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Abstract: This paper studies use of scenario based model predictive control (MPC) to control
a plant into a fault-tolerant state set. For some systems it is not always sufficient that the
controller is reconfigured after a fault, it is also necessary that the system is in a given state set
when the fault occurs in order to guarantee that the constraints are not violated. This is often
achieved by using static safety constraints. However, it may be hard to find such constraints,
and they may be conservative. This article presents a method for implementing dynamic safety
constraints based on fault scenarios with an economic MPC. The controller is tested using
closed-loop simulations.
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1. INTRODUCTION

There is a need for automatic handling of faults in many
industrial control systems. These faults can be due to
actuator faults, sensor faults, external faults, or internal
faults. There are also often constraints on the system to
make sure that the system is safe. However, it can take
some time before the controller is fully reconfigured and
the system recovers after a fault. Conservative safety limits
are therefore sometimes used to make sure that the system
is safe also during the transients after the fault. However,
instead of using static constraints for such problems, we
suggest to include the scenario and safety requirements in
the controller explicitly through dynamic constraints.

To establish a fault-tolerant controller, model predictive
control (MPC) will be used. A significant effort has al-
ready been made on fault-tolerant control using MPC.
Maciejowski (1999) studies some of the properties inherent
in standard linear model predictive control. Pranatyasto
and Qin (2001) studies fault detection and identification
for a system controlled with MPC.

In this paper, multiple scenarios are used internally in
the controller to make sure that the controller is able to
recover the system after any faults characterized by the
scenarios. In robust model predictive control, scenarios are
commonly used in a combination with MPC.

Scenarios have earlier been used to incorporate distur-
bances and model uncertainties (Bernardini and Bempo-
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rad, 2009; Calafiore and Fagiano, 2013; Schildbach et al.,
2013). It has been proposed to use feedback to avoid
conservative estimates when multiple scenarios are used,
both for linear models (Scokaert and Mayne, 1998) and
nonlinear Limon et al. (2009)

Scenario-based model predictive control has also been sug-
gested to be used in for optimization of hedge options
(Bemporad et al., 2012), for scheduling of batch pro-
cesses (Bonfill et al., 2008), and scheduling of emergency
vehicles (Goodwin and Medioli, 2013).

There has been some studies on transients of the plant
when reconfiguring controllers due to faults. Kovâcshâzy
et al. (2001) investigates responses due to reconfiguration
of the controller. For faults which can be predicted, Lao
et al. (2013) have suggested to use MPC to make a smooth
accommodation of the fault. Blanke et al. (2006) suggest
to use back calculation and a progressive accommodation
scheme to achieve new LQR-gains during reconfiguration.

Another approach to control a plant to a safe set is to use
backward reachable set to calculate the fault-tolerant set
(Gillula et al., 2011). Torrisi and Bemporad (2001) suggest
a method for validating that a controller can avoid unsafe
sets for linear hybrid systems using reachability analysis.
A similar study is done for nonlinear hybrid system using
barrier certificates (Prajna et al., 2007). Coogan and Arcak
(2012) presents a method for selecting switching rules for
a hybrid system, such that the state variables avoid an
unsafe set.

The method presented in the present paper is a variant
of the method presented in Bernardini and Bemporad
(2009). However, in this paper the models are nonlinear,
fault-tolerance and economic objective emphasized, and a
deterministic framework is used.
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The present paper presents a method for establishing
dynamic safety constraints based on fault scenario and is
an extension of Bø and Johansen (2013). This is done by
using multiple prediction for each fault scenario in addition
to the nominal scenario internally in the MPC.

2. PROBLEM STATEMENT

Consider a plant where we have safety limits and con-
straints on the control input and the states. In addition
there are some fault scenarios which we must be able to
handle. The set of scenarios is assumed to be fixed.

We would like to design a controller which makes sure
that the plant can be recovered after any of these fault
scenarios. This consists of three requirements:

(1) Safe State Set: The controller should drive the system
to a state set where it is possible to recover the system
if one of the fault scenarios occurs.

(2) Robust Control: The controller should use a control
input which is appropriate for the nominal system
and the fault system until the fault is detected and
the fault is accommodated by the controller.

