Xi, and all x̂f ∈ Xf

it holds that

Ji(x̂i) = min{ti ∈ R | ∀j ∈ N[1,q̂i] : Fij x̂i + gij ≤ ti}
and

Vf(x̂f) = min{tf | ∀j ∈ N[1,q̂i] : Ffj x̂f + gfj ≤ tf}.

With these parameterizations problem PE(x) takes the
form
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VE(x) = min
(t0,...,tN−1,tf ,
ρ0,...,ρN−1,ρf
x̂0,...,x̂N−1,x̂f )

N−1∑
i=0

ρiti + ρftf (14a)

s. t.

∀i ∈ N[0,N−1] : ρi ≥ 0, ρf ≥ 0 (14b)
N−1∑
i=0

ρi + ρf = 1, x =

N−1∑
i=0

ρix̂i + ρf x̂f (14c)

∀i ∈ N[0,N−1] : x̂i ∈ Xi, x̂f ∈ Xf (14d)

∀i ∈ N[0,N−1] : ∀j ∈ N[1,q̂i] : Fij x̂i + gij ≤ ti (14e)

∀j ∈ N[1,q̂f ] : Ffj x̂f + gfj ≤ tf . (14f)

Due to the multiplication of optimization variables (that
is, for example, ρi and ti) this problem is not a linear
program. By multiplying the constraints in the lines (14d)
to (14f) with ρi and ρf , respectively, and by substituting
x̃i = ρix̂i, x̃f = ρf x̂f , si = ρiti and sf = ρftf , we obtain
the equivalent problem PLP

E (x), defined by

VE(x) = min
(s0,...,sN−1,sf ,
ρ0,...,ρN−1,ρf
x̃0,...,x̃N−1,x̃f )

N−1∑
i=0

si + sf (15a)

s. t.

∀i ∈ N[0,N−1] : ρi ≥ 0, ρf ≥ 0 (15b)
N−1∑
i=0

ρi + ρf = 1, x =

N−1∑
i=0

x̃i + x̃f (15c)

∀i ∈ N[0,N−1] : x̃i ∈ ρiXi, x̃f ∈ ρfXf (15d)

∀i ∈ N[0,N−1] : ∀j ∈ N[1,q̂i] : Fij x̃i + ρigij ≤ si (15e)

∀j ∈ N[1,q̂f ] : Ffj x̃f + ρfgfj ≤ sf (15f)

which is in fact a linear program.

Lemma 12. The problems PE(x) and PLP
E (x) are equiv-

alent in the following sense. If a solution is feasible for
any of the two problems, this implies the existence of a
solution to the other problem with the same values of the
objective function and the same resulting control input for
both problems.

The evaluation of the control law κE(x) requires values for
the variables x̂i. However, problem PLP

E (x) only yields the
variables x̃i as a solution. Consider that if ρi = 0 for a
specific i ∈ N[0,N−1] it also holds that ρiκi(x̂i) = 0 for any
value of x̂i. Hence, a re-substitution is only necessary for
those i ∈ N[0,N−1] for which ρi > 0. In this case, a feasible
choice is x̂i = x̃i/ρi. The same holds true for ρf and x̃f .

6. SIMPLIFICATIONS

In this section we describe several modifications to the
control algorithm which reduce the complexity of prob-
lem PLP

E (x) while leading to a more conservative perfor-
mance bound.

In a first step, the cost function is simplified. That is, all
functions Ji are replaced by constants J̃i ∈ R defined by

J̃N−1(x) := max
x∈XN−1

`(x, κN−1(x)) + max
z∈XN−1

z+∈Φ(z,κN−1(z))

Vf(z
+) (16a)

∀i ∈ N[0,N−2] : Ji(x) := max
x∈Xi

`(x, κi(x)) + J̃i+1. (16b)

For all i ∈ N[0,N−2] it holds that

J̃i+1 − J̃i = −max
x∈Xi

`(x, κi(x)).

Hence, Assumption 5 still holds, but the bound in (10)
will be more conservative. On the other hand, if the
linear programming formulation is used, the inequalities
in (15e) can be dropped completely and the optimization

variables si replaced with ρiJ̃i.

In order to further simplify the optimization problem, we
assume a particular parameterization for the sets Xi. That
is, the sets are parameterized by Xi = zi⊕aiX , where zi ∈
Rn and ai ∈ R≥0. This kind of parameterization is
common in robust MPC, see for example Langson et al.
[2004] and Raković et al. [2012].

