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Abstract: Active vibration isolation is essential for a large range of high precision motion
systems in industry. This paper aims to develop a framework for high performance robust vi-
bration isolation by explicitly addressing multivariable flexible dynamical behavior. A framework
is proposed that connects identification and control. In addition, a new data-driven uncertainty
modeling procedure is used that results in a nonconservative model error bound. Application
on an active vibration isolation system confirms high performance robust vibration isolation.

1. INTRODUCTION

For actively controlled vibration isolation, robustness in
the controller design is of key importance. A challenging
example is an active vibration isolation system (AVIS), see
Fig. 1. These systems are used to isolate high accuracy
motion systems from external disturbances in multiple
degrees-of-freedom. The idea of active vibration isolation
is based on the concept of skyhook damping, see, e.g.,
Karnopp [1995]. Model-based design procedures based on
H∞-optimization, which are especially suitable for mul-
tivariable systems are considered in Zhang et al. [2005]
and Chida et al. [2008]. In Zhang et al. [2005] model
uncertainty is explicitly taken into account. However, the
uncertainty is based on rough prior assumptions, leading
to potential conservative results.
Several identification methodologies have been developed
to obtain good models that are suitable for such H∞ con-
trol algorithms. In Schrama [1992], identification for con-
trol using coprime factorizations is proposed. This work is
further extended to model sets by de Callafon and Van den
Hof [1997], enabling the identification of a robust-control-
relevant model. By introducing specific coprime factoriza-
tions of the plant and the controller, an additional degree
of freedom is obtained to shape the uncertainty structure.
In Oomen and Bosgra [2012], the additional degree of
freedom of the coprime factorizations is exploited, enabling
a direct connection between the H∞-norm bounded size of
the model uncertainty and the performance criterium for
robust control.
Besides the nominal model, the estimation of the size of
model uncertainty is critical for H∞ robust control design.
To estimate this uncertainty size, model-error modeling
techniques have been developed based on existing system
identification techniques, see Reinelt et al. [2002], or based
on nonparametric approaches by van de Wal et al. [2002]
and de Vries and Van den Hof [1994]. The main drawback
of these methods are the resulting intergrid errors, which
is unavoidable using finite time experiments. Bounding
these intergrid errors, generally result in overly large un-
certainty estimates, as is also argued in Vinnicombe [2001,
Sec. 9.5.2]. In addition, many model validation techniques
have been proposed, see Smith and Doyle [1992] for a time
domain approach and Poolla et al. [1994] for a frequency
domain approach. Proper experiment design is key to

obtain accurate uncertainty estimations. Iterative data-
driven procedures for H∞-estimations are proposed by
Hjalmarsson [2005, Sec. 12.2] and Wahlberg et al. [2010]
followed by a thorough stochastic analysis in Rojas et al.
[2012]. An application in robust stability analysis of the
procedures can be found Barenthin et al. [2006]. An ex-
tension for multivariable systems is given in Oomen et al.
[2014].
Although important developments have been made in
identification for robust control, at present these tech-
niques have not been exploited for high performance ro-
bust active vibration isolation. The main contribution
of this paper is the use of the data-driven approach as
introduced in Oomen et al. [2014] in a framework that
directly connects identification and control to improve the
performance for an active vibration isolation system. To
enhance the performance, it is key to choose a specific
model uncertainty structure as proposed in Oomen and
Bosgra [2012]. As a result, enhanced robust control of
an industrial vibration isolation system is obtained. In
Sec. 2, the industrial AVIS is introduced and the control
goal is defined. In Sec. 3, modeling and identification of
the uncertain model set for robust control is presented,
followed by the controller synthesis in Sec. 4. Finally, the
work is concluded in Sec. 5.

