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Abstract:
This paper presents a distributed optimization algorithm to address the problem of wide-area
damping control of large-scale electric power systems using Synchrophasors. Our approach
consists of a three-step strategy. First, Synchrophasors from selected nodes in a power network
are used to identify offline dynamic models of the dominant areas of the network. Thereafter, a
linear controller is designed for this reduced-order model to shape the inter-machine oscillation
dynamics. Finally, algorithms are developed to invert this design to realistic local controllers
in each area by optimizing the controller parameters until their interarea response matches the
closed-loop inter-machine response achieved in the second step. A model reference control design
following this three-step strategy was recently proposed in [1] using a centralized controller. Our
results in this paper extend that design by posing the problem purely from a perspective of
distributed optimization.
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1. INTRODUCTION

Following the Northeast blackout of 2003, Wide-Area Mea-
surement System (WAMS) technology using Phasor Mea-
surement Units (PMUs) has largely matured for the North
American grid [2]. However, as the number of PMUs scales
up into the thousands in the next few years under the
US Department of Energy’s smart grid demonstration ini-
tiative, Independent System Operators (ISO) and utility
companies are struggling to understand how the resulting
gigantic volumes of real-time data can be efficiently har-
vested, processed, and utilized to solve wide-area monitor-
ing and control problems for any realistic power system in-
terconnection. It is rather intuitive that the current state-
of-the-art centralized communication and information pro-
cessing architecture of WAMS will no longer be sustainable
under such a data explosion, and a completely distributed
cyber-physical architecture will need to be developed [3].

Motivated by this challenge, in this paper we address the
problem of distributed wide-area damping control using
Synchrophasor feedback. We assume the system to be
composed of multiple areas with a given set of PMU
locations. Our strategy is to first derive an offline reference
model for the closed-loop system using model reduction
[1], categorize the available PMUs into area-level disjoint
sets, and finally run a distributed optimization problem for
? This work was supported in part by NSF Grants ECCS 1054394
and 1062811

tuning the controller parameters of each area-level power
system stabilizer (or group of stabilizers) (PSS) to match
the cumulative output of the actual model with that of
the reference model. The main idea behind our design is a
so-called, novel control inversion framework which allows
PMU-based linear power system stabilizers (PSS) designs,
developed for reduced-order power systems, to be inverted
to PSS controllers in higher-order systems via suitable
optimization methods. A model reference control design
following this strategy was presented for two-area power
systems in our recent work [1], but the implementation was
still centralized. This paper extends that design by posing
the control problem purely from a distributed optimization
perspective. The approach consists of three precise steps,
namely:

1. Model Reduction/Dynamic Equivalencing - where PMU
data are used offline to identify equivalent models of the
oscillation clusters of the entire power system based on the
differences in their coupling strengths. Detailed derivations
of these measurement-based equivalencing methods have
been presented in [1], and, therefore, will not be our focus
in this paper. Our objective is to design the PSS control
for damping the oscillations between these areas in a
distributed fashion, for which we will simply assume that
the area models are available to us by prior identification
methods.
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2. Aggregate Control - where output-feedback based linear
PSS are designed to achieve a desired closed-loop transient
response between every pair of clusters in the reduced-
order system, and

3. Control Inversion- where the aggregate control design is
distributed and tuned back to actual realistic controllers
at the generator terminals until the inter-area responses of
the full-order power system matches the respective inter-
machine responses of the reduced-order system.