(3) Detection of fault-preparedness: It should be detected
if the system is not fault-prepared.

The fault scenarios of interest in this paper are modeled
as change of the dynamics or constraints of the system.

3. MODEL DESCRIPTION

The plant is described with one model for each scenario.
The difference equation for the states is of the form:

x(tk+1) = f(x(tk),u(tk)) (1)

where x ∈ Rn and u ∈ Rm are the state and input vectors.
The state and control input vector for the control horizon
are given by:

X(ti) =
[
x>(ti) . . . x>(ti+N−1)

]>
(2)

U(ti) =
[
u>(ti) . . . u>(ti+N−1)

]>
(3)

where ti is the time instant at the beginning of the control
horizon and N denotes the length of the control horizon.
Note that we assume no unknown disturbances, model
uncertainties, or measurement noise; however, these effects
can be included as scenarios along with faults. The state
and control input are constrained by:

Gnon−relaxable(x,u) ≤ 0 (4a)

Grelaxable(x,u) ≤ s (4b)

0 ≤ s (4c)

where Gnon−relaxable(x,u) : Rn × Rm → Rncn and
Grelaxable(x,u) : Rn × Rm → Rncr . It is assumed that all
non-relaxable constraints (hard constraints) are stacked
in the first constraints, and relaxable constraints (soft
constraints) are stacked in the second. The vector s con-
tains slack variables, such that s = 0 when the relaxable
constraints are satisfied and it has positive elements when
the relaxable constraints are relaxed. The cost function is
given by:

J ′ (x(tk),U(tk))

=

N−1∑
i=0

l(x(tk+i),u(tk+i))
(5)

where l(x,u) is the smooth stage cost.

We will use superscript (n) and (fj) to distinguish between
the different models and constraints for each scenario,
where n denotes the nominal scenario and fj fault scenario
number j. The controller may use multiple predictions
for the same scenario, where the fault occurs at different
times in the prediction horizon. We will use the following
notation to distinguish the different predictions at different
times for the fault : x(fj)(t|tf = tj) where tj is the time
when the fault occurs. Further, we will use the word
event for predictions starting from different times, and
scenarios for predictions with different faults. This means
that x(f1)(t3|tf = t2) is the predicted state at time instant
t3, for the fault scenario number 1, and corresponding to
the event starting at t2.

It is assumed that the state variables for the fault scenario
dynamics correspond to a subset of the state variables for
the nominal scenario dynamics. This means that:

n(fj) ≤ n(n) (6a)

m(fj) ≤ m(n) (6b)

x(fj)(tf ) = E(fj)x(n)(tf ) (6c)

u(fj)(tf ) = F (fj)u(n)(tf ) (6d)

4. FAULT-TOLERANT MPC

Multiple events are used per scenario to achieve the control
statement:

(1) Safe State Set: We would like to find a trajectory such
that the plant can be recovered from any fault event.
In addition predicted trajectories are added to make
the trajectory safe. For each scenario, one trajectory
is added per time step in the nominal trajectory
and each trajectory is starting from the nominal
trajectory. In addition, terminal equality constraints
are added to achieve stability of the average closed
loop cost (which is economical MPCs counterpart
to stability of the state variables, (Angeli et al.,
2012)) and recursive feasibility. The optimization
problem is to find optimal control sequences, such
that all trajectories are satisfying all constraints. If
this problem is feasible, the controller has found a
nominal trajectory which is such that the plant can be
recovered if any of the fault scenarios occurs along the
trajectory or after the end of the finite horizon. If it
is not possible to find such trajectories, the controller
will remove the relaxable constraints in the beginning
of the trajectories. This may give some trajectories
that does not satisfy all the constraints; however, after
some time the controller may be able to satisfy all
constraints for all scenarios.

