

Model Driven Design Support for Mixed-Criticality Distributed Systems

A. Armentia*, A. Agirre**, E. Estévez***, J. Pérez**, M. Marcos*

* Dept. Ingeniería de Sistemas y Automática. ETSI Bilbao, UPV/EHU
Spain (e-mail: @ehu.es).

** Ikerlan-IK4 Research Alliance, Arrasate
Spain (e-mail: aagirre@ikerlan.es)

*** Dept. Ingeniería Electrónica y Automática EPS de Jaén
Spain (e-mail: eestevez@ujaen.es)

Abstract: Nowadays, it is more and more usual that applications provide critical and non-critical
functionalities, the so-called mix-criticality applications. One of the main challenges for developing such
applications is to isolate both application types, in such a way that non-critical functionalities do not
interfere with the critical ones. The use of virtualization techniques like hypervisors can help to meet this
objective. Indeed, a hypervisor is a software layer that provides hardware virtualization allowing different
functionalities to be executed in different partitions which are temporally and spatially isolated. In this
context, this paper proposes the use of modeling techniques to generate an initial set of constraints to the
partition design necessary for a set of critical functionalities that coexist with non-critical ones.
Furthermore, the proposed modeling approach supports all the development cycle of the component-based
non-critical applications, from the design to the automatic generation of the skeleton code of their
components.

1. INTRODUCTION

Current trends in distributed embedded systems (DES) point
to a reduction in the number of physical network nodes in
order to optimize costs and boost performance. The
embedded computing is shifting to high performance
hardware platforms (e.g. multi/many-core processors) that
must provide support functionalities with different levels of
criticality, such as safety-critical and non safety-critical
functionalities (European Commission. Information Society
and Media Directorate-General, 2012), (Pérez et al., 2013).
For example, many current cars are provided not only with
safety-critical applications as the stability control, but also
with other non-critical applications that provide added value
functionalities. Both application types coexist and even share
resources like the wheel sensor used by the stability
controller and by the non-critical navigation system.

In addition, as applications with different level of criticality
have different needs for example of timeliness and security, it
is essential to avoid that non-critical applications interfere
with the critical ones. Several challenges arise from that
separation need. Particularly, technologies to guarantee the
time and spatial isolation between critical and non-critical
functionalities are needed. As it is detailed in (Burns and
Davis, 2013) researches of mixed criticality systems date
from 1987. After initial works dealing with a single
processor, multiprocessor or multi-core platforms were
introduced. In that sense, hypervisor technologies play a
significant role, as they provide the logical partitioning
capability of the underlying hardware through the
virtualization of its physical resources (e.g. CPU, memory)
(Crespo, Ripoll and Masmano, 2010).

Such partitioned systems require a configuration regarding
the definition of the partitions and the allocation of the
applications to those partitions. Therefore, for a good
configuration design it is necessary to have a detailed
characterization of the system itself as well as a deep
knowledge of functional and non-functional requirements of
the applications that will run on it. The use of models
introduces the abstraction necessary to avoid non relevant
aspects of a system, in such a way that each stakeholder just
works with information related to its viewpoint (Brambilla,
Cabot and Wimmer, 2012). As a consequence, application
specification can be separated from system characterization
which can help to automate, validate and guide the partitions
design (Schmidt, 2006).

As it is presented in (European Commission. Information
Society and Media Directorate-General, 2012), most works
about mixed criticality systems are focused on mixed time
and safety critical system, and they are related to the
development of hypervisors, scheduling and analysis
techniques, hardware virtualization, certification
technologies, etc. In this context, models have been applied
in some research projects such as (CERTAINTY, 2012) and
(MultiPARTES, 2013). In the former one, modeling
languages are extended in order to achieve a formal
component-based design language and a design methodology
for real-time mixed critical embedded systems on multi-core
processors, but with the aim of improving the certification
process. The latter one proposes model-driven development
methodology and tools for building trusted embedded
systems with mixed-criticality components on multi-core
platforms (Alonso et al., 2013), based on the XtratuM
hypervisor (Crespo et al., 2010).

