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Abstract: We present a new stabilization approach for nonlinear plants with a long input delay.
The stabilization problem is complicated by the influence of an uncertain biased sinusoidal
disturbance. The problem of control design is solved with using measurable state variables.
The adaptive scheme allows to identify the frequency and other parameters of the external
disturbance that are used in a rejection loop. The main result provides delay compensation for
a class of nonlinear systems and asymptotic stability for the closed-loop system..
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1. INTRODUCTION

The paper is devoted to the development of control meth-
ods in terms of delay and disturbances. Over the past
60 - 70 years a variety of approaches to the control of
systems with time delay (see, e.g., Bobtsov [2008], Krstic
and Smysklyaev [2008], Krstic [2009], Niculescu and An-
naswamy [2004], Parsheva and Tsykunov [2001], Pyrkin
et al. [2010 a], Pyrkin [2010], Pyrkin et al. [2011], Pyrkin
and Bobtsov [2011], Smith [1959]) were given by re-
searchers from around the world. A large number of works
devoted to the analysis of closed systems using Lyapunov-
Krasovskii functional, which for systems with delayed state
is analogous to the classical Lyapunov functions (see, for
example Bobtsov [2008], Pyrkin et al. [2011], Pyrkin
and Bobtsov [2011]). More difficult case, in the authors’
opinion, is the synthesis of controllers for the systems
with delay in the control. For such systems often the so-
called Smith predictor (Smith [1959]) and its expansion,
proposed, in particular, in (Arstein, [1982], Krstic and
Smysklyaev [2008], Krstic [2009], Kwon and Pearson
[1980], Manitus and Olbrot [1979]) are used. In (Krstic
[2009]) the exponential stability of the closed-loop system
with the predictor was proved using Lyapunov functions,
which is useful for the stabilization of systems with input
delay. Obviously, the disadvantage of this approach is that
it requires accurate estimates of all parameters of the sys-
tem and is not applicable for nonlinear systems. However,
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this approach has been extended for asymptotically stable
linear parametrically uncertain systems. For example, the
method (Parsheva and Tsykunov [2001]) allows us to solve
the problem of tracking the reference signal for a certain
class of parametrically undefined objects.

We can also highlight works (Krstic and Smysklyaev
[2008], Pyrkin et al. [2010 a]), in which the approach
(Krstic [2009]) was extended to the stabilization of linear
time-invariant system in conditions of uncertain sinusoidal
disturbance.

In this paper we consider the problem of stabilization of a
nonlinear system

ẋ(t) = Ax(t) +B(u(t−D) + δ(t)) + Ψ(y(t)), (1)

where δ(t) is an unmeasured biased sinusoidal disturbance
with unknown parameters.

In serial of works the frequency estimation approaches
were investigated (Bobtsov and Pyrkin [2012], Bobtsov
et al. [2012], Pyrkin et al. [2010 a,b], Pyrkin [2010],
Pyrkin and Bobtsov [2011]). In (Pyrkin et al. [2010 a,b],
Pyrkin [2010]) the exponential convergence of frequency
estimator has been proved. In (Bobtsov and Pyrkin [2010])
the frequency estimation scheme was extended to a mul-
tisinusoidal case and in (Bobtsov et al. [2011 b]) for the
multisinusoidal signals with nonzero offset. In (Bobtsov et
al. [2012], Pyrkin and Bobtsov [2011]) the estimation re-
sult was investigated for the biased sinusoidal disturbance
corrupted by irregular noise. Moreover, the frequency esti-
mation scheme proposed in (Pyrkin and Bobtsov [2011])
is the simplest one in comparison with known analogues
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(Hsu et al. [1999], Marino et al. [2007, 2008], Marino and
Tomei [2011, 2013], Xia [2002]).

The control algorithm proposed in this paper will develop
the results (Pyrkin et al. [2010 a,b]) for the case of nonlin-
ear plant. Also we can note that this paper develops a fairly
extensive self-direction associated with the compensation
of disturbances having a sinusoidal nature.