2. SYSTEM DESCRIPTION AND CONTROL GOAL

2.1 Active Vibration Isolation System

The AVIS in Fig. 1 is considered in this paper. The
system consists of two main parts, a chassis connected
to the floor and a movable top or payload. These two
parts are connected by four isolator modules that provide
passive damping through a pneumatic airmount. In ad-
dition to the passive damping, the modules are equipped
with Lorentz actuators and geophones that enable active
vibration isolation. Specifically, the isolation modules are
each equipped with two actuators, leading to eight ac-
tuators in total. The controlled currents applied to the
actuators are denoted a = [ a1 a2 a3 a4 a5 a6 a7 a8 ]. In
addition, three out of four modules are equipped with two
geophones each, leading to a total of six sensors, denoted
by, s = [ s1 s2 s3 s4 s5 s6 ]. The inputs and outputs of
the system are rigid-body decoupled with respect to the
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Fig. 1. Photograph of the experimental AVIS setup. The rotation
around the x-axis is denoted by φ.

cartesian coordinate frame depicted in Fig. 1. The actual
manipulated input and output signals are denoted by,

u= Tua (1)

y = Tys, (2)

respectively, where Tu ∈ R6×8 and Ty ∈ R6×6. The true
system Po is given by, Po : u 7→ y.
The main goal of an AVIS is isolation of the payload
with respect to exogenous disturbances. The considered
AVIS in this work is schematically illustrated in Fig. 2.
The signal d1 refers to force disturbances directly acting
on the payload, and d2 refers to force disturbances that
are induced by floor vibrations. The goal is to minimize
the absolute velocity of the payload using the actively
controlled input u through the absolute velocity mea-
surement y, enabling skyhook damping (Karnopp [1995]).
Skyhook damping connects a fictive damper (implemented
as a control algorithm) to the fixed world, which directly
implies that y in Fig. 2 should be minimized in the presence
of the disturbances d1 and d2. This is in sharp contrast to
the situation where only measurements relative to the floor
are available, in which case y should be minimized only in
the case d2 = 0. The resulting feedback interconnection is
shown in Fig. 3, where,

d = d1 +Hdd2, (3)

with Hd a causal stable transfer function matrix that
characterizes the transfer of the floor vibrations through
the pneumatic airmount to the payload.
To show the potential performance improvement by sky-
hook damping, an initial controller Cexp is designed. This
controller consists of a multi-loop SISO controller, where
each diagonal element is a gain with high-frequency roll-
off, see Fig. 8 for the diagonal elements corresponding to
the z and φ directions. The resulting closed-loop transfer
function

P cl,exp
o : d 7→ y = Po(I + CexpPo) (4)

characterizes the closed-loop disturbance attenuation prop-
erties. In Fig. 9 in Section 4.1, frequency response function
measurements of the open-loop system Po and the closed-
loop system P cl,exp

o are depicted.

2.2 Control Goal and Approach

The objective of this paper is the design of a high per-
formance robust controller to improve vibration isolation
properties of an AVIS. The key performance limiting factor
in increasing the gain of an initial experimental controller
Cexp, which is similar to increasing the skyhook damp-
ing, are high-frequency flexible dynamics of the system as
can be observed in Fig. 9. In this paper, a model-based
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u

u

u

Fig. 2. Schematic illustration of the AVIS.

− C P

d
u y

Fig. 3. Simplified feedback interconnection for vibration isolation.

controller design is pursued that requires appropriately
specified performance and robustness objectives. The per-
formance objectives are specified using a criterion J (P,C),
where the goal is to compute the optimal controller that
minimizes J (Po, C), requiring accurate knowledge of Po.
Due to the fact that any model is uncertain and is only an
approximation of the true system behavior, a model set P
is defined. The key property of this model set P is that it is
chosen such that it includes all AVIS dynamical behavior,
i.e., including high-frequency flexible dynamics. Hence,

Po ∈ P (5)

always holds. Using (5), given the model set P, the robust
controller synthesis

CRP = arg min
C
JWC(P, C), (6)

is considered, where JWC(P, C) = supP∈P J (P,C). This
result provides a performance guarantee when implement-
ing CRP on the true system, given (5), the bound

J (Po, C
RP) ≤ JWC(P, CRP) (7)

holds. To facilitate the exposition, a two-input two-output
robust feedback controller is designed for the z and φ
direction, i.e., [

uz
uφ

]
= CRP

[
yz
yφ

]
. (8)

The presented approach applies equally well to the full
multivariable situation, i.e., three rotations and three
translations. In this paper, the selection of a rotational and
translational degree-of-freedom is made to show that the
presented approach automatically deals with the various
units of the measurements.