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4441

Taking into account the existence of a hypervisor that assures
the temporal and spatial isolation of the target applications
(mixed-criticality systems where critical applications coexist
with non-critical ones), this paper proposes a model based
approach to generate the constraints to define the minimum
required number of partitions from a set of applications that
share resources of the infrastructure using a hypervisor. This
partition design is proposed according to: (1) their need of
system resources, (2) their restrictions on resource usage, and
(3) criticality kind. For that purpose, the proposed approach
takes into account the characterization of both system
resources and applications. As their special needs demand,
critical applications must be designed and developed
following the standards and methodologies that assure their
correctness. For example, in case of hard-real time
applications they could be modeled using the MARTE UML
profile (OMG, 2011) and analyzed by means of temporal
analysis tools such as MAST (González, 2013). Therefore,
although these applications are taken into account for
defining partitioning requirements, their design and
development are not directly related with this work.
However, this modeling approach does support the design
and development of component-based non-critical
applications, allowing the automatic generation of the
skeleton code of their components.

The remainder of this paper is as follows: Section 2 illustrates
the proposed modeling approach that includes system
resources and mixed-criticality applications. Section 3 details
the design process to obtain an initial set of constraints to
partition design. Section 4 presents a case study focused in a
safety railway braking system where safety and non-safety
functionalities coexist. Finally, Section 5 comprises some
conclusions and future work.

2. MODELING APPROACH

This section applies modeling techniques to support the
design and development of mixed-criticality systems that
provide critical and non-critical functionalities, and that
execute on platforms whose partitions are managed under a
hypervisor’s control similar to XtratuM. On the one hand, the
proposed modeling approach allows the definition of the
minimum requirements or constraints for the necessary
partitions. On the other hand, all the development cycle of the
non-critical and component-based applications is supported.

With this purpose it is necessary to characterize system
resources and applications, including their needs of resources.
Therefore, two domains have been identified for the
modeling approach, which are detailed in the following sub-
sections: (1) application specification and (2) resource
characterization.

2.1 Application Specification View

This view contains the characterization of applications taking
into account functional and non-functional requirements. The
meta-model that contains the elements of this view and the
relationships among them is presented in Fig. 1.

It is important to remark that a system can be considered as
mixed-critical with respect to different criticality criteria,
from now on the criticality kind such as timing, safety, or
reliability requirements. More precisely, this work deals with
the co-existence of critical (CriticalApplication) and non-
critical (Non_CriticalApplication) applications being also the
last ones composed of components that communicate among
them.

Critical applications are modeled and analyzed externally. In
our approach they are considered as a monolithic application
component that represents the functionality of the whole
application, being characterized by its criticality kind
(criticalityKind), by its resource needs on a concrete node
(deployedIn) such as the budget, deadline (D), period (T), and
by the related operating system (O.S.). This implies that the
whole critical application will be deployed in a unique
partition. Additionally, it may also have associated the
corresponding design model (associatedModel), for example
based on MARTE if it has real-time criticality.

As far as non-critical applications are concerned, application
functionality can be represented as a collection of
components interconnected, each providing a concrete
functionality. A component interacts with others through its
input port and/or output port. A connector represents the data
flow between two components, that is, the data sent by a
component through its output port and received by a
following one through its input port. In addition, this data
exchange can be performed under a condition. It is important
to remark that the meta-model illustrated in Fig.1 can be
extended in order to introduce application execution logic
and behavior driven reconfiguration as it is presented in
(Armentia et al., 2011). Finally, a component can be
implemented in many ways, the so-called component
implementations (Comp.Impl.). The functionality provided is
the same, but each one presents different resources needs as
they can be deployed in partitions of different nodes.

The proposed modeling approach also contains a set of
properties that characterize other non-functional requirements
of these non-critical applications, their components and their
implementations.

Fig. 1. Meta-model of the Application Specification view

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4442

Components can be characterized by a set of properties such
as its activation type (Activation), deadline (D), and period
(T) or minimum interarrival time (MIT) for periodic or
sporadic components, respectively.

