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Abstract: Nowadays, it is more and more usual that applications provide critical and non-critical 
functionalities, the so-called mix-criticality applications. One of the main challenges for developing such 
applications is to isolate both application types, in such a way that non-critical functionalities do not 
interfere with the critical ones. The use of virtualization techniques like hypervisors can help to meet this 
objective. Indeed, a hypervisor is a software layer that provides hardware virtualization allowing different 
functionalities to be executed in different partitions which are temporally and spatially isolated. In this 
context, this paper proposes the use of modeling techniques to generate an initial set of constraints to the 
partition design necessary for a set of critical functionalities that coexist with non-critical ones. 
Furthermore, the proposed modeling approach supports all the development cycle of the component-based 
non-critical applications, from the design to the automatic generation of the skeleton code of their 
components. 

 

1. INTRODUCTION 

Current trends in distributed embedded systems (DES) point 
to a reduction in the number of physical network nodes in 
order to optimize costs and boost performance. The 
embedded computing is shifting to high performance 
hardware platforms (e.g. multi/many-core processors) that 
must provide support functionalities with different levels of 
criticality, such as safety-critical and non safety-critical 
functionalities (European Commission. Information Society 
and Media Directorate-General, 2012), (Pérez et al., 2013). 
For example, many current cars are provided not only with 
safety-critical applications as the stability control, but also 
with other non-critical applications that provide added value 
functionalities. Both application types coexist and even share 
resources like the wheel sensor used by the stability 
controller and by the non-critical navigation system. 

In addition, as applications with different level of criticality 
have different needs for example of timeliness and security, it 
is essential to avoid that non-critical applications interfere 
with the critical ones. Several challenges arise from that 
separation need. Particularly, technologies to guarantee the 
time and spatial isolation between critical and non-critical 
functionalities are needed. As it is detailed in (Burns and 
Davis, 2013) researches of mixed criticality systems date 
from 1987. After initial works dealing with a single 
processor, multiprocessor or multi-core platforms were 
introduced. In that sense, hypervisor technologies play a 
significant role, as they provide the logical partitioning 
capability of the underlying hardware through the 
virtualization of its physical resources (e.g. CPU, memory) 
(Crespo, Ripoll and Masmano, 2010). 

Such partitioned systems require a configuration regarding 
the definition of the partitions and the allocation of the 
applications to those partitions. Therefore, for a good 
configuration design it is necessary to have a detailed 
characterization of the system itself as well as a deep 
knowledge of functional and non-functional requirements of 
the applications that will run on it. The use of models 
introduces the abstraction necessary to avoid non relevant 
aspects of a system, in such a way that each stakeholder just 
works with information related to its viewpoint (Brambilla, 
Cabot and Wimmer, 2012). As a consequence, application 
specification can be separated from system characterization 
which can help to automate, validate and guide the partitions 
design (Schmidt, 2006). 

As it is presented in (European Commission. Information 
Society and Media Directorate-General, 2012), most works 
about mixed criticality systems are focused on mixed time 
and safety critical system, and they are related to the 
development of hypervisors, scheduling and analysis 
techniques, hardware virtualization, certification 
technologies, etc. In this context, models have been applied 
in some research projects such as (CERTAINTY, 2012) and 
(MultiPARTES, 2013). In the former one, modeling 
languages are extended in order to achieve a formal 
component-based design language and a design methodology 
for real-time mixed critical embedded systems on multi-core 
processors, but with the aim of improving the certification 
process. The latter one proposes model-driven development 
methodology and tools for building trusted embedded 
systems with mixed-criticality components on multi-core 
platforms (Alonso et al., 2013), based on the XtratuM 
hypervisor (Crespo et al., 2010). 
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Taking into account the existence of a hypervisor that assures 
the temporal and spatial isolation of the target applications 
(mixed-criticality systems where critical applications coexist 
with non-critical ones), this paper proposes a model based 
approach to generate the constraints to define the minimum 
required number of partitions from a set of applications that 
share resources of the infrastructure using a hypervisor. This 
partition design is proposed according to: (1) their need of 
system resources, (2) their restrictions on resource usage, and 
(3) criticality kind. For that purpose, the proposed approach 
takes into account the characterization of both system 
resources and applications. As their special needs demand, 
critical applications must be designed and developed 
following the standards and methodologies that assure their 
correctness. For example, in case of hard-real time 
applications they could be modeled using the MARTE UML 
profile (OMG, 2011) and analyzed by means of temporal 
analysis tools such as MAST (González, 2013). Therefore, 
although these applications are taken into account for 
defining partitioning requirements, their design and 
development are not directly related with this work. 
However, this modeling approach does support the design 
and development of component-based non-critical 
applications, allowing the automatic generation of the 
skeleton code of their components. 