(2) Robust Control Input: Fault detection and fault ac-
commodation will often take some time. It is therefore
important that the control input is appropriate in
the time between the fault occurs and the fault is
accommodated in the controller. The fault trajecto-
ries mentioned above will therefore be restricted to
use the same control input as the nominal trajectory
during the first time steps of the fault trajectory.
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t0 t1 t2 t3 t4 t5 t6 t7
Time

4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6

x
1

Fig. 1. Possible trajectories for the case which will be
presented in Section 7. The dashed blue line is the
predicted trajectory of the nominal scenario. The
dotted lines are the predicted fault scenarios, starting
at tf = t0, t1, t2, t3. The dotted red line represents
the lower limits which all trajectories should be above.

t0 t1 t2 t3 t4 t5 t6 t7
Time

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

x
1

Fig. 2. Nominal and fault trajectory when Nrelaxed = 3.
Note that the three first fault predictions can violate
the state constraint x1 ≥ 5 for the entire horizon and
terminal constraint.

(3) Detection of fault-preparedness: The controller will
check if some of the constraints was relaxed, if not
the plant is prepared for the fault scenarios.

Some possible trajectories are presented in Fig. 1.

We will now present the constraints of the optimization
problem. The fault scenario is subject to the constraints.
However, the constraints are relaxed only at the Nrelaxed

first steps of the prediction, to make the plant safe as early
as possible. In Fig. 2 a set of predictions are shown with
Nrelaxed = 3. The constraints for the nominal scenario
during the relaxed period, t0 ≤ tk ≤ tNrelaxed

, are:

G
(n)
non−relaxable(x

(n)(tk),u(n)(tk)) ≤ 0

G
(n)
relaxable(x

(n)(tk),u(n)(tk)) ≤ s(n)(tk)

0 ≤ s(n)(tk)

(7)

Since the fault scenarios act as dynamic constraints for
the state at the time the simulated fault occurs, the
slack variables are introduced for the scenarios starting
in the beginning of the horizon, t0 ≤ tf ≤ tNrelaxed

and
tf ≤ tk < tf + tN :

G
(fj)
non−relaxable(x

(fj)(tk|tf ),u(fj)(tk|tf )) ≤ 0

G
(fj)
relaxable(x

(fj)(tk|tf ),u(fj)(tk)) ≤ s(fj)(tk|tf )

0 ≤ s(fj)(tk|tf )

(8)

while for the rest of the prediction, all of the con-
straints should be satisfied: For the nominal scenario,
tNrelaxed

< tk < tN :

G
(n)
non−relaxable(x

(n)(tk),u(n)(tk)) ≤ 0

G
(n)
relaxable(x

(n)(tk),u(n)(tk)) ≤ 0,
(9)

and the fault events, tNrelaxed
< tf < tN and

tf ≤ tk < tf + tN :

G
(fj)
non−relaxable(x

(fj)(tk|tf ),u(fj)(tk|tf )) ≤ 0

G
(fj)
relaxable(x

(fj)(tk|tf ),u(fj)(tk)) ≤ 0
(10)

The predicted states are constrained to the dynamics of
the system:

x(n)(tk+1) = f(n)
(
x(n)(tk),u(n)(tk)

)
x(fj)(tk+1|tf ) = f(fj)

(
x(fj)(tk|tf ),u(fj)(tk|tf )

)
(11)

The initial condition of the nominal scenario is x(t0) and
the initial condition of the fault scenario is the value of the
nominal scenario at the initial time of the event:

x(n)(t0) = x(t0)

x(fj)(tk|tf = tk) = Ejx
(n)(tk)

(12)

Before we continue with terminal constraints, we introduce
the definition of an optimal equilibrium.

Definition 1. An optimal equilibrium for fault scenario j,
(x(fj)o,u(fj)o) is any solution to:

(x(fj)o,u(fj)o) = argmin
x(fj),u(fj)

l(fj)(x(fj),u(fj))

such that

x(fj) = f(fj)(x(fj),u(fj))

G
(fj)
relaxable(x

(fj),u(fj)) ≤ 0

G
(fj)
non−relaxable(x

(fj),u(fj)) ≤ 0

(13)

The optimal steady state cost is l(fj)o = l(fj)(x(fj)o,u(fj)o).
We assume an optimal equilibrium exists and is unique.