Component implementations and nodes are the nexus
between both views. Therefore, the description of a
component implementation must provide information about
the needs of resources on a concrete node (deployedIn),
essential to partitions design. With this purpose, memory
needs, processor utilization (U), and network needs have to
be recorded, as well as the operating system to run it.

2.2 Resources View

This view contains the description of the resources offered to
applications. This work extends the characterization
presented in (Calvo et al., 2012), in order to cope with the
new modeling requirements related to the critical aspects of a
system. The characterization of this previous work, which
was based on FRESCOR (González and Tellería, 2008) and
MARTE UML profile, considers a node as a main resource
that can be composed of a set of resources divided in five
groups: (1) memory, to represent any storage resource; (2)
processor, for describing every CPU; (3) battery, for power
supply; (4) operating systems; and (5) network interfaces to
connect to networks. This simplification considers that I/O-s
can be modeled as peripherals (Other in Fig.2).

Fig. 2 presents the meta-model that corresponds to the
extended characterization, with the changes highlighted in
green. The concept of a node as a set of resources is
maintained. More precisely, a node may consist of memory,
processor, battery and network interface resources. Every
processor can be supported by several operating systems, and
it can be provided with more than one core. In addition, a
node can be equipped with other peripheral devices, which
can be shared or not. The hypervisor is in charge of the
virtualization of this hardware, assuring time and spatial
isolation among partitions.

Fig. 2. Meta-model of the Resources view

Each partition also consists of a group of resources that
correspond to their virtualization needs of basic hardware
(memory and network, if the hypervisor supports it). Other
peripheral resources are not virtualized, but they are managed
by partitions. In case of a non-shared device its own partition
is necessary. However, shared devices can be accessed
through a unique partition and provided with an I/O server
(Masmano, 2009).

Finally, component implementations are deployed in
partitions, each one requiring an operating system to be
executed. This implies that all the component
implementations within a partition must require the same
operating system. Note that component implementations
cannot be deployed in partitions that manage peripheral
devices.

3. DESIGN PROCESS: GETTING PARTITION
REQUIREMENTS

This section describes the design process to follow in order to
obtain a set of constraints for the minimum necessary
partitions. It is important to remark that this is an initial
configuration approach that has to be verified and completed.
All the changes made by the application designer should be
updated in the model.

3.1 Resources Characterization

Initially, the available system resources have to be
characterized according to the meta-model proposed in Fig.
2, taking into account that, at this stage, partitions and
component implementations are still undefined. Therefore, all
the nodes and network segments within the system have to be
described, identifying the available processor, memory,
battery and network interface resources, as well as other
peripheral devices. For example, a memory resource is
characterized by its storage capacity and the throughput, i.e.
the average memory access speed to memory.

3.2 Application Specification

The second step relies on the application specification.
Firstly, critical applications must be characterized by means
of their needs of resources in terms of budget, period and
deadline. After, non-critical applications are modeled. Their
functionality has to be defined as a set of components
connected.

Every component’s properties have to be indicated, and all
the component implementations have to be characterized. It is
necessary to indicate the node where the implementation will
be deployed, as well as the required operating system (it has
to be checked that it supports the processor of the target
node), and its resources needs.

Finally, the skeleton code of the application components can
be automatically generated by means of model-to-text
transformations. The generated code contains the reception of
data coming from previous components, the invocation to the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4443

component’s functionality, and the transmission of data to the
following components.

3.3 Partition Requirements

The information captured in the models up to now is used to
automatically propose an initial approach of the minimum
partitions needed as well as their necessities and constraints.

Each non shared peripheral device might be managed by one
and only one partition. In the same way, all the shared
peripheral devices of a node might be managed by a partition.

For each critical application on a node, a dedicated partition
is required.

Component implementations of non-critical applications
deployed in the same node and that run on the same operating
system are grouped in the same partition according.