The remainder of this paper is as follows: Section 2 illustrates 
the proposed modeling approach that includes system 
resources and mixed-criticality applications. Section 3 details 
the design process to obtain an initial set of constraints to 
partition design. Section 4 presents a case study focused in a 
safety railway braking system where safety and non-safety 
functionalities coexist. Finally, Section 5 comprises some 
conclusions and future work. 

2. MODELING APPROACH 

This section applies modeling techniques to support the 
design and development of mixed-criticality systems that 
provide critical and non-critical functionalities, and that 
execute on platforms whose partitions are managed under a 
hypervisor’s control similar to XtratuM. On the one hand, the 
proposed modeling approach allows the definition of the 
minimum requirements or constraints for the necessary 
partitions. On the other hand, all the development cycle of the 
non-critical and component-based applications is supported. 

With this purpose it is necessary to characterize system 
resources and applications, including their needs of resources. 
Therefore, two domains have been identified for the 
modeling approach, which are detailed in the following sub-
sections: (1) application specification and (2) resource 
characterization. 

2.1  Application Specification View 

This view contains the characterization of applications taking 
into account functional and non-functional requirements. The 
meta-model that contains the elements of this view and the 
relationships among them is presented in Fig. 1.  

It is important to remark that a system can be considered as 
mixed-critical with respect to different criticality criteria, 
from now on the criticality kind such as timing, safety, or 
reliability requirements. More precisely, this work deals with 
the co-existence of critical (CriticalApplication) and non-
critical (Non_CriticalApplication) applications being also the 
last ones composed of components that communicate among 
them. 

Critical applications are modeled and analyzed externally. In 
our approach they are considered as a monolithic application 
component that represents the functionality of the whole 
application, being characterized by its criticality kind 
(criticalityKind), by its resource needs on a concrete node 
(deployedIn) such as the budget, deadline (D), period (T), and 
by the related operating system (O.S.). This implies that the 
whole critical application will be deployed in a unique 
partition. Additionally, it may also have associated the 
corresponding design model (associatedModel), for example 
based on MARTE if it has real-time criticality. 

As far as non-critical applications are concerned, application 
functionality can be represented as a collection of 
components interconnected, each providing a concrete 
functionality. A component interacts with others through its 
input port and/or output port. A connector represents the data 
flow between two components, that is, the data sent by a 
component through its output port and received by a 
following one through its input port. In addition, this data 
exchange can be performed under a condition. It is important 
to remark that the meta-model illustrated in Fig.1 can be 
extended in order to introduce application execution logic 
and behavior driven reconfiguration as it is presented in 
(Armentia et al., 2011). Finally, a component can be 
implemented in many ways, the so-called component 
implementations (Comp.Impl.). The functionality provided is 
the same, but each one presents different resources needs as 
they can be deployed in partitions of different nodes. 

The proposed modeling approach also contains a set of 
properties that characterize other non-functional requirements 
of these non-critical applications, their components and their 
implementations. 

 

Fig. 1. Meta-model of the Application Specification view 
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Components can be characterized by a set of properties such 
as its activation type (Activation), deadline (D), and period 
(T) or minimum interarrival time (MIT) for periodic or 
sporadic components, respectively. 

Component implementations and nodes are the nexus 
between both views. Therefore, the description of a 
component implementation must provide information about 
the needs of resources on a concrete node (deployedIn), 
essential to partitions design. With this purpose, memory 
needs, processor utilization (U), and network needs have to 
be recorded, as well as the operating system to run it. 

2.2  Resources View 

This view contains the description of the resources offered to 
applications. This work extends the characterization 
presented in (Calvo et al., 2012), in order to cope with the 
new modeling requirements related to the critical aspects of a 
system. The characterization of this previous work, which 
was based on FRESCOR (González and Tellería, 2008) and 
MARTE UML profile, considers a node as a main resource 
that can be composed of a set of resources divided in five 
groups: (1) memory, to represent any storage resource; (2) 
processor, for describing every CPU; (3) battery, for power 
supply; (4) operating systems; and (5) network interfaces to 
connect to networks. This simplification considers that I/O-s 
can be modeled as peripherals (Other in Fig.2). 