To make sure that there exist an infinite safe trajectory
prolonging the fault events trajectories, the terminal state
is constrained to the optimal equilibrium:

x(fj)(tN |tf ) = x(fj)o − s
−(fj)
N (tf ) + s

+(fj)
N (tf )

0 ≤ s
−(fj)
N (tf )

0 ≤ s
+(fj)
N (tf )

(14)

where s−N and s+N are slack variables and x(fj)o is found by
solving (13). Note that the slack variable must be zero to
guarantee that the fault event trajectory can be prolonged.

A stability constraint is used for the nominal scenario,
both to make sure that the closed loop average cost
is stable and to make sure that the control problem is
recursively feasible. We start by defining an optimal safe
equilibrium.
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Definition 2. An optimal safe equilibrium for the nominal
scenario, (x(n)s,u(n)s) is any solution to:

(x(n)s,u(n)s) = argmin
x(n),u(n)

l(n)(x(n),u(n))

such that

(x(n),u(n)) ∈ Zsafe

G
(n)
relaxable(x

(n),u(n)) ≤ 0

G
(n)
non−relaxable(x

(n),u(n)) ≤ 0

(15)

where Zsafe is the set of equilibrium points satisfying

x(n) = f(n)(x(n),u(n)) such that for each fault scenario j
there exist a feasible trajectory with the length N :

• starting at Ejx
(n),

• the control input of the fault scenario is Fju
(n) during

the first τrobust samples of the trajectory,
• the constraints (4) are satisfied with s = 0 at every

point on the trajectory.

In other words, this is the set of all equilibria the plant
can be recovered from. The optimal safe steady state cost
is l(n)s = l(n)(x(n)s,u(n)s).

We assume that there exist a unique optimal safe equilib-
rium. The terminal constraint for the nominal trajectory
is:

x(n)(tN ) = x(n)s (16)

where x(n)s is found by solving (15).

Remark 3. In the MPC literature it is known that equilib-
rium terminal constraints often lead to numerical problems
and may suffer from small region of attraction. However,
the authors are not aware of any result on stability for
systems with optimal steady state solution with active
constraints unless equality terminal constraint is used.
One exception is Grüne (2013), but this approach requires
strong assumptions.

In order to allow time for fault detection, identification,
and reconfiguration, we require that the control input of
the fault scenarios should be the same as the nominal
scenario from the occurrence of the fault till τrobust time
units after the fault. If tf + τrobust ≥ tN the inputs are

constrained to be equal to u(n)s since we can prolong the
nominal trajectory with the pairs (x(n)s,u(n)s).

u(fj)(ti|tf = tk) = Fju
(n)(ti) k ≤ i < min(k + τrobust, N)

u(fj)(ti|tf = tk) = Fju
(n)s N ≤ i < k + τrobust

(17)

Penalty functions gi(s) and gN (s+, s−) are added to the
cost function to minimize the violation of the constraints.

J(x(tk),U(tk),S(tk)) = J ′(x(tk),U(tk))

+

N−1∑
i=0

gi(s(tk+i)) + gN (s−N (tk+N ), s+N (tk+N ))
(18)

S(tk) =
[
s>(tk) . . . s>(tk+N−1) s−>N (tk+N ) s+>N (tk+N ))

]>
(19)

Finally, all optimization variables can be stacked in a
vector:

U =



U(n)

S(n)

U(f1)(tf = t0)

S(f1)(tf = t0)

U(f1)(tf = t1)

S(f1)(tf = t1)
...

U(f1)(tf = tN−1)

S(f1)(tf = tN−1)
...

U(fM)(tf = t0)

S(fM)(tf = t0)
...

U(fM)(tf = tN−1)

S(fM)(tf = tN−1)



(20)

The objective function is:

φ(x(t0),U) = w(n)J (n)
(
x(n)(t0),U(n)(t0),S(n)(t0)

)
+

M∑
j=1

N−1∑
i=0

w
(fj)
i

[
N∑

k=0

g
(fj)
k (s(fj)(tk|tf = ti))

+g
(fj)
N (s−(fj)(tf = ti), s

+(fj)(tf = ti))

]
(21)

where the first term is the cost of the nominal scenario and
the second term is the penalty of the fault scenarios. M is

the number of fault scenarios. w(n) and w
(fj)
i are positive

weights for the nominal scenario and fault scenario j. Note
that the stage cost of the fault scenarios are not included,
since we only want the fault scenarios to be feasible and it
is not important that their trajectories are optimal.