The most generic way to formulate the control inversion
problem in the final step is to use functional optimiza-
tion. This means that assuming standard second-order
swing dynamics with first-order excitation for the jth

hypothetically aggregated machine in the reduced-order
power system model, one may first design output-feedback
excitation controllers:

uj = f(y1(t), y2(t), ..., ym(t), k1, k2, ..., km) (1)

where yi(t) is a chosen set of variables (eg. voltage mag-
nitude/phase angle, frequency, etc.) measured over time
t ≥ 0 by a PMU installed at the ith bus in the reduced
network, and f(·) is a smooth, nonlinear damping func-
tion producing a desired inter-machine transient response.
Next, uj needs to be distributed to each local machine
belonging to the jth area. A plausible approach for this
would be to construct nonlinear functions ρ(·) mapping
each of the feedback gains (k1, k2, ..., km) to each such
machine. Stacking these functions ρ(·) and the gains kj
into vectors R and K, respectively, the problem that we
must, therefore, solve is:

min
R(K)

n∗∑
i=1

∫ T

o

||xij(t,R(K))− x̄ij(t,K)||2 st. K ∈ K∗,

(2)
for all j ∈ Ni, over time t ∈ [0, T ], where: n∗ is the total
number of areas, Ni is the index set for the neighboring
areas of area i, xij is the interarea state response (phase
or frequency) between ith and jth areas in the full-order
system, x̄ij is the designed inter-machine state response
(phase or frequency, respectively) between ith and jth

machines in the reduced-order system, and K∗ denotes
a constraint set for the feedback gains specifying their
allowable upper and lower bounds.

The remainder of the paper is organized as follows. Section
II presents a PMU-based model reduction method; Section
III formulates the wide-area damping problem for a n-area
power system as a distributed parametric minimization
problem. Section IV illustrates the results through an
example. Section V concludes the paper.

2. SWING MODELS AND MODEL REDUCTION

To formulate the distributed wide-area control problem
we first present a brief discussion on the model reduction
methods that can be used for steps 1 and 2 described in
Section I.

2.1 Swing Oscillation Models

Consider a network of n synchronous generators connected
to each other through m tie-lines (edges) with m ≤ n(n−
1)/2, forming a connected graph with cardinality (n, m),
such that no more than one edge exists between any two
nodes. Let the internal voltage phasor of the ith machine
be denoted as

Ẽi = Ei∠δi, i = 1, 2, . . . , n (3)

where, following synchronous machine theory [5], Ei is
constant, δi is the angular position of the generator rotor,
and Ei∠δi denotes the polar representation Ei e

jδi (j =√
−1). The transmission line connecting the pth and the

qth machines is assumed to have an impedance z̃pq = rpq+
jxpq, where ‘r’ denotes the resistive part and ‘x’ denotes
the reactive part. Here p ∈ {1, 2, ..., n} and q ∈ Np where
Np is the set of nodes to which the pth node is connected. It
follows that the total number of tuples formed by pairing
p and q is m. We will denote the edge connecting the
pth and the qth node by epq. If two nodes do not share a
connection then the impedance corresponding to that non-
existing edge is infinite (i.e., open circuit), or equivalently,
ỹpq = 1/z̃pq = 0 ∀q 6∈ Np where ỹpq is the admittance of
epq. The mechanical inertia of the ith machine is denoted
as Hi. We assume that the network structure is known,
i.e., the set Ni for all i = 1, 2, . . . , n.

Defining the small-signal state variables as

∆δ = col(∆δ1,∆δ2, . . . ,∆δn) (4)

∆ω = col(∆ω1,∆ω2, . . . ,∆ωn). (5)

and assuming that the control input u enters the system
through the jth node, j ∈ {1, 2, . . . , n}, the linearized
swing model of the system can be written as[

∆δ̇
∆ω̇

]
=

[
0 I

M−1L 0

]
︸ ︷︷ ︸

A

[
∆δ
∆ω

]
+

[
0
Ej

]
︸ ︷︷ ︸
B

u (6)

where I is the n-dimensional identity matrix, Ej is the jth

unit vector with all elements zero except the jth element
which is 1, M = diag(M1,M2, . . . ,Mn), Mi = 2Hi is the
inertia of the ith generator, and L is the n × n Laplacian
matrix with elements:

Lii =−
∑
k∈Ni

EiEk
pik

sin(δi0 − δk0 + αik), (7)

Lik =
EiEk
pik

sin(δi0 − δk0 + αik), k ∈ Ni, (8)