2.3 Control Criterion

The control goal in this paper is specified by,

J = ‖WT (P,C)V ‖∞, (9)

where,

T (P,C) =

[
T11 T12

T21 T22

]
=

[
P
I

]
(I + CP )−1 [C I ] . (10)

and

T (P,C) :

[
r2

r1

]
7→
[
y
u

]
. (11)

Here r1 corresponds to d in Fig. 3 and r2 is an additional
signal, see Fig. 6 for a block diagram. In addition, W and
V in (9) are stable, minimum-phase weighting filters.
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The four-block problem in (10) guarantees internal stabil-
ity of the resulting optimal controller. This has important
implications from a theoretical perspective, since it will
enable the construction of a specific coprime factorization
that leads to (20). In addition, the four-block problem
enables the use of the systematic loop-shaping approach
in McFarlane and Glover [1990] to select W and V such
that it enhances active vibration isolation performance.
Interestingly, the loop-shaping approach in McFarlane and
Glover [1990] is essentially based on the fact that the loop-
gain CP is the only degree of freedom in (10). In Fig. 11
it is shown that for low frequencies the system reduces the
disturbances d1 and d2.
In the considered design framework, so-called loop-shaping
weighting filters W1 and W2 are adopted that shape the
desired open-loop gain W2PW1. Next, observe that the
initial controller leads to a certain loop-gain CexpP . The
desired loop-gain typically has a smaller amplitude in the
low frequency range compared to W2PW1. Hence, the
rationale in this paper to design the weighting filter W1

and W2 is to increase the gain of Cexp, i.e.,

W1 =

[
1 0
0 1

]
, W2 =

[
19.9 0

0 11.75

]
Cexp. (12)

Although the design procedure to select W2 resembles the
controller Cexp, a robust controller synthesis procedure
is required to deliver a robustly stabilizing feedback con-
troller. These weighting functionsW2 andW1 directly fit in

criterion (9) through W =

[
W2 0
0 W−1

1

]
, V =

[
W−1

2 0
0 W1

]
.

2.4 Obtaining P using H∞-norm bounded Perturbations

The uncertain model set P that is introduced in Sec. 2.2 is
constructed as an H∞ norm bounded perturbation around
a nominal model P̂ , i.e.,

P =
{
P
∣∣P = Fu(Ĥ(P̂ ),∆u),∆u ∈∆u

}
, (13)

where Ĥ(P̂ ) represents the nominal model P̂ and uncer-
tainty structure. Also, the upper linear fractional transfor-
mation (LFT) is given by

Fu(Ĥ,∆u) = Ĥ22 + Ĥ21∆u(I − Ĥ11∆u)−1Ĥ12. (14)

In addition, to anticipate on the results in Sec. 3.3, an
unstructured model uncertainty is considered, i.e.,

∆u := {∆u|‖∆u‖∞ ≤ γ} (15)

To actually identify P, the required three step procedure
is summarized as follows.

Procedure 1. Perform the following three steps for identi-
fication of P:

Identify P̂ : (17)

Apply [Oomen et al., 2013, Proc. 1]
using Proc. 2 to obtain γ

À

Á

Â

Construct uncertainty model (18)
leading to (19)

Fig. 4. Three step procedure for identification of (13)

In this paper, the novel iterative data-driven approach for
multivariable systems as presented in Oomen et al. [2014]
is used to obtain the size of the uncertainty γ purely data-
based. Emphasis is on the application of the procedure for

uncertainty modelling for vibration isolation applications,
while the complete procedure that encompasses steps 1)-3)
of Proc. 1 is addressed.

3. MULTIVARIABLE MODELING PROCEDURE FOR
ACHIEVING ROBUST PERFORMANCE

As is argued in Sec. 2.4, two aspects determine the shape
of the model set P, i.e., 1) the nominal model P̂ , and 2)

the uncertainty structure leading to Ĥ(P̂ ) in (13).
The size and shape of the model set P contribute to
the worst-case performance bound in (7). In this section,
the three steps of Proc. 1 are used to jointly obtain a
nominal model P̂ , the uncertainty structure, Ĥ(P̂ ), and
an estimation of γ that aims at achieving a small worst-
case performance bound in (7).
First, the general objective for modeling P is defined in
Sec. 3.1, after which the three steps are described in detail
in Sec. 3.2-3.4.