With these two simplifications, it is possible to aggregate
some of the variables in the optimization problem. Specif-
ically, with the substitution

x̃ =

N−1∑
i=0

(x̃i − ρizi)

the optimization problem becomes

VE(x) = min
(sf ,ρ0,...,ρN−1,ρf

x̃,x̂f )

N−1∑
i=0

ρiJ̃i + sf (17a)

s. t.

∀i ∈ N[0,N−1] : ρi ≥ 0, ρf ≥ 0 (17b)
N−1∑
i=0

ρi + ρf = 1, x =

N−1∑
i=0

ρizi + x̃+ x̃f (17c)

x̃ ∈
N−1∑
i=0

ρiaiX , x̃f ∈ ρfXf (17d)

∀j ∈ N[1,q̂f ] : Ffj x̃f + ρfgfj ≤ sf . (17e)

After the optimization problem has been solved, the vari-
ables x̂i can be obtained from x̃ by setting

x̂i =


ai∑N−1

j=0 ρjaj
x̃+ zi if

N−1∑
j=0

ρjaj 6= 0

zi else.

Remark 13. This resubstitution formula reveals why it is
necessary to simplify the cost function. By making the cost
function constant on every set Xi, it becomes irrelevant
where x̂i is chosen in Xi. In fact, by aggregating the
variables x̂i into x̃, any information about the individual
sets Xi is lost.

Alternatively, the variables x̂i may also be obtained by
solving an optimization problem.

7. DISCUSSION AND EXTENSIONS

In this section we discuss the complexity of our approach
and consider possible extensions.

7.1 Complexity

We compare our control approach based on solving opti-
mization problem (17) to a direct robust MPC approach
based on solving (5) at every sampling instant. We neglect

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11064



the computational effort involved with evaluating the con-
trol laws κi.

The complexity of both optimization problems depends on
the length N of the tube, on the number of vertices q of the
set X , and on the dimension n of the state space. However,
the optimization problem (5) additionally depends on the
dimension m of the input variables, the complexity of the
constraint set Y, and, most importantly, on the number
of vertices r in the uncertainty description (2). Neither
of the three latter system properties has an influence on
the complexity of (17). Hence, the approach in this paper
allows the use of a very nonconservative description of the
uncertainty, that is, a large r in (2), without increasing
the (online) computational effort. Of course, in order to
obtain an invariant tube, it is still necessary to solve an
optimization problem of type (5) offline.

7.2 Multiple Tubes

The approach in this paper is easily extended to a setup
where XE is defined by multiple tubes. Let M robust in-
variant tubes be given, where the jth tube is of length Nj .
In particular, let the tubes be defined by

∀j ∈ N[1,M ] :TjNj
=
(
(X0j , . . . ,XNj−1j), (κ0j , . . . , κNj−1j)

)
.

Then the set XE is defined by

XE := convh

 M⋃
j=1

Nj−1⋃
i=0

Xij ∪ Xf


and the set Γ(x) takes the form

Γ(x) :=

{
(ρ01, . . . , ρN1−11, . . . , ρ0M , . . . , ρNM−1M , ρf ,

x̂01, . . . , x̂N1−11, . . . , x̂0M , . . . , x̂NM−1M , x̂f)

∈ R× . . .× R× Rn × . . .× Rn
∣∣∣∣∣

∀j ∈ N[1,M ] : ∀i ∈ N[0,Nj−1] : ρij ≥ 0, ρf ≥ 0,

∀j ∈ N[1,M ] : ∀i ∈ N[0,Nj−1] : x̂ij ∈ Xij , x̂f ∈ Xf ,

x =

M∑
j=1

Nj−1∑
i=0

ρij x̂ij + ρf x̂f ,

M∑
j=1

Nj−1∑
i=0

ρij + ρf = 1

}
.

The cost function VE and the controller κE can also be
defined analogously to the case of one robust invariant
tube.

7.3 Iterative Construction

A set XE, controller κE and cost function VE defined
as in Section 4 satisfy the requirements on the terminal
set, controller, and cost function in Assumption 3. This
suggests the following iterative procedure.

Algorithm 1 Iterative Controller Construction

1: Obtain an invariant tube for a given terminal set
Xf , terminal cost Vf , and terminal controller κf , for
example by solving (5).

2: Define the set XE, the cost function VE, and con-
troller κE.

3: Set Xf := XE, Vf := VE, and κf := κE.
4: Go to 1.
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Fig. 1. Initial robust invariant tubes (cyan, green), con-
vex hull (yellow), and approximation of the feasible
set of the tube MPC scheme (red). The terminal
set Xf (white) is also shown.
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Fig. 2. closed-loop trajectories for the initial condition
x0 = [−10, 2]T for the tube MPC scheme based on (5)
(green, dashed) and the approximate control scheme
based on (15) (cyan, solid).