Lik = 0, otherwise (9)

for i = 1, 2, . . . , n. It follows that if Mi = Mj , ∀(i, j),
then A = AT . However, in general each machine will
have distinct inertia as a result of which the symmetry
property does not hold. We, therefore, refer to M−1L as
the unsymmteric Laplacian matrix for the linearized swing
model.
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Fig. 1. Linearized Laplacian matrix denoting time-scale
separation

It is obvious from (6) that the coupling strengths pik of
the links are contained in this matrix, and will decide
the separation of areas depending on the differences in
the strengths. For example, if the areas are separated
by exactly one boundary node in each cluster, then the
Laplacian matrix can be written in the form shown in
Figure 2.1, assuming that the phase angles are stacked
according to each area with the last state of each stack
being that of the boundary node for that particular area.
The blue dots in the state matrix, under such a partition,
will indicate the inter-area coupling strengths between
any pair of areas, and can be used to reduce the full-
order network into a dynamic equivalent system of n-
equivalent machines using the parameter identification
methods outlined in [1].

2.2 PMU Data Analysis & Model Identification

We next review the typical data analysis, filtering, signal
separation, and model identification methods that can be
used for estimating the aggregated dynamic swing models
presented above for any given operating condition for the
grid using PMU measurements [4].

Filtering and Signal Separation Before the voltage,
phase angle, and frequency data can be used for identifying
a dynamic model of interest, the measurements must be
properly filtered and massaged with the objective of ex-
tracting the correct et of frequency components that are
relevant to that model. Typically such measurements have
both high frequency measurement noise and undesired low
frequency oscillations arising from governer effects. If the
goal is to construct an equivalent model capturing the
interarea oscillations that typically range between 0.1 to
1 Hz, then neither of these components are necessary for
the estimation. A simple band pass filter, therefore, may
be used to filter the raw data and retain its components
only within the desired frequency range. However, the
outputs of the filter may still retain several modes that do
not qualify as slow modes. A second round of filtering is,
therefore, done by using subspace identification algorithms
such as Eigenvalue Realization Algorithm (ERA). The
computational scheme for applying ERA on multiple PMU
data is shown in Figure 2. The basic ERA algorithm for
separating the slow modal components of any given PMU

PMU 1

PMU 2

PMU 3

 1

 2

 3

Bus 1

Bus 2

Bus 3

+

+

-

-

Modal 

Decomposition

Modal 

Decomposition

 1 -  3

 2 -  3

fs1  s1

fs2  s2

Fig. 2. Modal decomposition of multiple PMU data
streams

signal y(t) defined over N samples, can be described as
follows. Consider a discrete-time LTI system

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), (10)

where x(k) ∈ Rn (n is known quantity), k = 0, .., N . The
impulse response of the system will be given as

y(k) = CAk−1B. (11)

Given measurement y(k), we next construct two M × p
Hankel matrices H0 and H1 as:

H0 =
[

y0
0 | y0

1 | · · · | y0
p

]
, (12a)

H1 =
[

y1
0 | y1

1 | · · · | y1
p

]
, (12b)

where,

y0
i = [y(i), y(i+ 1), . . . , y(i+M − 1)]

T
, (13a)

y1
i = [y(i+ 1), y(i+ 2), . . . , y(i+M)]

T
. (13b)

It can be easily shown that H0 = OC and H1 = OAC,
where O and C are observability and controllability matri-
ces for (10), respectively. We next consider the truncated
SVD of H0 as:

Ĥ0 = R̂Σ̂ŜT . (14)

Defining ETp = [Ip 0p · · · 0p] and ETq = [Iq 0q · · · 0q],
where p and q are the number of inputs and outputs,
respectively, estimates for triplet of (Â, B̂, Ĉ) can be easily
calculated as follows:

Â = Σ̂−1/2R̂TH1ŜΣ̂−1/2, (15a)