3.1 Modeling goal

The function JWC(P, C) is a complex function of both
P and C. By noting that CRP in (6) depends on P,
i.e., CRP(P), it is desired to determine P such that it
minimizes JWC(P, CRP (P)), subject to (5). However, this
is in general difficult to solve.
The key step in this section is to exploit knowledge of
Cexp, see Sec. 2.1, to obtain a tractable approach that
is aimed at achieving high performance in (6). Note that
JWC(P, CRP ) ≤ JWC(P, Cexp). Hence Cexp provides an
upper bound for the guaranteed performance in (6). Hence,
as in Oomen and Bosgra [2012] and de Callafon and Van
den Hof [1997], the aim is to determine

P = arg minJWC(P, Cexp)

subject to Po ∈ P. (16)

3.2 Step I: nominal modeling

In the first step of Proc. 1, a nominal model P̂ is identified.
In particular, the control-relevant identification criterion
in Schrama [1992] is adopted, i.e., P̂ is minimized accord-
ing to

min
P̂

∥∥∥WT (Po, C
exp)V −WT (P̂ , Cexp)V

∥∥∥
∞
. (17)

The actual minimization in (17) is performed using the
approach in Oomen and Bosgra [2012]. It is shown in Sec.
3.3 that this criterion is useful in view of (16).

The first step in obtaining the nominal model P̂ in (17),
is the measurement of a frequency response function of
the closed-loop system T (Po, C

exp) using the approach in
Pintelon and Schoukens [2012]. The main reason for the
intermediate step of frequency response function identifi-
cation is that it enables the solution of (17) by exploiting
the frequency domain interpretation of the H∞-norm. By
exploiting a multisine experiment design, the approach in
Pintelon and Schoukens [2012] enables accurate identifica-
tion of frequency response functions by effectively reducing
the variance error without introducing bias. By virtue of
(10), an estimate of P can be obtained from the relation
P = T12T

−1
22 . The identified frequency response function

of Po is depicted in Fig. 5. Next, a model parametrization
for P̂ is obtained by an 8th order model. The reason for
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Fig. 5. Nonparametric frequency response function Po (blue dots)

and identified parametric model P̂ (dashed red). Both the z-
translation and φ-rotation are displayed.

this low order is that the criterion (17) essentially shapes
the bias of the parametric model. The actual optimization
is performed using the algorithm in Oomen and Bosgra
[2012, Sec. 3.4-3.5]. The resulting parametric model P̂ is
also depicted in Fig. 5. Inspection reveals that the sus-
pended rigid-body mode at 4 [Hz] and the first resonance
at 135 [Hz] are accurately modeled.

3.3 Step II: uncertainty model structure selection

In this step, the main contribution of this work is in-
troduced, which enables a direct connection between the
size γ of the uncertainty discussed in step III in Sec. 3.4,
and the performance criterion. Having identified a nominal
model that minimizes (17), the next step is the selection of

an uncertainty model structure that extends P̂ to Ĥ(P̂ ).
As in Step I, the essence lies in selecting the uncertainty
structure such that it facilitates solving (17).

To establish the connection between Ĥ(P̂ ) and the cri-
terion (16), note that the latter can be expressed as an
LFT. This involves the construction of a generalized plant
as is explained in Skogestad and Postlethwaite [2005, Sec.
3.8]. In particular, the uncertainty model P in (13) is
appended with weighting filters and interconnected with
Cexp, leading to the setup in Fig. 6. As a result,

JWC(P, Cexp) = sup
∆u∈∆u

∥∥M̂22 + M̂21∆u(I − M̂11∆u)−1M̂12

∥∥
∞
.