To make sure that the plant gets safe as fast as possible, a
minimal time approach will be used (Rawlings and Muske,
1993). This means that before solving for the optimal
trajectory we solve this problem:

N∗relaxed = arg minNrelaxed s.t. (7)− (17) (22)

This means that we find the shortest time where we need
to relax the relaxable constraints to make the problem
feasible. However, as noted by Scokaert and Rawlings
(1999), this may mean that the controller is not robust
to small perturbations.

Remark 4. Vada et al. (2001) has shown that for linear
systems where the cost is quadratic, a linear penalty
function can be designed to ensure that the problem is
feasible as early as possible in the prediction horizon.
This means that the optimization problem (22) is always
fulfilled without being explicitly solved if such a penalty
function is used.

An optimal control sequence is then found, by using
N∗relaxed:

U∗ = arg min
U

φ(x(t0),U) s.t. (7)− (17) (23)

The controller will then apply κ(x(t0)) = u(n)∗(t0) ∈ U∗,
and the closed loop system is:

x(n)(tk+1) = f(n)(x(n)(tk), κ(n)(x(n)(tk)) (24)
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The algorithm can be summarized in three steps:

(1) Find the optimal equilibrium for the fault scenarios
and optimal safe equilibrium for the nominal scenario
by solving (13) and (15).

(2) Find Nrelaxed by solving (22).
(3) Find the optimal control sequence by solving (23).

Note that step (1) can be solved in advance off-line.

5. FEASIBILITY AND STABILITY

To investigate the stability of the fault tolerant MPC we
first present an equivalent optimization problem. We will
utilize the fact that there exist a time-invariant set which
can be used as a fixed constraint set, since the scenarios
and system are time-invariant.

Definition 5. The safe state set is the largest forward
invariant set, Xsafe, containing all x(t0) such the opti-
mization problem (23) is feasible with zero slack variables
(i.e., S(tk) = 0). Let XN denote the set where there exist
a solution to (23) with horizon length N .

Lemma 6. Assuming the states have converged to Xsafe

(i.e., Nrelaxed = 0) the problem can be simplified to the
following:

U∗ = arg min
U

N−1∑
i=0

l(n)(x(n)(ti),u
(n)(ti))

such that

x(n)(ti) ∈ Xsafe

x(n)(ti+1) = f(n)(x(n)(ti),u
(n)(ti))

G
(n)
relaxable(x

(n)(ti),u
(n)(ti)) ≤ 0

G
(n)
non−relaxable(x

(n)(ti),u
(n)(ti)) ≤ 0

 t0 ≤ ti < tN

x(n)(tN ) = x(n)s

(25)

This optimization problem gives the controller and the
nominal closed loop system:

κ
(n)
l (x(n)(tk)) = u(n)∗(tk) (26)

x(tk+1)(n) = f(n)(x(n)(tk), κ
(n)
l (x(tk))) (27)

The optimal nominal trajectory of optimization prob-
lem (23) is also the optimal trajectory of (25).

Proof The optimization problem (23) can be reformu-
lated to (25) by the steps bellow. In Xsafe all constraints
are satisfied, including the relaxable constraints, so the
slack variables and penalty functions can therefore be
removed. The fault scenarios does only make sure that
x(n) ∈ Xsafe and does not alter the cost, it can therefore be

removed from the optimization problem when x(n) ∈ Xsafe

and x(n) is constrained to be within Xsafe. �

Lemma 7. For all closed loop trajectories starting from
x(n)(t0) ∈ Xsafe the trajectory of the nominal system
system (24) will not leave Xsafe and the average cost,

l̄ = lim sup
N→∞

N∑
k=0

l(x(tk), u(tk)

N + 1
, (28)

will be lower or equal to the optimal safe steady state cost.