8. ILLUSTRATIVE EXAMPLE

Let the matrices of the system be given by

Ai=

[
1 + 0.1 sin(2πi/50) 1 + 0.1 cos(2πi/50)

0 1

]
,

Bi=

[
0.5 + 0.1 sin(2πi/50)
1 + 0.1 cos(2πi/50)

]
, (18)

where i ∈ N[1,50]. The constraints on the state and input
are given by x ∈ [−20, 20] × [−20, 20] and u ∈ [−1, 1].
A locally stabilizing linear controller u = Kfx has been
obtained using an algorithm in Pluymers et al. [2006].
It is given by Kf = [−0.5016 − 1.0227]. A robust
invariant set Xf for the closed-loop system with this
controller satisfying the constraints has been found using
Algorithm 2.4 in Pluymers [2006]. It is shown in Figure 1.
The stage cost is given by `(x, u) = ‖[ xu ]‖∞. A terminal
cost Vf(x) = ‖Px‖∞ for a matrix P ∈ R34×2 satisfying
Assumption 3 has been obtained using the results in
Raković and Lazar [2012] based on a contractive set for
the closed-loop system with the controller Kf . We chose
a homothetic parameterization of the sets Xi as described
in Section 3, where X = Xf . Four robust invariant tubes
were computed by solving the optimization problem in (5)
for a horizon length of N = 10 and initial conditions x1

0 =

[−12.2 2.5]
T
, x2

0 = [12.2 −2.5]
T
, x3

0 = [0 3.6]
T
, x4

0 =

[0 −3.6]
T
. These tubes, together with the resulting convex

hull and an approximation of the set where the problem
in (5) is feasible, are shown in Figure 1. The region where
the approximate control scheme is feasible (the convex hull
of the tubes) is smaller than the feasible region of the
original tube MPC scheme. However, by using more initial
tubes, the feasible region of the original MPC scheme can
be approximated to arbitrary precision.
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Closed-loop simulations were performed for the initial
condition x0 = [−10, 2]T and 20 random realizations of the
uncertainty, were at every time step the matrices (A,B)
were chosen as a random vertices of the uncertainty set
in (18). The runtime of the simulations was T = 30.
We used the simplified cost function in (16), but did not
aggregate the variables. Because of numerical difficulties
the inequality in (15d) was tightened to x̃i ∈ 0.99ρiXi.
Furthermore, when evaluating (6), all ρi < 0.001 were
set to zero. For comparison, the closed-loop with a tube
MPC controller based on the solution of (5) was also
simulated. The resulting trajectories are shown in Figure 2.
There is an obvious deviation between the trajectories.
One reason for this is that the original tube MPC scheme
yields an optimal solution with respect to the current
state whereas the approximate scheme might interpolate
between solutions based on points in the state space
which are actually far away from the current system state.
Another factor is the conservatism in the definition of the
cost function of the approximate scheme.

A comparison of the average computation times and the

average performance indices Vperf(x0) =
∑T−1
i=0 `(xi, ui)

for the simulations associated with Figure 2 is shown in
Table 1. The computations were performed on an Intel
Core i3-3110M 2.40 GHz CPU.

Table 1. Comparison of Computation Time
and Performance of Tube MPC and Approx-

imate Predictive Control

Tube MPC
based on (5)

Approximate Control
based on (15)

average comp.
time [ms]

2226.5 16.6

average perfor-
mance index

31.64 55.48

9. CONCLUSION

In this paper it was shown how a robustly stabilizing
controller can be defined on the convex hull of robust
invariant tubes. As demonstrated in the example, this
method considerably reduces the computation time needed
for the evaluation of the control law. On the other hand,
this reduction in computational complexity comes with
a degradation in performance. We expect that the per-
formance can be improved by including additional robust
invariant tubes with initial conditions at arbitrary points
in the feasible set in the construction. This would im-
ply a trade-off between computational complexity, which
increases with the number of tubes, and the closed-loop
performance. An investigation of the exact relations is a
topic for future research.
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S. V. Raković, B. Kouvaritakis, R. Findeisen, and M. Can-
non. Homothetic tube model predictive control. Auto-
matica, 48(8):1631–1638, 2012.

J. B. Rawlings and D. Q. Mayne. Model Predictive Control:
Theory and Design. Nob Hill Publishing, Madison, WI,
2009.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11066


