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Abstract: A sequential method for Control Performance Diagnosis using a classification
tree to predict possible root-causes of poor performance is presented. The classification
tree methodology is used to combine process pre-assessment (nonlinearities detection, delays
estimation and controller assessment), control performance assessment (CPA) and analysis of
variance (ANOVA) into an integrated framework. An initial process data set is analysed and the
results are used as decision thresholds for the classification tree. The methodology is capable to
identify root-causes such as poor tuning, inadequate control structure, nonlinearities, process
mismatch and disturbance changes. The proposed methodology is applied to individual loops
of a tandem cold rolling mill.
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1. INTRODUCTION

Root-cause diagnosis or causal analysis is a challenging
task in control performance assessment (CPA) and its syn-
thesis has rarely been addressed (Huang, 2008). Diagnosis
is normally carried out after a given performance metric
has shown that the process is performing poorly, and is
then used to identify possible causes of poor performance.
Poor performance can be caused by several sources such
as improper or inadequate controller tuning, lack of main-
tenance, inappropriate control structure, poor or missing
feedforward compensation, equipment malfunction or poor
design, and distributed oscillations, etc. (Huba et al.,
2011). These root-causes can also produce shared effects
in monitoring systems for sensors, actuators, controller
and model mismatch (Huang, 2003). Diagnosis methods
have been tailored to monitor individual root-causes. The
majority of the development in causal analysis has been fo-
cused on distributed oscillations for industrial applications
with thousands of control loops such as petrochemical
industries. Advances in plant-wide disturbance detection
and propagation path diagnosis has been reported (Bauer
et al., 2007; Bauer and Thornhill, 2008). These meth-
ods are usually accompanied by Nonlinearities Detection
(NLD) methods and oscillation detection methods.

Recent developments in model predictive control (MPC)-
based approaches for CPA use statistical decision pro-
cesses and pattern recognition to not only calculate the
performance metrics, but also identify the root-causes in
multi-variable systems (Tian et al., 2011). These diagnosis
methodologies require a priori knowledge of the possible
causes. More simple performance metrics such as minimum
variance CPA (MV-CPA) (also known as the Harris index)
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and generalized minimum variance CPA (GMV-CPA) for
feedback/feedforward control, decompose the output vari-
ance according to the source of disturbance and control
structure, providing indirect performance diagnosis (Des-
borough and Harris, 1993). A detailed diagnostic method
is presented using variance decomposition for CPA of feed-
back/feedforward control systems under the assumption
that the controller(s) are properly tuned (Chen and Yea,
2005). The so-called diagnosis-tree-based analysis method
identifies possible faults by using a sequence of hypothesis
tests over ANOVA.

Applications of CPA and diagnosis methods can be found
in a large number of processes. Successful implementations
of CPA have been reported in the fields of refining,
petrochemicals and chemicals as well as pulp and paper
(Jelali, 2006). Nonetheless, applications in metallurgical
processes were reported to be limited since these processes
are highly complex, nonlinear, multi-variable and also
subject to dynamic disturbances. In this work, the use
of diagnosis-tree-based analysis and the pre-analysis of
nonlinearities, time delays and poor performing controllers
within the sequence of hypothesis tests is integrated. The
proposed methodology is employed to assess and diagnose
control performance in the simulation study of a tandem
cold rolling mill.

The rest of the paper is organized as follows: Section
2 presents the mathematical framework of process pre-
assessment and ANOVA based on MV-CPA. In Section 3,
the decision tree is formulated on a set of hypothesis tests
that represent individual root-causes. Section 4 describes
the rolling mill control system. Assessment simulation
results of this system are presented in Section 5 and
conclusions are given in Section 6.
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2. PROCEDURE FOR CONTROL ASSESSMENT
AND DIAGNOSIS

A comprehensive assessment and diagnosis of a control
process requires pre-analysis of the process to examine
system nonlinearites, variations in time delays and poor
controller tuning; calculation of adequate performance
metrics; and identification of sources for poor performance.