2. STATEMENT OF THE PROBLEM

In this paper we will consider the plant (1) in the following
form

ẋ1(t) = x2(t) + ψ1(y(t− τ1)) + a1y(t),

...

ẋn(t) = u(t−D) + ψn(y(t− τn)) + any(t) + δ(t),

y(t) = x1(t), (2)

where x(t) = col{x1, x2, ..., xn} is the known vector
of state variables, u(t) is the scalar input with initial
condition u(t − D) = 0 for t < D, y(t) is measurable
scalar output,D ≥ 0 is known constant delay, ai are known
parameters, ψi(y(t− τi)) and τi are corresponding, known
nonlinear functions and positive numbers, δ(t) = σ0 +
σ sin(ωt+ ϑ) is an unknown disturbance.

The objective is to find the control u(t) that achieves
regulation of the output

lim
t→∞

y(t) = 0 (3)

under the following assumptions:

Assumption 1. Parameters τi ≥ D for all i = 1, n.

Assumption 2. Parameters σ0, σ, ω, ϑ of the disturbance
δ(t) are unknown.

3. MAIN RESULT

Let us assume Ψ(y) = 0, δ(t) = 0 and D = 0. Then we
have the trivial control:

u(t) = Kx(t), (4)

For the case D > 0 rewrite the control (4) in the following
form:

u(t) = Kx(t+D), (5)

Obviously, the control law of the form (5) is not realizable,
since the vector x(t + D) is not available for direct
measurement. However, following (Krstic [2009]), the
vector x(t+D) can be calculated as follows:

x(t+D) = eA(t+D)x(0) +

∫ t+D

0

eA(t+D−τ)Bu(τ −D)dτ

= eADeAtx(0) + eAD
∫ t

0

eA(t−τ)Bu(τ −D)dτ

+

∫ t+D

t

eA(t+D−τ)Bu(τ −D)dτ

= eADx(t) +

∫ t

t−D
eA(t−τ)Bu(τ)dτ.

Then the control algorithm, which provides stabilization
of systems with delay is

u(t) = KeADx(t) +K

∫ t

t−D
eA(t−τ)Bu(τ)dτ. (6)

However, in terms of the problem the object is non-linear
control and is affected by disturbance

δ(t) = σ0 + σ sin(ωt+ ϑ).

Feasible solution of the problem can be found in a few
steps

Step 1. Find the estimation of disturbance δ(t) = σ0 +
σ sin(ωt + ϑ) = σ0 + σ1 sinωt + σ2 cosωt. Construct the
following observer

˙̂xn(t) = u(t−D) + ψn(y) + any(t) + knx̃n(t), (7)

where x̂n(t) is an estimation of xn(t), x̃n(t) = xn(t)−x̂n(t)

and parameter kn > 0, σ =
√
σ2
1 + σ2

2 .

Consider the following error

x̃n(t) = xn(t)− x̂n(t). (8)

After differentiating the equation (8) by force (2) and (7)
we obtain

˙̃xn(t) = −knx̃n(t) + δ(t).

Since we are dealing with a differential equation of the
first order, the signal x̃n(t) = xn(t)− x̂n(t) is a sinusoidal
function of the same frequency ω as the disturbance δ(t) =
σ0 + σ sin(ωt+ ϑ) and can be represented in the form

x̃n(t) = µ0 + µ sin(ωt+ ϑ̄) + ε1(t) =
1

p+ kn
δ(t),

where p = d/dt and ε1(t) is an exponentially decaying
function.