B̂ = Σ̂1/2ŜTEp, Ĉ = ETq R̂Σ̂1/2. (15b)

From (Â, B̂, Ĉ), one can write:

y(t) = α0︸︷︷︸
DC value

+α1e
±jΩ1t + · · ·+ αr−1e

±jΩr−1t︸ ︷︷ ︸
ys(t), slow oscillations

+ αre
±jΩrt + · · ·+ αn−1e

±jΩn−1t︸ ︷︷ ︸
yf (t), fast oscillations

, (16)

where, by assumption, there are r − 1 slow modes (or,
equivalently r areas). The constants α’s and Ω’s are known
from estimation. By designating an upper bound on Ωr−1,
say 1 Hz, one can, therefore, easily extract ys(t) from y(t)
using (15).
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2.3 Model Identification

Although the oscillation model derived in (6) motivates
the time-scale separation between interarea modes, it also
implicitly assumes that the coherent areas in the system
are connected directly to their neighboring areas without
the presence of any other bus in between. In an actual
power system, however, this connection may not be direct
and will possibly involve intermediate buses, also referred
to as PQ buses or load buses depending on if a load is
being tapped from that bus. We, therefore, pose the model
identification problem using both generator buses (or PV
buses) and PQ buses. Without any loss of generality, we
assume that every area is connected to every other area
through an equivalent line with an equivalent impedance.
Due to the presence of buses where there may not be any
generation or load, the state-space model for this system
will be differential-algebraic, which can be converted to
a completely differential model using Kron reduction [6].
The small-signal model is given as:

[
∆δ̇
∆ω̇

]
=

[
05×5 ωsI5×5

diag(
−L
Mi

) −diag(
2Di

Mi
)

] [
∆δ
∆ω

]

+

[
05×5

diag(
1

Mi
)

]
∆Pm (17)

where the expressions for the matrices in the RHS can be
found in [5], and are skipped here for brevity. Considering
that PMU measurements of voltage, phase angle and
frequency are available from the terminal buses, the output
equation can be written as[

∆V
∆θ
∆f

]
=

[
F 0
G 0
0 ωsG

] [
∆δ
∆ω

]
. (18)

The unknown parameters in (17) include the aggregate
inertias of each equivalent machine, the internal impedance
of each area connecting the machine internal node to
its corresponding terminal bus, and the impedances of
each transmission line. These parameters can be estimated
from (18) using standard least squares techniques. Due to
changing operating conditions of the grid, the model may
be estimated periodically every hour by the operator, and
the most updated model may further be used for designing
damping controllers as discussed in the next section.

3. DISTRIBUTED DAMPING CONTROL

We next describe a distributed optimization approach
for designing PSS controllers interacting across areas for
damping the interarea oscillation modes λs. The first step
of the design is based on the reduce-order model identified
using PMU data, as discussed in the previous section,
followed by a control inversion strategy, recently developed
in [1]. These may be summarized as follows:

1. A linear control design is performed for this reduced-
order model to guarantee a desired dynamic performance

for all the inter-machine power flows (which are equivalent
to the inter-area flows in the full-order model). These
damped power flow signals are used as references for the
wide-area design in the next step.

2. A distributed optimization problem is solved for tuning
actual PSS parameters in the full-order system until the
interarea response of this system replicates the closed-loop
inter-machine reference obtained in the previous step.

Mathematically, the second step can be posed as follows.
Let the state-variable model for the jth chosen generator
with a tunable PSS, for j = 1, ...m, be given as

δ̇j = ωj (19)

Mjω̇j = Pmj −Djωj − Pej (20)

τjĖj =−xdj
x′dj

Ej +
xdj − x′dj
x′dj

cos(δj − θj) + EFj (21)

where (21) represents the excitation system dynamics of
the generator, and EFj is the excitation control feedback
for the PSS. Let M be the set of bus indices where
a PMU is installed, and Mj be the subset of M that
are available for output-feedback to the jth PSS. The
measurements in the set Mj are denoted as yMj (t). Let
the set of boundary buses separating the areas be Eb, and
the communication graph between the different controllers
be G. The distributed control problem then reduces to
designing the function ψ(·) for