2.1 Process Pre-Assessment

Any linear performance metrics applied to a process with
nonlinearities will give inaccurate performance values that
can lead to a misconceived control loop performance as-
sumption. Nonlinearities usually produce unwanted oscil-
lations. A pre-diagnosis of nonlinearities becomes neces-
sary not only to guarantee the accuracy of the performance
metric, but also to assess under-performing controllers.
Profit analysis provided in (Kadali and Huang, 2002) for
feedback and feedforward control systems can be used to
assess the existing controllers if the closed-loop operating
data has been previously filtered. Filtering removes the
variance caused by disturbances. A priori knowledge of
time delays can also be used for estimating the minimum
achievable variance, the estimation of which provides in-
sights into other aspects of the process such as the need
of high performance dead-time controllers (Lynch and Du-
mont, 1996) or, the lack of properly tuned derivative terms
in the controller for time-delay compensation (Choudhury
and Alleyne, 2009).

Detection of Nonlinearities. In this work, detection of
nonlinearities is carried out with the Choudhury’s method
(Choudhury et al., 2004). This method, conceived as a
diagnostic aid for poor performance, is based on the
presence of phase coupling in the output error signal, a
distinctive characteristic of nonlinear time series. Phase
coupling leads to higher order spectral features that can
be detected in the bicoherence signal. Two indexes are
derived from the bicoherence, the non-gaussianity index
(NGI) and the nonlinearity index (NLI):

NGI := b̂ic
2
− bic2crit (1)

NLI :=

∣∣∣∣b̂ic2max −
(
b̂ic

2
+ 2σ

b̂ic
2

)∣∣∣∣ (2)

where b̂ic
2

is the estimated bicoherence, σ is the standard
deviation of the bicoherence and the subscripts crit and
max stand for critical and maximum values, respectively.
Average bicoherence values (bic2) are used in both indexes.
The bicoherence is defined as follows:

bic2 (f1, f2) :=
|B (f1, f2) |2

E {|Y (f1)Y (f2) |2}E {|Y (f1 + f2) |2}
(3)

B (f1, f2) is the bispectrum at frequencies (f1, f2) and is
given by:

B (f1, f2) := E {Y (f1)Y (f2)Y (f1 + f2)} (4)

Y (fi) with i = 1, 2 are the Fourier transforms of the
output data yt at frequency fi, and E is the expectation
function. The process is Gaussian if NGI ≤ 0 and linear
if NLI = 0. We use threshold values i.e. NGI < 0.001

and NLI < 0.01 for analysis, under which the output
signal can be assumed to be Gaussian and linear at a 95%
confidence level (Choudhury et al., 2004).

Time-delay Estimation. Among various methods for
time delay estimation, correlation methods are widely
used to determine the delay between two signals. This
method computes the cross-correlation function (Knapp
and Carter, 1976):

Ryu (b) := E {y (t+ b)u (t)} (5)

where b is the time delay, u (t), y (t+ b) are the control
input and process output variables, respectively. It is dif-
ficult to estimate time delay from routine operating data
without introducing external excitations or abrupt changes
in the control signals (Jelali, 2006). These changes can
also be caused by smooth nonlinearities or perturbations,
therefore it is important to pre-filter the signals to re-
duce estimation errors. For ergodic processes, the cross-
correlation function can be estimated as follows:

R̂yu (b) =
1

N

N∑
t=b+1

y (t)u (t− b) (6)

The time delay that maximizes the cross-correlation is

given by b̂ = maxb R̂yu (b).