Following the idea presented in (Bobtsov and Pyrkin
[2012], Bobtsov et al. [2012], Pyrkin et al. [2010 a,b],
Pyrkin [2010]) we use the signal ỹ1 to estimate the
frequency of the disturbance. We start by introducing the
linear second-order filter

ξ(s) =
λ20
γ(s)

x̃n(s), (9)

where λ0 > 0, γ(s) = s2+γ1s+γ0 is a Hurwitz polynomial
with two different eigenvalues λ1 and λ2. Let γ0 = λ20 and
λ = mini=1,2{|Reλi|}.
Lemma 1. For the filter (9) and the input signal x̃n(t) the
relation ...

ξ (t) = θξ̇(t) + ε(t) (10)

holds, where functions ξ̇(t) and
...
ξ (t) are derivatives of the

output variable of the linear filter (9)

ξ̇(s) =
λ20s

γ(s)
x̃n(s),

...
ξ (s) =

λ20s
3

γ(s)
x̃n(s), (11)

θ = −ω2, function |ε(t)| ≤ ρ0e
−λt and its derivatives are

bounded by an exponentially decaying function.

Proof 1. It is well known (Pyrkin et al. [2010 a,b], Pyrkin
[2010], Pyrkin and Bobtsov [2011]) that signal x̃n is the
solution of the system

...
x̃n(t) = −ω2 ˙̃xn(t) + ε̇1(t) +

...
ε 1(t). (12)

Taking the Laplace transformation in (12) we obtain

s3x̃n(s) = θsx̃n(s) + d(s), (13)

where d(s) denotes initial conditions and terms caused by

ε1(t). Multiplying (13) on
λ2
0

γ(s) with respect to (9) yields

s3ξ(s) = θsξ(s) +
λ20
γ(s)

d(s). (14)
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After inverse Laplace transformation in (14) we have
necessary equation (10)

...
ξ (t) = θξ̇(t) + ε(t), (15)

where ε(t) = L−1{λ
2
0d(s)
γ(s) }. By force the polynomial γ(s)

the function ε(t) can be represented as a sum of decaying
exponents. Therefore, derivatives of these functions are
also exponentially decaying.

The adaptive scheme for frequency estimation is presented
in the following theorem (Pyrkin and Bobtsov [2011]).

Theorem 2. The update law

ω̂ =

√∣∣∣θ̂∣∣∣ , (16)

θ̂ = χ+ kξ̇ξ̈, (17)

χ̇ = −kξ̇2θ̂ − kξ̈2, (18)

where k > 0, guarantees that the estimation error ω̃ = ω−
ω̂ exponentially converges to zero:

|ω̃(t)| ≤ ρ1e−β1t, ρ1, β1 > 0, ∀t ≥ 0. (19)

Proof 2. Using Lemma 1, we compute the derivative of the

estimation error θ̃ = θ − θ̂:

˙̃
θ(t) = θ̇ − ˙̂

θ(t)

=−χ̇(t)− kξ̈2(t)− kξ̇(t)
...
ξ (t)

= kξ̇2(t)θ̂(t) + kξ̈2(t)− kξ̈2(t)− kξ̇(t)
...
ξ (t)

= kξ̇2(t)θ̂(t)− kξ̇2(t)θ − kξ̇(t)ε(t)
=−kξ̇2(t)θ̃(t)− kξ̇(t)ε(t). (20)

Consider the Lyapunov function

V (t) =
1

2
f(t)θ̃2(t), (21)

where f(t) is a bounded positive function that will be
chosen later. We get

V̇ =
1

2
ḟ θ̃2 + fθ̃

˙̃
θ

=
1

2
ḟ θ̃2 − kfξ̇2θ̃2 − kfξ̇θ̃ε

≤ 1

2
ḟ θ̃2 − k

2
f ξ̇2θ̃2 +

k

2
fε2. (22)

From (15) we have

ξ̇(t) = µ1 sin(ωt+ φ1) + ε1(t), (23)

where µ1 is an amplitude, φ1 is a phase shift, ε1(t) is an
exponentially decaying function as well as its derivatives.
From (23) we obtain

ξ̇2(t) = (µ1 sin(ωt+ φ1) + ε1(t))2

=
1

2
µ2
1 −

1

2
µ2
1 cos(2ωt+ 2φ1)