4. CASE STUDY: SAFETY BRAKING SYSTEM

To validate the previous approach, a safety railway braking
system based in three distributed voter notes plus a DMI
(Driver-Machine Interface) node is proposed as an example
of mixed-criticality distributed system. The braking system
safety function must stop the train if certain conditions are
met, whilst the non-safety part includes the graphical user
interface to the system and the simulation of the environment
(train sensors and actuators).

The safety functionality must ensure that the instantaneous
speed of a virtual train does not exceed the limit established
for the track section that is being crossed. There are three
different limits with different actions to be taken. If the train
speed exceeds the first limit the driver is warned through the
DMI. If the second limit is crossed, the service brake is
activated until the speed drops below the first limit, and
finally, if the third limit is reached, the emergency brake is
activated and the accelerator is deactivated until the train is
completely stopped and the situation acknowledged by the
train driver.

Fig. 3. Safety braking application

As far as resources are concerned (see Fig.3), the system is
composed by three single core (with Hyper-Threading
Technology) Intel® Atom™ based embedded nodes (N1, N2,
and N3) plus a PC node (N4), that are distributed across an
Ethernet network (black connections in Fig. 3). The
application is partitioned and deployed over a TMR (Triple
Modular Redundant) architecture.

From an application specification point of view (see Fig. 3),
the system is composed of three critical applications with
safety criticality kind (A1, A2, and A3), and a unique non-
critical application based on four components (A4).

There are three safety applications that compute the same
safety function in parallel and perform a 2oo3 (two out of
three) voting of their results (outputs), based on odometry
information computed from speed sensor and balise data
inputs (A1, A2, and A3). They are diverse in terms of
implementation technology (IEC, 2010), but perform the
same safety function that eventually must decide to stop the
train based on the 2oo3 voting mechanism. This way, a triple
redundant architecture is achieved. Each safety application
shares sensor and odometry data with the other two nodes
(green dotted connections in Fig. 3). This data sharing is
needed to perform a self-diagnosis based on a “reciprocal
monitoring” pattern, and it is performed through the non-
safety components (C1, C2, and C3).

Black channel (ETHERNET)

HW

Non Safety
partition

Windows XP

CORE
1

Ethernet
card

DMI Environment

SCA safety binding

CI4_1

N4

HW

CORE
1

CORE
2

HYPERVISOR

Safety
partition

Windows CE

A1

Non Safety
partition

Windows CE

CI1_1

SCA safety
binding

Ethernet
card

N1

HW

HYPERVISOR

Safety
partition

OnTime RTOS

A2

Non Safety
partition

Windows CE

CI2_1

SCA safety
binding

CORE
1

CORE
2

Ethernet
card

N2

HW

HYPERVISOR

Safety
partition

OnTime RTOS

A3

Non Safety
partition

Windows CE

CI3_1

SCA safety
binding

CORE
1

CORE
2

Ethernet
card

N3

Fig. 4. Safety braking system architecture

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4444

As a result, the safety code is reduced considerably and so the
certification costs. This can be done because the safety
function is isolated from an eventual malfunction of the non
certified components: If a non-safety related component fails,
e.g. the communication related component, the system can
detect it and force the system to a safe state (stopped). In
general, failures that could jeopardize safety must be detected
through diagnosis and managed in a way that a fail-safe state
can be reached if necessary. Finally, non-safety components
send data to another non-safety component to be shown on a
DMI (C4).

Every component is implemented by a unique component
implementation. For example, there are three component
implementations CI1_1, CI2_1, and CI3_1 for the C1, C2,
and C3 components, respectively. Fig. 3 also shows in red
color the node where the implementation of each component
and the critical applications will be deployed in.

The operating systems required by these component
implementations and critical applications are as follows:

• Microsoft Windows CE, for the implementations of
the components C1 (CI1_1), C2 (CI2_1), C3
(CI3_1), and for the safety application A1.

• Microsoft Windows XP, for the implementation of
the component C4 (CI4_1).

• On Time RTOS, for the safety applications A2 and
A3.