Controller Pre-assessment with Disturbance Filtering.
Controller pre-assessment is a specific diagnosis method
of poor performing controllers, implemented before CPA
(Recalde et al., 2013). An output performance index is
formulated as the ratio of the output covariance matrix
obtained using a MPC benchmark to the plant output
covariance matrix:

ηfy =
det
{
RŶ o

}
det
{
RŶ

} (7)

where f stands for filtered, o refers to optimal benchmark

values, RŶ o := cov
(
Ŷ o
)

is the output covariance matrix

and det is the determinant of the matrix to obtain a scalar
value. The input energy index can be calculated as in (7)
by using the input covariance matrices RUo and RU as
follows:

ηfu =
det {RUo}
det {RU}

(8)

The process data can be de-noised using multi-scale prin-
cipal component analysis (MSPCA). The MPC controller
is obtained by minimizing the following cost function:

Jmin = min
U

{
Ŷ T Ŷ + UTRU

}
. (9)

Filtered data are used for model identification through a
recursive subspace identification with QR decomposition.
The indexes in (7) and (8) vary between 0 and 1, showing
good controller performance when they are closed to 1 and
vice versa.

To diagnose the root-causes for poor controller perfor-
mance, the following indexes are defined to quantify the
percentage of improvement by feedback (fb) control re-
tuning:
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Fig. 1. Feedback/feedforward control structure

Ifby =
Rfb

Ŷ
−Rfb

Ŷ o

Rfb

Ŷ

× 100; Ifbu =
Rfb

Û
−Rfb

Ûo

Rfb

Û

× 100% (10)

When measured disturbances are available, it is possible to
calculate the percentage of improvement from feedforward
(ff) control. If this percentage is insignificant, inadequate
control structure should be considered as the root-cause of
poor performance.

2.2 Control Performance Assessment

CPA works on the output variance, and possibly the
offset or tracking error that can be extracted from routine
operating data. Performance metrics appear as the ratio of
a low variance given by a well-tuned or optimal controller
to the plant output variance (σ2

y) as follows:

ηy =
σ2
mv

σ2
y

(11)

where σ2
mv is the variance achieved under minimum vari-

ance (MV) control and represents the lowest theoretical
variance a control system can achieve. This index is called
MV-CPA or the Harris index (Harris, 1989).

With a reliable estimation of delays and pre-analysis of
nonlinearities, MV-CPA can be used to diagnose sources
of poor performance. For instance, the ANOVA (Desbor-
ough and Harris, 1993), initially conceived as an indi-
rect method for feedback/feedforward controller analysis,
has been extended by (Chen and Yea, 2005) to diagnose
process-related and disturbance-related poor performance.
Consider the following system as shown in Fig. 1:

yt = q−bGp

(
q−1
)
ut +

1∑
i=0

q−ilGi
w

(
q−1
)
wi

t (12)

where yt is the process output, ut is the control input, wi
t,

with i = 0, 1 and wi ∼ N
(
0, σi

w

)
, are the unmeasured

and measured disturbances, respectively. b, l are the input
and disturbance delays. Gp, G0

w and G1
w are models of

the process, unknown disturbance and known disturbance,
respectively. The control action is given by the following
feedback and feedforward controllers:

ut = Gfb
c

(
q−1
)
et +Gff

c

(
q−1
)
w1

t (13)

with error et = ysp − yt, setpoint ysp, feedback controller
Gfb

c and feedforward controller Gff
c . For a SISO system,

the output of the closed-loop system will be:

yt =G0
ww

0
t + q−lG1

ww
1
t + q−bGpG

ff
c w1

t (14)

− q
−bGpG

fb
c G

0
w

1 + q−bGpG
fb
c

w0
t

−
q−bGpG

fb
c

(
q−lG1

w + q−bGpG
ff
c

)
1 + q−bGpG

fb
c

w1
t

In (14), the first and second terms are called feed-
back invariant (fbi) and feedback/feedforward invariant
(fbi/ffi), respectively, since they are not affected by the
controllers (Desborough and Harris, 1993). The third
term is only affected by the feedforward controller and is
called feedback-invariant/feedforward-dependent (fbi/ffd).
In time-delayed systems, these three terms together pro-
vide the theoretical minimum variance that a system can
achieve (Chen and Yea, 2005). The last two terms are di-
rectly affected by the feedback action and the feedforward
action and are called feedback dependent (fbd) and feed-
back/feedforward dependent (fbd/ffd), respectively. The
output variance can therefore be expressed as follows:

σ2
y = σ2

mv + Sfbd

(
b,G0

w, Gp, G
fb
c

)
σ2
w0

t

+Sfbi/ffd

(
b,G1

w, Gp, G
ff
c

)
σ2
w1

t

+Sfbd/ffd

(
b, l, G1

w, Gp, G
fb
c , G

ff
c

)
σ2
w1

t

σ2
mv = Sfbi

(
b,G0

w

)
σ2
w0

t
+ Sfbi/ffi

(
b, l, G1

w

)
σ2
w1

t
(15)

Sfbi, Sfbd, Sfbi/ffi, Sfbi/ffd and Sfbd/ffd are residuals es-
timates. Each term in equation (15) is calculated individ-
ually. Time series models of G0

w and G1
w are identified and

truncated to obtain the residual estimates.

3. SEQUENTIAL DIAGNOSIS USING A
CLASSIFICATION TREE

Performance diagnosis can be achieved as a comparison
between the actual variance residual given by (15) and the
lowest variance residuals (Chen and Yea, 2005; Tian et al.,
2011; Huang, 2003; Kadali and Huang, 2002). A decrease
in control performance triggers the first hypothesis test.
To verify the accuracy of the index value, nonlinearities
and time-delay variations have to be tested. Controller
pre-assessment is the next hypothesis test. Indexes for
controller improvement (profit analysis) may reveal poor
control tuning and inadequate control structure. The re-
maining sources of performance degradation are poor or
missing feedforward compensation, process and distur-
bance variations and possible model mismatch. Hypothesis
tests based on each component of ANOVA can identify
these remaining sources (Chen and Yea, 2005).

The resulting hypothesis tests can be arranged into a
binary tree-like graph and form a decision tree. The
decision tree is capable to classify new tree inputs (new
data assessment values) within a given class or root-cause.
Each internal node in the tree is a decision-making unit
that applies a hypothesis test to the inputs. The process
continues until an internal node that corresponds to a
specific class is reached.

To form the decision tree, use the assessment values of
a given nominal model (a model with the lowest known
variance) to form a predictor vector and link it to a given
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root-cause. The tree will use the predictor-class pair to
optimally define a set of thresholds for the hypothesis tests.
To obtain a specific set of thresholds use several predictor-
class pairs. The sequential combination of process pre-
assessment indices and ANOVA components described in
Section 2 provides the decision tree as shown in Fig. 4.

4. PROCESS DESCRIPTION

Tandem cold metal rolling mill process is composed of
several stand mills to produce a steel coil with specific strip
thickness and flatness/shape. Every stand is driven by
work rolls supported by backup rolls of larger diameters.
The work rolls reduce the strip thickness of the material
by plastic deformation. The necessary force to reduce the
strip thickness is applied by hydraulic rams that constitute
the system actuators. These actuators are powered by
the variable speed AC machines and controlled by PWM
drivers. In-contact surfaces (work rolls and strips) are
constantly cooled down with air lubricant.

The control objective is to produce flat sheets of metal
with a desired geometry, including strip flatness. It is
crucial to control strip flatness, while reducing excursions
in strip thickness and tensions. The control structure
should be simple for design and implementation (Pittner
and Simaan, 2011). Additionally, the controllers must
be capable of handling other conditions during normal
operation such as 1) acceleration and deceleration line
speed; 2) set-point changes in thickness and tensions.
The control objectives may be defined at each individual
stands. Instrumentation in cold rolling mills consists of
load cells to measure roll force F , work roll speed V , roll
gap actuator position S, and in some instances, actual strip
input speed Vin and output speed Vout.