+ 2µ1 sin(ωt+ φ1)ε1(t) + ε21(t). (24)

Substituting (24) into (22) we get

V̇ ≤ 1

2
ḟ θ̃2 − 1

2
kµ2

1

1

2
fθ̃2

− 1

2
kfθ̃2

(
−1

2
µ2
1 cos(2ωt+ 2φ1)

+2µ1 sin(ωt+ φ1)ε1 + ε21
)

+
1

2
kfε2. (25)

Let f(t) = eg(t), where

g(t) = k

∫ t

0

(
2µ1 sin(ωτ + φ1)ε1(τ) + ε21(τ)

)
dτ (26)

− 1

4
kµ2

1(sin(2ωt+ 2φ1)− sin(2φ1)) .

Since g(t) depends on bounded harmonic and exponential
functions, it is bounded, |g(t)| ≤ C1, where C1 is a positive
constant. Therefore, e−C1 ≤ f(t) ≤ eC1 and the Lyapunov
function V is well defined.

Using (26), from (25) after a number of simple transfor-
mation we obtain

V̇ (t) ≤ −1

2
kµ2

1

1

2
f(t)θ̃2(t) +

1

2
kf(t)ε2(t) (27)

≤ −C2V (t) + ρ2e
−β2t ,

where C2 = 1
2kµ

2
1, ρ2 = 1

2ke
C1ρ20, and β2 = 2λ are positive

constants. Using comparison principle (Khalil [2002]), it
is easy to show that

V (t) ≤ ρ3e−β3t, (28)

where ρ3 > 0 and β3 = min{C2, β2}. From (21) and (28)
we get ∣∣∣θ̃(t)∣∣∣ ≤√ 2ρ3

e−C1
e−

1
2β3t . (29)

Using (16), it is straightforward to show that

|ω̃(t)| ≤
√∣∣∣θ̃(t)∣∣∣ ≤ ρ1e−β1t, (30)

where ρ1 = 4
√

2ρ3eC1 and β1 = β3/4.

Now we construct the estimation of the disturbance.
Consider the equation

˙̃xn(t) = −knx̃n(t) + σ1 sinωt+ σ2 cosωt

= −knx̃n(t) + σ̄Tυ. (31)

where σ̄ =

[
σ0
σ1
σ2

]
and υ =

[
υ0
υ1
υ2

]
=

[
1

sinωt
cosωt

]
.

For regressor υ =

[
1

sinωt
cosωt

]
substitute ω̂(t) =

√∣∣∣θ̂(t)∣∣∣ and

prove

lim
t→∞

(υ − υ̂) = 0,

where υ̂ =

[
1
υ̂1
υ̂2

]
=

[
1

sin ω̂t
cos ω̂t

]
.

Consider separate term

υ̂1 = sin ω̂t = sin(ωt− ω̃t) = sinωt cos ω̃t− cosωt sin ω̃t.

By force

ω̃t = ωt− ω̂t

= ωt−
√∣∣∣θ̂t2∣∣∣

= ωt−
√∣∣∣θt2 − θ̃t2∣∣∣

= ωt−
√
|θt2 − βt2e−αt|
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it is easy to see

lim
t→∞

ω̃t = ωt−
√
|θt2| = 0

and
lim
t→∞

sin ω̃t = 0, lim
t→∞

cos ω̃t = 1.

So
lim
t→∞

(υ1(t)− υ̂1(t)) = 0.

Similarly, we can show

lim
t→∞

(υ2(t)− υ̂2(t)) = 0.

For identification vector σ̄ write an ideal algorithm

˙̄̂σ = −γσυυT ˆ̄σ + γσυυ
T σ̄, (32)

where γσ > 0 is any positive constant.

It easy to show that algorithm (32) by force PE condition
of vector υ(t), provides

lim
t→∞

(
σ̄ − ˆ̄σ(t)

)
= 0.