(18)

Since (18) depends in a complicated manner on ∆u and
hence γ, see (15), a specific approach that relies on
the results in Oomen and Bosgra [2012] is adopted. In
particular in Oomen and Bosgra [2012], it is suggested to

i. adopt the dual-Youla uncertainty structure Douma
and Van den Hof [2005], de Callafon and Van den Hof
[1997]

PDY =
{
P
∣∣P = (N̂ +Dc∆u)(D̂ −Nc∆u)−1,∆u ∈∆u

}
,

(19)

where,

Cexp

−

r1

u

∆u

ĤV r2

W

Fig. 6. Worst-case performance JWC(P, C) cast into the general-
ized plant framework.

Cexp

−

r

yu

∆o

Nc Dc

D̂−1 N̂

Po

u∆

y∆

Fig. 7. Block diagram corresponding to uncertainty structure 19.

ii. the pair {N̂ , D̂} is a robust-control-relevant coprime

factorization of P̂ as defined in Oomen and Bosgra
[2012, Sec. 3.3], and

iii. the pair {Nc, Dc} as a (Wu,Wy)-normalized coprime
factorization of Cexp, see Oomen and Bosgra [2012].

As a result of i - iii, (18) simplifies to

JWC(P, Cexp) ≤ ‖M̂22‖∞ + sup
∆u∈∆u

‖∆u‖∞ = J (P̂ , Cexp) + γ,

(20)

see Oomen and Bosgra [2012] for a proof of (20) and more
details of the specific coprime factorizations.
The result of (20) provides a direct connection between
the size γ of ∆u, see (15), and the control criterion
JWC(P, Cexp). Interestingly, the size of the model un-
certainty γ in (20) is equal to the norm in the control-
relevant identification objective (17). This implies that the
same objective is being pursued during the nominal model
step in Sec. 3.2 and during the uncertainty modeling step
discussed in the current section. In the upcoming section,
the final step leading to the size γ is presented, enabling
the construction of P in (13).

3.4 Step III: data-driven estimation of γ

Now, given Ĥ(P̂ ), it remains to estimate γ to complete
the model set P. In this step, γ is estimated using the
multivariable data-driven H∞-norm estimation procedure
as described in detail in Oomen et al. [2014, Proc. 2].
The key advantage is that direct measurements are per-
formed on ∆o and thus no explicit a priori knowledge is
required to obtain ‖∆o‖ = γ. As is illustrated in Oomen
et al. [2014], the procedure can be applied to any open-
loop identification problem. The first step in this section
is to investigate how to gain access to the signals u∆ and
y∆, given the uncertainty structure in (19). Note that the
∆o corresponding to Po can be computed directly using
(19), leading to

∆o = D−1
c (I + PoC)−1(Po − P̂ )D̂. (21)

The result in (21) reveals that ∆o depends on the model

P̂ = N̂D̂−1, the true system Po, and Cexp = NcD
−1
c .

To gain access to u∆ and y∆, note that (19) in closed-loop
with Cexp implemented can be represented as in Fig. 7.
Inspection reveals that

u∆ = D̂−1(r − CexpN̂u∆ − CexpDcy∆ +Ncy∆), (22)

implying that the reference signal
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Fig. 8. Controllers: Cexp (solid blue), CNP (dashed red), CRP

(dashed-dotted green).

r = (D̂ + CexpN̂)u∆ (23)

should be applied. Next observe that

y∆ = D−1
c (y − P̂ (I + CexpP̂ )−1r). (24)

The result in (23) and (24) reveals how experiments
can directly be performed on ∆o as summarized in the
following procedure.

Procedure 2. (Performing experiments on ∆o): Let input
u∆ be given and perform the following sequence of steps.

i. compute r = (D̂ + CexpN̂)u∆.
ii. Perform a closed-loop experiment on Po with Cexp

implement, i.e., y = Po(I + CexpPo)
−1r.

iii. Compute y∆ = D−1
c (y − P̂ (I + CexpP̂ )−1r).

Proc. 2 can directly be implemented in Oomen et al.
[2014, Proc. 2]. enabling the data-driven estimation for
multivariable uncertainty structures given by (19).