A typical cold rolling mill control system is given in
Fig. 2. This figure represents a four-stand four-high cold
rolling mill with the following control loops: automatic
flatness control (AFC), inter-stand tensions by gap con-
trol (ITGC), mass flow control (MFC), hydraulic gap
control (HGC), motor speed control (MSC) and feed-
back/feedforward thickness control (FBC/FFC). Instru-
mentation consists of thickness sensors at the input of
the first stand and output of the first and third stands;
speed sensors at the input and output of the first stand;
inter-stand tensiometers; and stressometer at the exit of
the third stand. Due to physical distances between stands,
variable time-delays are present in the process, the values
of which depend on the speed of the line as well as the
scheduling strategy (Pittner and Simaan, 2011).

In a steel line, there are various sources that may degrade
the performance of the processes and sub-processes, e.g.:

• Type of processes. Metal processing lines are generally
divided into sub-processes. Each sub-process modifies
the properties of the product. These changes cannot
be tracked automatically.
• Transition or scheduling strategies. Every single piece

of the final product depends on the customer-order
specifications. Variations in product properties can
be traced back to the starting point, consequently,
delays of production, continuity and idle times must
be scheduled.

Fig. 2. Illustrative tandem cold rolling mill control struc-
ture (redrawn after (Jelali, 2007))

• Variable operating points. The whole steel line is
setpoint-dependent. To obtain customer-order specifi-
cations, every sub-process uses individual setups (Pit-
tner and Simaan, 2011). Models for setup variations
are highly nonlinear and difficult to implement.

• SISO controllers. It has been reported that most of
the sub-processes have SISO controllers poorly tuned
and with a half-life of about six months (Jelali, 2006).

• Other sources. Common sources include sensor and
actuator faults, model uncertainties and disturbances.
A significant part of these uncertainties comes from
inaccurate values of friction coefficients. Disturbances
can be internal or external, for example, from roll
eccentricity (Pittner and Simaan, 2011).

5. INDUSTRIAL CASE STUDY

A model has been establish for the simulation study of
a three-stand two-high rolling mill. A multi-loop archi-
tecture is implemented to control the process using a
combination of PID and other controllers. Thickness, mass
flow and speed control are implemented in every stage.
The thickness of the last stand is analysed. The time delay
at the thickness sensor can be monitored. Controllers are
assumed to be properly tuned. Roll eccentricity is added
at every stand to increase disturbances in simulation. The
strip thickness is reduced from 15mm to 5mm.

The output strip thickness of the third stand is presented
in Fig. 3. The simulation length is 350s. A set-point change
in strip thickness from 4mm to 5mm is introduced at t =
280s in stand 3. Similar set-point changes are carried out in
stand 1 (15mm - 4.6mm) at t = 100s; and stand 2 (15mm
- 4.3mm) at t = 190s. The changes in set-points in stands
1 and 2 are reflected in the strip thinkness at stand 3 due
to the mass conservation principle. Operating data can be
collected and analysed in every stand. CPA is only applied
to the last stand. Roll eccentricity is changed to test the
decision tree under disturbance. When roll eccentricity is
increased, the output strip thickness becomes oscillatory
after t = 220s, therefore the simulations are presented
up to time t = 220s. Three sets of simulation results are
compared in the following.

5.1 Nominal Model

Fig. 3 represents the nominal model. The term nominal
refers to indexes values from the first dataset analysed and
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Fig. 3. Output strip thickness at stand 3 with the nominal
model

Table 1. Complete assessment of output thick-
ness in stand 3: nominal (N), reduced (R) and

increased (I) eccentricity models

Nonlinearities detection Delay estimation

NGI NLI b b̂
N 0.41 1.23 1.03 1.04
R 4.15 -7.73 1.03 1.27
I 0.49 0.10 1.03 0.98

Profit Control Analysis

var (u) var (y) ηfy+u Ifbu (%) Ifby (%)