EFj(t) = ψj(yMk(t), xk∈Nj
(t− τjk), t), j = 1, ..,m (22)

where Nj is the neighbor set of jth controller following
from G, and τjk is the communication delay in the channel
connecting the jth and kth controllers, such that all closed-
loop state responses are bounded over time, and the ‘slow’
oscillation component of the relative phase angle difference
xpq(t) , (xp(t) − xq(t)) between every pair of boundary
nodes (p, q) ∈ Eb satisfy a desired response, which is
precisely the corresponding inter-machine reference signal
designed in Step 2. However, we must remember that
in the actual system the signal xpq(t) will contain the
contribution of both local and inter-area modes. Hence,
for an accurate tracking we must filter this signal through
a band-pass filter (BPF), whose pass-band is designed to
cover the typical inter-area frequency spectrum (0.1-1 Hz).
We denote this BPF as G(s), and design it using standard
Butterworth filters. The filter coefficients can be designed,
for example, using convex optimization. Furthermore, we
consider our PSS designs to be linear, which means that
essentially we need to design an output feedback controller
of the form

Cj(s) =
ρj0 + ρj1s+ ρj2s

2 + ...+ ρjjas
ja

ϑj0 + ϑj1s+ ϑj2s2 + ...+ ϑjjbs
jb

(23)

where ja and jb are fixed integers (practically, both should
be less than or equal to 3 since high-order controllers in-
crease processing delay). Denote the controller parameter
set as

Rj = {ρj0, ..., ρjja , ϑj0, ..., ϑjjb}. (24)
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The distributed control design problem then simply re-
duces to a distributed parametric optimization problem
for finding the optimal Rj , j = 1, ...,m, that guarantees:

x(t) ∈ l2, min ||G(s)[xpq](t)− xdpq(t)||2, ∀(p, q) ∈ Eb(25)

over t ∈ [0, tf ], where, xdpq(t) is the desired power flow
response following from the pre-designed model in Step 2.

3.1 Parallel Variable Distribution

We wrap up this section by briefly describing a candi-
date optimization method that we use for solving (25) in
the simulations of Section IV, namely Parallel Variable
Distribution (PVD) [7]. In this method, processors not
only bear the responsibility of optimizing and updating
a local set of variables but also optimize a directed step
for the other variables related to other processors. The
parallelization step is followed by a synchronization step
wherein an affine hull is searched from the optimal values
of each parallel processor. A convergence proof for the
unconstrained case is given in [7] considering Lipschitz
continuous differentiability of the search space. The theo-
retical approach is briefly described as follows. From (25)
it follows that the number of optimization variables is
m(ja + jb). Let these variables be denoted by the vector θ
with elements θi, i = 1, ..,m(ja+jb). Let the 2-normed ob-
jective function averaged over the time interval t ∈ [0, tf ]
be denoted as f(θ). The vector θ is partitioned into m
blocks θ1, θ2, · · · θm, where θl ∈ <nl+ (the superscript +
denotes positive real numbers as the controller coefficients
must guarantee stability),

∑m
l=1 nl = m(ja + jb), among

m controllers, each belonging to a designated PSS. In a
certain ith step a processor l is responsible for updating
block θil ∈ <nl+ of the iterate θi by solving the next step.
The parallelization step is given as:

(yil , λ
i
l
) ∈ argmin(θi

l
,λ

l
)f(θl, θ

i
l

+Dlλl) (26)

such that

[(θl, θ
i
l

+Dlλl) ∈ Θ], [θil : = (yil , θ
i
l

+Di
l
λi
l
)]. (27)

Here, Θ denotes a bounded set, l denotes complement of
l in (1, 2, · · · ,m), λl ∈ <