Fig. 2 presents the meta-model that corresponds to the 
extended characterization, with the changes highlighted in 
green. The concept of a node as a set of resources is 
maintained. More precisely, a node may consist of memory, 
processor, battery and network interface resources. Every 
processor can be supported by several operating systems, and 
it can be provided with more than one core. In addition, a 
node can be equipped with other peripheral devices, which 
can be shared or not. The hypervisor is in charge of the 
virtualization of this hardware, assuring time and spatial 
isolation among partitions. 

 

Fig. 2. Meta-model of the Resources view 

Each partition also consists of a group of resources that 
correspond to their virtualization needs of basic hardware 
(memory and network, if the hypervisor supports it). Other 
peripheral resources are not virtualized, but they are managed 
by partitions. In case of a non-shared device its own partition 
is necessary. However, shared devices can be accessed 
through a unique partition and provided with an I/O server 
(Masmano, 2009). 

Finally, component implementations are deployed in 
partitions, each one requiring an operating system to be 
executed. This implies that all the component 
implementations within a partition must require the same 
operating system. Note that component implementations 
cannot be deployed in partitions that manage peripheral 
devices. 

3. DESIGN PROCESS: GETTING PARTITION 
REQUIREMENTS 

This section describes the design process to follow in order to 
obtain a set of constraints for the minimum necessary 
partitions. It is important to remark that this is an initial 
configuration approach that has to be verified and completed. 
All the changes made by the application designer should be 
updated in the model. 

3.1  Resources Characterization 

Initially, the available system resources have to be 
characterized according to the meta-model proposed in Fig. 
2, taking into account that, at this stage, partitions and 
component implementations are still undefined. Therefore, all 
the nodes and network segments within the system have to be 
described, identifying the available processor, memory, 
battery and network interface resources, as well as other 
peripheral devices. For example, a memory resource is 
characterized by its storage capacity and the throughput, i.e. 
the average memory access speed to memory. 

3.2  Application Specification 

The second step relies on the application specification. 
Firstly, critical applications must be characterized by means 
of their needs of resources in terms of budget, period and 
deadline. After, non-critical applications are modeled. Their 
functionality has to be defined as a set of components 
connected. 

Every component’s properties have to be indicated, and all 
the component implementations have to be characterized. It is 
necessary to indicate the node where the implementation will 
be deployed, as well as the required operating system (it has 
to be checked that it supports the processor of the target 
node), and its resources needs. 

Finally, the skeleton code of the application components can 
be automatically generated by means of model-to-text 
transformations. The generated code contains the reception of 
data coming from previous components, the invocation to the 
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component’s functionality, and the transmission of data to the 
following components. 

3.3  Partition Requirements 

The information captured in the models up to now is used to 
automatically propose an initial approach of the minimum 
partitions needed as well as their necessities and constraints. 

Each non shared peripheral device might be managed by one 
and only one partition. In the same way, all the shared 
peripheral devices of a node might be managed by a partition. 

For each critical application on a node, a dedicated partition 
is required. 

Component implementations of non-critical applications 
deployed in the same node and that run on the same operating 
system are grouped in the same partition according. 

4. CASE STUDY: SAFETY BRAKING SYSTEM 

To validate the previous approach, a safety railway braking 
system based in three distributed voter notes plus a DMI 
(Driver-Machine Interface) node is proposed as an example 
of mixed-criticality distributed system. The braking system 
safety function must stop the train if certain conditions are 
met, whilst the non-safety part includes the graphical user 
interface to the system and the simulation of the environment 
(train sensors and actuators). 

The safety functionality must ensure that the instantaneous 
speed of a virtual train does not exceed the limit established 
for the track section that is being crossed. There are three 
different limits with different actions to be taken. If the train 
speed exceeds the first limit the driver is warned through the 
DMI. If the second limit is crossed, the service brake is 
activated until the speed drops below the first limit, and 
finally, if the third limit is reached, the emergency brake is 
activated and the accelerator is deactivated until the train is 
completely stopped and the situation acknowledged by the 
train driver. 

 

Fig. 3. Safety braking application 

As far as resources are concerned (see Fig.3), the system is 
composed by three single core (with Hyper-Threading 
Technology) Intel® Atom™ based embedded nodes (N1, N2, 
and N3) plus a PC node (N4), that are distributed across an 
Ethernet network (black connections in Fig. 3). The 
application is partitioned and deployed over a TMR (Triple 
Modular Redundant) architecture. 

From an application specification point of view (see Fig. 3), 
the system is composed of three critical applications with 
safety criticality kind (A1, A2, and A3), and a unique non-
critical application based on four components (A4). 