N 0.25 0.62 1.54 0 38.31
R 0.25 0.51 1.27 0 49
I 0.32 0.51 1.28 0 48.66

ANOVA
mv variance inflation due to: linear nonlinear

fb ff ff/fb ηy ηnonl
y

N 17.73 71.56 0.80 0.79
R 21.57 93.02 0.81
I 46.39 228.75 0.83 0.69

used as benchmark. Results of pre-assessment and ANOVA
are presented in Table 1. mv stands for minimum variance;
N, R and I stands for nominal, reduced eccentricity and
increased eccentricity, respectively. Time delays in every
stand can be monitored by dividing the distance between
the sensor and the stand by the output speed of the stand.
A positive NGI rejects the Gaussian hypothesis. A positive
NLI rejects the linearity hypothesis. These results suggest
the use of CPA nonlinear indexes to avoid inaccurate
performance values. A nonlinear index is calculated, using
the method described in (Harris and Yu, 2007).

The cumulative index (ηfy+u) is a sum of the output index
and the energy index, which is used to ease the hypothesis
test since the diagnosis depends only on the percentages
of improvement indexes. The profit analysis suggests a
reduction of the output variance of 38.30% if the controller
is fine tuned. The nonlinear index suggests that the results
obtained with the linear index are inaccurate. At this
point, no further diagnosis can be provided. Feedforward
control assessment is not undertaken since no feedforward
control data is available. Results from Table 1 are used as
decision thresholds in the decision tree shown in Fig. 4.

5.2 Model with Reduced Eccentricity

The output strip thickness with reduced eccentricity is
given in Fig. 5. The results of the assessment calculations

are included in Table 1. In this case, the estimated time
delay is larger than the average value. Using the decision
tree, NGI rejects the Gaussian hypothesis but NLI accepts
the linearity hypothesis. The system is therefore non-
Gaussian but linear. The use of linear indexes is thus
recommended.

Fig. 5. Output thickness at stand 3 for the model with
reduced eccentricity

The profit analysis is consistent with the previous simu-
lation. A larger improvement in output variance is sug-
gested. The ANOVA results show that the Harris index
is slightly higher than the one from the nominal model.
The decision tree suggests that the performance has been
improved and no further diagnosis can be carried out
with the existing thresholds. The results from the reduced
eccentricity model are used to replace the nominal values
as new indices thresholds. With the new tree, diagnosis is
carried out on the nominal model. The new hypothesis tree
suggests that the performance degradation in the nominal
model is due to changes in disturbance and process mod-
els. The latter is caused by the rejection of the linearity
hypothesis in the nominal model and also variations in the
estimated time delay.

5.3 Model with Increased Eccentricity

The output strip thickness in stand 3 with increased
eccentricity is presented in Fig. 6 with assessment results
included in Table 1. The estimated time delay is a bit
smaller than the calculated time delay. The hypothesis tree
suggests that the nominal model presents nonlinearities,
therefore the use of nonlinear index is recommended. The
profit analysis is consistent with the previous simulation.
The variance increase in the controlled signal indicates an
increase of disturbance. This result is also verified by the
decision tree.

The ANOVA results show that the Harris index is unreal-
istic in this case. The nonlinear index offers a better quan-
titative assessment. It can be concluded from the decision
tree that causes for performance degradation are again
changes in process and disturbance models. In practice,
only the results of the decision tree are used for guidance.
Nonetheless, an expert user can use the results in Table 1
to obtain a more complete assessment.

6. CONCLUSION

In this work, a sequential control diagnosis methodology
has been developed by combining pre-assessment of time
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Fig. 4. Hypothesis tree design using Matlab classification tree function

Fig. 6. Output thickness at stand 3 for the model with
increased eccentricity

delays, nonlinearities, controllers and ANOVA. The diag-
nosis is formulated as a classification tree, where a possible
root-cause of poor control performance is predicted. The
diagnostic results are easy to interpret and the decision
thresholds can be modified to cope with new emerging
performance problems when more information about the
process becomes available.
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