(m−1)+. The matrix Di
l

is a nl ×
(m − 1) matrix formed by arbitrary directions di ∈ <n+,
breaking it into blocks of dis ∈ <ns+, s = 1, 2, · · · ,m,
consistent with the distribution of the variables. The
direction di can be chosen as,

di = −∇f(θi)/ ‖∇f(θi)‖ . (28)

After the points θil for l = 1, 2, · · · ,m have been computed
by the m parallel controllers during an iteration, the best
estimate of the iteration is obtained by a synchroniza-
tion step as shown below:

θi+1 = µi0θ
i +

p∑
k=1

µikθ
ik

(µi0, µ
i
1, ...µ

i
p) = arg min

µ0,µ1,...µp

f(µi0θ
i +

p∑
k=1

µikθ
ik)

µ0θ
i +

p∑
k=1

µkθ
ik ∈ Θ, µ0 +

p∑
k=1

µk = 1 (29)

The algorithm is illustrated for m = 6 in the next sec-
tion. The local optimization steps have been performed
using the Quasi-Newton Method of gradient based min-
ima search. Synchronization is obtained by a sequence of
message passing among the processors to find the best
among the local optimization results, thereby capturing
the communication delays between the controllers. The
results are quite satisfactory in terms of convergence rate,
even if m is varied.

4. EXAMPLES

In this section we illustrate the results of Section III by
considering a 3-area model of Pacific AC intertie. The
structure of this system is shown in Figure 3(a), and
is based on the WA-CA north south power oscillation
characteristics for which detailed PMU data analysis has
been done in [1]. The system is first reduced to an
equivalent 3-machine system characterized by 3 aggregate
inertias. All the machines are classical generator models
with identical parameters except for the machine inertias
in each area, as given in the Appendix. A relatively low
value of H3 makes the system act almost like a two-
area system with a dominant slow mode of approximately
0.5 Hz. Hence, a second order Butterworth band-pass
filter is designed for filtering the modes from the PMU
measurements, as described in Section III, of the form:

G(s) =
s(ωu − ωl)

s2 + (ωu − ωl)s+ ωuωl
(30)

with ωu = 0.9 Hz and ωl = 0.2 Hz. A simple lead
controller for Area 1 is designed to generate desired dy-
namic responses for the inter-machine power flows. For
the actual system in Figure 3(b) C7(s) is kept fixed, and
C1(s) through C6(s) are designed using 2 zeros and 3 poles
each, i.e.

Ci(s) =
ai1s+ ai2

s2 + bi2s+ bi3
, i = 1, .., 6. (31)

The controller parameters are provided in the Appendix.
An all-to-all communication between the 6 controllers is
assumed. The communication between C1-C6 and C2−C3

are considered to be most prone to communication delays.
The closed loop response of the inter-area component of
the phase angle difference between bus 3 and bus 9, i.e.,
Area 1 and 3, are shown in Figure 4 for various values of
these two delays (in milli seconds), denoted as d1 and d2.
It can be seen that the closed-loop matching deteriorates
as the delay increases, and after a certain threshold the
matching becomes unacceptable. By virtue of the global
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Fig. 3. Distributed parametric optimization

convergence property of PVD, it can be verified that the
integrated error between the distributed and centralized
solution over t ∈ [0, 5] is less than a set threshold of
γ = 10−4 for d1 = d2 = 0. The simulations are repeated
for 450 MW power transfer between Area 1 and 2. Figure
5 shows the change in the modal frequency compared to
the previous case, where only 300 MW is transferred.

5. CONCLUSIONS

In this paper we derived distributed algorithms for wide-
area damping control using Synchrophasors collected from
different spatial nodes in a large power system. We pro-
posed a distributed message passing strategy for cooper-
ative damping control between area-level PSS controllers.
These architecture behind these designs can be cast on
top of NASPInet, and used for any generic wide-area
monitoring, estimation and control purposes. Future work
on this topic will include extension of the estimation and
control methods to more unstructured power systems.
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