However the vector σ̄ contains unknown components,
and therefore, the algorithm (32) is unrealizable. Using
equation (31), for (32) we obtain

˙̄̂σ = −γσυυT ˆ̄σ + γσυ( ˙̃xn + knx̃n).

Consider the new variable χ = ˆ̄σ − γσυx̃n. Then

χ̇ = ˙̄̂σ − γσ(υ̇x̃n + υ ˙̃xn)

= −γσυυT ˆ̄σ + γσυ( ˙̃xn + knx̃n)− γσ(υ̇x̃n + υ ˙̃xn)

= −γσυυT ˆ̄σ + γσknx̃n − γσυ̇x̃n.

Thus, we implemented the algorithm identifying the dis-
turbance. For identification of vector σ̄ we use the following
algorithm

δ̂(t) = ˆ̄σT υ̂, (33)

ˆ̄σ = χ̂+ γσυ̂x̃n, (34)

˙̂χ = −γσυ̂υ̂T ˆ̄σ + γσknυ̂x̃n − γσ ˆ̇υx̃n, (35)

where the function ˆ̇υ(t) can be calculated by formula

ˆ̇υ(t) =

 0
ˆ̇υ1(t)
ˆ̇υ2(t)

 =

[
0

ω̂ cos ω̂t
−ω̂ sin ω̂t

]
.

Since we provide lim
t→∞

(ω − ω̂(t)) = 0, it is straightforward

to show

lim
t→∞

(
υ̇(t)− ˆ̇υ(t)

)
= 0.

So we have the estimation δ̂(t) of disturbance δ(t) such
that

lim
t→∞

δ̃(t) = 0,

where δ̃(t) = δ(t)− δ̂(t).
Step 2. On the next step we need to design predictor-based

observer for the disturbance δ̂(t+D) that is necessary in

the compensation task. Consider predictor-based observer
in the following form:

δ̂(t+D) = σ̂0 + σ̂1 sin(ω̂t+ ω̂D) + σ̂2 cos(ω̂t+ ω̂D)

= σ̂0 + σ̂1 sin(ω̂t) cos(ω̂D) + σ̂1 cos(ω̂t) sin(ω̂D)

+ σ̂2 cos(ω̂t) cos(ω̂D)− σ̂2 sin(ω̂t) sin(ω̂D)

= σ̂0 + σ̂3 sin(ω̂t) + σ̂4 cos(ω̂t), (36)

where

σ̂3 = σ̂1 cos(ω̂D)− σ̂2 sin(ω̂D),

σ̂4 = σ1 sin(ω̂D) + σ̂2 cos(ω̂D). (37)

From condition lim
t→∞

(ω − ω̂(t)) = 0 we obtain:

lim
t→∞

(
δ(t+D)− δ̂(t+D)

)
= 0.

Consider control in the following form

u(t) = u0(t)− δ̂(t+D), (38)

where u0 is a stabilizing term.

On the next step we need to design u0. Differentiating
variable y(t) = x1(t) we obtain

ẏ(t) = ς̇1(t)

= x2(t) + a1y(t) + ψ1(y(t− τ1))

= ς2(t),

ÿ(t) = ς̇2(t)

= x3(t) + a1ẏ(t) +
∂ψ1(y(t− τ1))

∂y(t− τ1)
ẏ(t− τ1)

+ a2y(t) + ψ2(y(t− τ2))

= ς3(t),

...

y(n)(t) = ς̇n(t)

= u0(t−D) +
∂n−1ψ1(y(t− τ1))

∂y(t− τ1)n−1
ẏn−1(t− τ1)

+ ...+
∂ψ1(y(t− τ1))

∂y(t− τ1)
y(n−1)(t− τ1)

+ ...+ ψn(y(t− τn))

+ a1y
(n−1)(t) + ...+ any(t) + δ̃(t)

= u0(t−D) +
∂n−1ψ1(y(t− τ1))