To obtain the constraints of the minimum partitions required,
it is necessary to apply the rules described in the Section 3.3
to this characterization of resources and this application
specification. As a result, one safety partition and a non-
safety one are needed in nodes N1, N2 and N3. Fig. 4
presents a possible deployment diagram for the component
implementations, which corresponds with this initial design.

The so-called safety partitions communicate with their
corresponding non-safety ones through a shared memory
mechanism (green dotted connections in Fig. 3) supported by
the hypervisor, as it is more detailed in Fig. 5.

The safe communication over the Ethernet network among
the component implementations CI1_1, CI2_1, and CI3_1 is
performed by means of the SCA (Service Component
Architecture (OASIS, 2011)) safety binding presented at
(Agirre et al., 2013). It provides the safety mechanisms
described in the 61784-3-3 standard (IEC, 2007) to achieve
safe communication over a “black channel”, and at the same
time abstracts the developer from low level communication
details, as far as it provides a generic SCA binding
implementation.

Finally, the skeleton code of the application components is
automatically generated, by means of model to text
transformations applied to the application model, according
to the SCA component model (Armentia et al., 2013).

Configuration
file

HW

HYPERVISOR

Safety partition

OnTime RTOS

A3

Non Safety
partition

Windows CE

CI3_1

SCA safety
binding

CORE
1

CORE
2

Ethernet
card

SH
AR

ED
 M

EM
O

RY

Fig. 5. Shared memory communication in N3 node

5. CONCLUSIONS AND FUTURE WORK

Advances in technology made possible to increment the
processing capabilities of embedded systems, which resulted
in the development of more and more complex applications,
where critical and non-critical functionalities must coexist.
Recent hardware virtualization techniques, such as the
hypervisors, have allowed isolating the execution of several
partitions, in a temporal and spatial way. Hypervisors require
a good configuration design of the partitions, including the
allocation of the corresponding applications.

This paper has proposed a modeling approach that, on the one
hand, based on a characterization of the system resources and
the specification of the applications that will run on it,
provides the constraints to define the minimum required
number of partitions. Note that target applications are critical
applications that coexist with non-critical ones based on
components; so the hypervisor configuration deals with the
allocation of applications and components in partitions,
regarding to the criticality kind of the application, the
resources needs and restrictions on resource usage of their
components.

On the other hand, this modeling approach supports the
development cycle of the distributed non-critical applications
based on components. By means of model-to-text
transformations it is possible to generate the skeleton code of
the composing components. Additionally, the modeling
approach can be extended in order to capture all the
properties relevant to the necessary future analysis, as for
example scheduling analysis, as well as in order to define
application and reconfiguration logic of non-critical
applications.

As critical applications are fixed and must be certified it has
been decided not to distribute them. However, as network
certification processes are developed, future work can be
aimed at applying this modeling approach to also distribute
them.

ACKNOWLEDGEMENTS

This work was financed in part by the University of the
Basque Country (UPV/EHU) under project UFI 11/28, by the
Regional Government of the Basque Country under Project

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4445

IT719-13, by the MCYT&FEDER under project DPI 2012-
37806-C02-01, and the European project FP7 MultiPARTES
under project No.287702.

REFERENCES

Agirre, A. et al. (2013). SCA Extensions to Support Safety
Critical Distributed Embedded Systems. In: 18th IEEE
International Conference on Emerging Technologies and
Factory Automation (ETFA). Cagliari, Italy, 10-13
September 2013.

Alonso, A. et al. (2013). Towards model-driven engineering
for mixed-criticality systems: Multipartes approach. In
Proceedings of the Conference on Design, Automation
and Test in Europe. Grenoble, France, 18-22 March
2013. [Online] Available at:
http://atcproyectos.ugr.es/wicert/downloads/wicert_paper
s/wicert2013_submission_6.pdf [Accessed: 4th March
2014].

Armentia, A. et al. (2011). Achieving reconfigurable service
oriented applications using Model Driven Engineering.
In: 16th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA).
Toulouse, France, 5-9 September 2011.