The resulting H∞-norm estimation of the multivariable
∆o of the AVIS using the data-driven approach is given

by γ̂
(40)
2 = 1.997. See Oomen et al. [2014] for a detailed

description and analysis of the iterative data-driven pro-
cedure.

4. CONTROLLER SYNTHESIS AND
EXPERIMENTAL IMPLEMENTATION

4.1 Robust controller synthesis

The model set P is used to analyze and synthesize several
controllers. These synthesized controller are,

1) Cexp: initial controller that is described in Sec. 2.1.

2) CNP: nominal controller CNP = arg minC J (P̂ , C)
3) CRP: robust controller for model set P in (6).

The controllers CNP and CRP are computed using H∞-
optimization and skewed-µ-synthesis, see Skogestad and
Postlethwaite [2005] for details.
The designed controllers are depicted in Fig. 8, whereas the
closed-loop process sensitivity functions P̂ (I +CP̂ )−1 are
depicted in Fig. 9. In addition, the achieved performance
for both the model P̂ and the model set P in terms of the
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Fig. 9. Closed-loop process sensitivities: P̂ (I + CexpP̂ )−1 (solid

blue), P̂ (I+CNPP̂ )−1 (dashed red), P̂ (I+CRPP̂ )−1 (dashed-

dotted green). In addition, the nominal model P̂ is depicted
(dotted magenta).

Table 1. Robust-control-relevant identification
and robust controller synthesis results.

Controller Minimized criterion J (P̂ , C) JWC(P, C)

Cexp None 14.30 16.30

CNP J (P̂ , C) 1.87 ∞
CRP JWC(P, C) 4.80 5.02

control criterion are presented in Table 1.

The following four observations are made.

1) When comparing J (P̂ , Cexp) and JWC(P, Cexp), it is
observed that the bound (20) indeed holds and is tight.

2) From Table 1, CNP indeed achieves optimal perfor-

mance for the nominal model P̂ . However, JWC(P, CNP)
is unbounded.

3) The controller CRP achieves the smallest worst-case

performance, i.e., JWC(P̂ , CRP) is also significantly

improved when compared to J (P̂ , Cexp).
4) In Fig. 8, the resulting controllers are shown, with the

nominal controller having a larger gain then the robust
controller. In addition, both the nominal and the robust
controller are full multivariable controllers, where the
initial controller is diagonal.

4.2 Controller implementation

The synthesized controllers in Sec. 4.1 are now imple-
mented for validation. Measured time domain responses
are depicted in Fig. 10, whereas the corresponding cumu-
lative power spectral densities are depicted in Fig. 11.
The following two observations are made.

1) The controller CNP does not stabilize the system. This
is observed from the response in the φ-direction in
Fig. 10, where the system hits a safety guardrail due
to the unstable behavior. This is in agreement with the
results in Table 1, where JWC(P, CNP) is unbounded,
and no performance and stability guarantees can be
given when implementing CNP on the true system Po.

2) The experimental controller Cexp and optimal robust
controller CRP both stabilize the true system, which
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Fig. 10. Measured time domain responses: Cexp (solid blue, top),
CNP (dashed red, middle), CRP (dashed-dotted green, bottom)
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error signals in Fig. 10: Cexp (solid blue, top), CRP (dashed-
dotted green, bottom).

is revealed by the stationary behavior in Fig. 10. In
addition, the controller CRP leads to a significantly
improved performance when compared to Cexp, which
is visible both from the time domain responses in
Fig. 10 as the cumulative power spectra in Fig. 11. In
particular, the controller CRP leads to a performance
improvement of more then a factor 4 in z-translation
and more then a factor 2 in φ-rotation.

5. DISCUSSION AND CONCLUSION

In this paper, a new framework is proposed for high
performance robust active vibration isolation. Using the
coprime factorization the problem of identifying ∆o is
recast to an open-loop identification problem, enabling
the data-driven H∞-norm estimation leading to the size γ.
As a result, an uncertainty bound is obtained that leads
to the construction of the model set without introducing
additional conservatism with respect to the performance
criterion. A three step procedure is provided that enables
the construction of the model set, leading to a robust
controller that enables enhanced vibration isolation of an
industrial AVIS.
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