∂y(t− τ1)n−1
ςn−12 (t− τ1)

+ ...+
∂ψ1(y(t− τ1))

∂y(t− τ1)
ςn(t− τ1)

+ ...+ ψn(y(t− τn))

+ a1ςn−1(t) + ...+ any(t) + δ̃(t). (39)

Because variables of the vector x(t) = col{x1, x2, ..., xn}
are known then all variables ς1(t), ς2(t), ..., ςn(t) of the
model (39) also are known. In this case we obtain the
control in the following form

u0(t) = u1(t)

−
(
∂n−1ψ1(y(t+D − τ1))

∂y(t+D − τ1)n−1
ςn−12 (t+D − τ1)

+ ...+
∂ψ1(y(t+D − τ1))

∂y(t+D − τ1)
ςn(t+D − τ1)

+ ...+ ψn(y(t− τn)). (40)
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Fig. 1. Transients for the closed-loop system with D = 0.5, ψ1(y) = sin(y(t− 0.8)), ψ2(y) = y2(t− 1) sin2(y(t− 1))
and the disturbance δ(t) = 2− 3 sin(t) + cos(t)
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Fig. 2. Transients for the closed-loop system with D = 1.5, ψ1(y) = sin(y(t−1.9)), ψ2(y)=(y(t−2.5)−2)2(1+sin(y(t−2.5)))
and the disturbance δ(t) = −4 + 3 sin(1.6t) + 5 cos(1.6t)

Then, substituting (40) into equation (39) we have the
linear time-invariant system

ς̇1(t) = ς2(t),

ς̇2(t) = ς3(t),

...

ς̇n(t) = a1ςn−1(t) + ...+ anς1(t) + δ̃(t)

+ u1(t−D). (41)

Now rewrite (41) in the form

ς̇(t) = Gς(t) + qu1(t−D) + δ̃(t),

y(t) = hT ς(t),

where ς(t) =


ς1(t)
ς2(t)

...
ςn(t)

, G =


0 1 ... 0
0 0 ... 0
...

...
. . .

...
an an−1 ... a1

, q =


0
0
...
1



and hT =


1
0
...
0

.

Write the control law u1(t) using the equation (6)

u1(t) = LeGDς(t) + L

∫ t

t−D
eG(t−τ)qu1(τ)dτ, (42)

where vector L is such that the matrix F = G + qL is
Hurwitz.

4. NUMERICAL EXAMPLE

In Figs. 1 and 2 we present simulation results for two
second-order systems like (2) with different parameters
and initial conditions.

In Fig. 1 transients are shown for the closed-loop system
with parameters a1 = 0.1, a2 = 0.1, nonlinearities

ψ1(y) = sin(y(t−0.8)),

ψ2(y) = y2(t−1) sin2(y(t− 1)),

the input delay D = 0.5, and the disturbance

δ(t) = 2− 3 sin(t) + cos(t).

In Fig. 2 transients for the closed-loop system with param-
eters a1 = −2, a2 = 0.5, nonlinear functions

ψ1(y) = sin(y(t− 1.9)),

ψ2(y) = (y(t− 2.5)− 2)2 (1 + sin(y(t− 2.5))),

the input delay D = 1.5, and the disturbance

δ(t) = −4 + 3 sin(1.6t) + 5 cos(1.6t)

are also illustrate the efficiency of the proposed control
algorithm.

For both cases we choose matrix

L = [−5 − 5]

in the control loop (42). One can check that such gain L
provide the stability of closed-loop state matrix

F = G+ qL.
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5. CONCLUSION

This paper presents the new control approach for the
nonlinear systems with delay and unknown disturbance.
The synthesized control law consists of the loop of adaptive
estimation of frequency, the loop of feedforward compen-
sation and stabilization algorithm object. The exponential
convergence of the estimation error to zero, frequency per-
turbations and asymptotic stability of the zero equilibrium
position of a closed system are shown.
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