Proof This results follows directly from Theorem 1 in An-
geli et al. (2012) by using the equivalent optimization
problem (25). �

Theorem 8. The following holds for the nominal scenario:

(1) The optimization problem (23) will stay feasible if it
is initially feasible.

(2) It will take a maximum of N steps to reach Xsafe

from the time (23) is feasible, and from that time it
will stay in Xsafe.

(3) The closed loop system has an average cost which is
less than or equal to the optimal safe steady state
cost for all initial conditions in XN .

Proof The recursive feasibility can be assured by a proof
similar to Mayne et al. (2000). If we have a feasible input
sequence at the previous step, we can always shift this
sequence one step and extended the tail with u(n)(tN−1) =
u(n)s, denote this trajectory U′ and the corresponding
state trajectory X′. This will make x(n)(tN ) = x(n)s ∈
Xsafe and the nominal scenario feasible. We know that
the shifted part of this trajectory will make all fault
scenarios feasible, since they were feasible at the previous
step. For the prolonged part (x(n)(tN−1),u(n)(tN−1) =
(x(n)s,u(n)s), we know that this is not only feasible,
but it does also satisfy the relaxable and non-relaxable
constraints. Hence this input sequence is feasible and
therefore the problem is recursive feasible, and part (1)
is proven.

Next, we prove that the closed loop system will enter Xsafe

within N steps by induction. The trajectory U′ will make
sure that the relaxable constraints are feasible one time
step earlier in the horizon than at the previous iteration.
We know that the solution will honor the constraints as
early as possible due to the minimization of Nrelaxed. If
the problem is feasible at t0, the prediction of x(tN ) ends
up in Xsafe. At each following step the length of the tail
which honor the relaxable constraints is increased with at
least one step. Therefore it will not take longer than the
length of the prediction horizon N to reach Xsafe. This
proves result (2).

The third result follows from the fact that the states will
reach Xsafe in finite time. Further, from Lemma 7, we
know that inside Xsafe the cost is lower than or equal to

l(n)s. Let tke be the time the closed loop system enters
Xsafe. The cost from t0 to tke is bounded, since l(·) is
smooth on XN . The average cost will then be:

lim sup
N→∞

N∑
i=0

l(x(ti),u(ti))

N + 1

= lim sup
N→∞

ke∑
i=0

l(x(ti),u(ti))

N + 1
+

N∑
i=ke

l(x(ti),u(ti))

N + 1

= lim sup
N→∞

C1

N + 1
+

N∑
i=ke

l(x(ti),u(ti))

N + 1

= lim sup
N→∞

N∑
i=ke

l(x(ti),u(ti))

N + 1
≤ ls

(29)

�
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Corollary 9. From the time x enters Xsafe the plant can
be recovered from any of the fault scenarios, without
violating the constraints.

Proof This result follows directly from the definition of
Xsafe and the fact that the state will stay in Xsafe after
it has entered it. �

6. RECONFIGURABLE CONTROL

The controller may be reconfigured in the event that one
of the fault scenarios occur. If fault scenario j occurs, we
switch to solving the following optimization problem:

U(fj)∗ = arg min
U(fj)

N−1∑
i=0

l(fj)(x(fj)(ti),u
(fj)(ti))

such that

x(fj)(ti+1) = f(fj)(x(fj)(ti),u
(fj)(ti))

G
(fj)
relaxable(x

(fj)(ti),u
(fj)(ti)) ≤ 0

G
(fj)
non−relaxable(x

(fj)(ti),u
(fj)(ti)) ≤ 0

x(fj)(tN ) = x(fj)o,

(30)

where x(fj)o is found by solving (13). The control law and
closed loop system are then:

κ(fj)(x(fj)(t0)) = u(fj)∗(t0) (31)

x(fj)(tk+1) = f(fj)(x(tk), κ(fj)(x(tk))) (32)

Theorem 10. Assume fault scenario j occurs and the con-
troller is switched from κ(n) to κ(fj) within τrobust time
steps. In addition, in the time between the fault occurs and
the controller is reconfigured the predicted control input
is used, without re-optimizing (23). Assume that (23) was
feasible with slack variables equal to zero at the time step
when the fault occurs. Then the following holds for the
fault scenario:

(1) The optimization problem (30) is feasible, and will
stay feasible.