Armentia, A. et al. (2013). A MDE-Based Tool Suite for
Dynamically Reconfigurable Service-Oriented Systems.
In: IV Congreso Español de Informática (CEDI).
Madrid, Spain, 17-20 September 2013.

Brambilla, M., Cabot, J. and M. Wimmer (2012).
Introduction. In: Model-Driven Software Engineering in
Practice. Morgan & Claypool.

Burns, A. and R. Davis (2013). Mixed Criticality Systems - A
Review. [Online] July 2013. Available from:
http://www-users.cs.york.ac.uk/~burns/review.pdf.
[Accessed: 4th March 52014].

Calvo, I. et al. (2012). Towards an infrastructure model for
composing and reconfiguring cyber-physical systems. In
6th International Conf. Ubiquitous Computing and
Ambient Intelligence (UCAMI). Vitoria-Gasteiz, Spain,
3-5 December 2012. 7656, p. 282-289.

CERTAINTY project (2012). CERTAINTY (Certification of
Real Time Applications designed for mixed criticality).
[Online] Available at: http://www.certainty-project.eu/
[Accessed: 4th March 2014].

Crespo, A., Ripoll, I., and M. Masmano (2010). Partitioned
Embedded Architecture Based on Hypervisor: The
XtratuM Approach. In: European Dependable
Computing Conference (EDCC). Valencia, Spain, 28-30
April 2010. p. 67–72.

European Commission. Information Society And Media
Directorate-General. (2012). Mixed Criticality Systems.
Report from the Workshop on Mixed Criticality Systems.
[Online] Available at:
http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/documents/sra-mixed-criticality-
systems.pdf. [Accessed: 4th March 2014].

González, M., and Tellería, M. (2008). Deliverable D-
AC2v2: Architecture and contract model for integrated
resources II. [Online] January 2008. Available at:
http://www.frescor.org/index.php?page=publications
[Accessed: 5th March 2014].

González Harbour, M. et al. (2013) Modeling distributed
real-time systems with MAST 2, Journal of Systems
Architecture. 59 (6). P. 331-340.

IEC (2010) IEC 61508: Functional safety of
electrical/electronic programmable electronic safety-
related systems. 2.0 Ed.

IEC (2007) IEC 61784-3-3: Industrial communication
networks - Profiles - Part 3-3: Functional safety
fieldbuses - Additional specifications for CFP 3. 2.0 Ed.

Masmano, M. et al. (2009) XtratuM: a Hypervisor for Safety
Critical Embedded Systems. In 11th Real-Time Linux
Workshop. Dresden, Germany, 28-30 September 2009.
pp. 263-272.

MultiPARTES project (2013). MultiPARTES (Multi-cores
Partitioning for Trusted Embedded Systems). [Online]
Available at: http://www.multipartes.eu/ [Accessed: 4th
March 2014].

OASIS (2011) SCA: Service Component Architecture
Assembly Model Specification Version 1.1. [Online]
Available at: http://www.oasis-
open.org/committees/download.php/44090/sca-
assembly-spec-v1.1-csprd04.zip [Accessed: 5th March
2014].

OMG. (2011). formal/2011-06-02: 2011. UML Profile for
MARTE: Modelling and Analysis of Real-Time
Embedded Systems, Version 1.1. OMG. [Online]
Available at:
http://www.omg.org/spec/MARTE/1.1/PDF/ [Accessed:
4th March 2014].

Pérez, J. et al. (2013) A safety concept for a wind power
mixed-criticality embedded system based on multicore
partitioning. In 1st International Workshop on Mixed
Criticality Systems. Vancouver, Canada, 3rd December
2013. p. 25-30. [Online] Available from: http://www-
users.cs.york.ac.uk/~robdavis/wmc/paper15.pdf
[Accessed: 4th March 2014].

Schmidt, D.C. (2006). Guest Editor’s Introduction: Model-
Driven Engineering. Computer, 39 (2), p. 25 – 31.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4446