There are three safety applications that compute the same 
safety function in parallel and perform a 2oo3 (two out of 
three) voting of their results (outputs), based on odometry 
information computed from speed sensor and balise data 
inputs (A1, A2, and A3). They are diverse in terms of 
implementation technology (IEC, 2010), but perform the 
same safety function that eventually must decide to stop the 
train based on the 2oo3 voting mechanism. This way, a triple 
redundant architecture is achieved. Each safety application 
shares sensor and odometry data with the other two nodes 
(green dotted connections in Fig. 3). This data sharing is 
needed to perform a self-diagnosis based on a “reciprocal 
monitoring” pattern, and it is performed through the non-
safety components (C1, C2, and C3). 
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Fig. 4. Safety braking system architecture
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As a result, the safety code is reduced considerably and so the 
certification costs. This can be done because the safety 
function is isolated from an eventual malfunction of the non 
certified components: If a non-safety related component fails, 
e.g. the communication related component, the system can 
detect it and force the system to a safe state (stopped). In 
general, failures that could jeopardize safety must be detected 
through diagnosis and managed in a way that a fail-safe state 
can be reached if necessary. Finally, non-safety components 
send data to another non-safety component to be shown on a 
DMI (C4). 

Every component is implemented by a unique component 
implementation. For example, there are three component 
implementations CI1_1, CI2_1, and CI3_1 for the C1, C2, 
and C3 components, respectively. Fig. 3 also shows in red 
color the node where the implementation of each component 
and the critical applications will be deployed in. 

The operating systems required by these component 
implementations and critical applications are as follows: 

• Microsoft Windows CE, for the implementations of 
the components C1 (CI1_1), C2 (CI2_1), C3 
(CI3_1), and for the safety application A1. 

• Microsoft Windows XP, for the implementation of 
the component C4 (CI4_1). 

• On Time RTOS, for the safety applications A2 and 
A3. 

To obtain the constraints of the minimum partitions required, 
it is necessary to apply the rules described in the Section 3.3 
to this characterization of resources and this application 
specification. As a result, one safety partition and a non-
safety one are needed in nodes N1, N2 and N3. Fig. 4 
presents a possible deployment diagram for the component 
implementations, which corresponds with this initial design. 

The so-called safety partitions communicate with their 
corresponding non-safety ones through a shared memory 
mechanism (green dotted connections in Fig. 3) supported by 
the hypervisor, as it is more detailed in Fig. 5. 

The safe communication over the Ethernet network among 
the component implementations CI1_1, CI2_1, and CI3_1 is 
performed by means of the SCA (Service Component 
Architecture (OASIS, 2011)) safety binding presented at 
(Agirre et al., 2013). It provides the safety mechanisms 
described in the 61784-3-3 standard (IEC, 2007) to achieve 
safe communication over a “black channel”, and at the same 
time abstracts the developer from low level communication 
details, as far as it provides a generic SCA binding 
implementation. 

Finally, the skeleton code of the application components is 
automatically generated, by means of model to text 
transformations applied to the application model, according 
to the SCA component model (Armentia et al., 2013). 
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Fig. 5. Shared memory communication in N3 node 

5. CONCLUSIONS AND FUTURE WORK 

Advances in technology made possible to increment the 
processing capabilities of embedded systems, which resulted 
in the development of more and more complex applications, 
where critical and non-critical functionalities must coexist. 
Recent hardware virtualization techniques, such as the 
hypervisors, have allowed isolating the execution of several 
partitions, in a temporal and spatial way. Hypervisors require 
a good configuration design of the partitions, including the 
allocation of the corresponding applications. 

This paper has proposed a modeling approach that, on the one 
hand, based on a characterization of the system resources and 
the specification of the applications that will run on it, 
provides the constraints to define the minimum required 
number of partitions. Note that target applications are critical 
applications that coexist with non-critical ones based on 
components; so the hypervisor configuration deals with the 
allocation of applications and components in partitions, 
regarding to the criticality kind of the application, the 
resources needs and restrictions on resource usage of their 
components. 

On the other hand, this modeling approach supports the 
development cycle of the distributed non-critical applications 
based on components. By means of model-to-text 
transformations it is possible to generate the skeleton code of 
the composing components. Additionally, the modeling 
approach can be extended in order to capture all the 
properties relevant to the necessary future analysis, as for 
example scheduling analysis, as well as in order to define 
application and reconfiguration logic of non-critical 
applications. 

As critical applications are fixed and must be certified it has 
been decided not to distribute them. However, as network 
certification processes are developed, future work can be 
aimed at applying this modeling approach to also distribute 
them. 
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