(2) The average cost will be less than or equal to l(fj)o.

Proof Feasibility can be proven by shifting the control

sequence U(fj)(tf = 0) given from (23) and extending

it with u(fj)o. Since it is assumed that it is solved with
S(fj)(tf = t0) = 0 this control sequence will satisfy the

relaxable constraints. It will also terminate at x(fj)o since
x(fj)(tN |tf = t0) from solving (23) terminates at x(fj)o

and prolonging the control trajectory with u(fj)o will then
make the state variables stay at x(fj)o. It will stay feasible
since we can always use the previous trajectory, shift it
and prolong it with u(fj)o, this will be a feasible solution
(but may not be optimal) to (30). This proves the first
result.

The second results follows directly from Theorem 1 in An-
geli et al. (2012). �

7. CASE STUDY

In this section we will present simulation results from a
closed loop simulation of a linear plant with nonlinear cost.
The differential equations are:

x(n)(tk+1) =

[
1 5 5
0 1 0
0 0 1

]
x(n)(tk)

+

[
12.5 12.5

5 0
0 5

]
u(n)(tk) +

[−5b
0
0

] (33)

where u1 and u2 is the control input and b is a known
constant. The non-relaxable constraints (superscript is
omitted as the constraints are valid for all scenarios):

0 ≤ x1 ≤ 1 −0.1 ≤ u1 ≤ 0.1

0 ≤ x2 ≤ 1 −0.1 ≤ u2 ≤ 0.1
(34)

The relaxable constraint is:

5 ≤ x1 ≤ 20 (35)

This can model a buffer tank with two slow pumps,
where the pumps have both saturation limits and rate
constraints.

The fault scenario are that one of the motors suddenly
stops. This gives:

x(f1)(tk+1) =

[
1 5
0 1

]
x(f1)(tk) +

[
12.5

5

]
u
(f1)
2 (tk) +

[
−5b

0

]
(36)

x(f2)(tk+1) =

[
1 5
0 1

]
x(f2)(tk) +

[
12.5

5

]
u
(f2)
1 (tk) +

[
−5b

0

]
(37)

where x(f1) =
[
x
(f1)
1 x

(f1)
3

]>
and x(f2) =

[
x
(f2)
1 x

(f2)
2

]>
.

The stage costs are:

l(n)(x,u) =
(
x
(n)
1

)4
+
(
x
(n)
2

)2
+
(
x
(n)
3

)2
(38)

l(f1)(x,u) =
(
x
(f1)
1

)4
+
(
x
(f1)
3

)2
(39)

l(f2)(x,u) =
(
x
(f2)
1

)4
+
(
x
(f2)
2

)2
(40)

The violation cost functions are (sub- and superscript is
omitted as the function is used for all scenarios and slack
variables):

g(s) = (s− 100× 1)2, (41)

for appropriate size of 1.

The controller is implemented in ACADO (Houska et al.,
2011). The constant b is set to 0.5, and the initial values
are x1 = 3 and x2 = x3 = 0.1. In Fig. 3 are results from
closed-loop simulation shown with and without fault. In
Fig. 1 and 2, the predicted trajectories are plotted starting
at t2 and t0.

8. CONCLUSION

This paper proposes a method to introduce safety con-
straints based on fault scenarios. The controller uses the
fault scenarios internally in the model predictive controller
to make sure that it controls the states to a state set
where the plant is recoverable if faults occur. In addition
a method for detecting that the system is fault-prepared
is presented.

The performance of the controller was tested by closed-
loop simulation of a linear plant. The simulations show
that the controller fulfills the control objectives.
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Fig. 3. Closed loop simulation of the linear plant. Results
from a fault free simulation are plotted with dashed
blue lines. The dotted green lines present a simulation
where the fault occurs at t = t2 (first time when
Nrelaxable = 0), the controller is reconfigured at
t = t3. The dotted red lines are the lower constraints.

A simplified version of this controller is presented in Bø
and Johansen (2013), which did show that this method
also can be implement on complex systems.
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