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_____________________________________________________________________________________________ 

Abstract: The primary goal of this work is to classify Human Cognitive State (HCS) in human-machine 

cooperative control systems. A total of 10 young and fit volunteers were used as the experimental 

subjects. A set of 9 process control task conditions were programmed on an automation-enhanced Cabin 

Air Management System (aCAMS) originally developed to simulate with high-fidelity the life support 

system in aerospace applications. The psychophysiological and performance data of the subjects were 

recorded while they performed process control operations in collaboration with computer-based 

automatic control systems. The fuzzy C-Means (FCM) algorithm was used to classify the momentary 

HCSs into three categories: “Good", "Average" and "Risky" with certain degree of membership. The 

classification results indicated that the FCM-based classifier can achieve accurate HCS classification if 

the influential features are properly selected. The method proposed has potential to be applied to design 

adaptive task (or functional) allocation strategy in adaptive/intelligent human-machine control systems. 

______________________________________________________________________________________________ 

 

1. INTRODUCTION 

The rapid development of automation technologies in the past 
decades has resulted in the replacement of manual labor by 
automated systems as well as the shift of the role of the 
human from manual operator to the monitor or supervisor of 
various automation systems. Therefore, more demanding 
requirements on the mental capability and resources of 
humans are imposed although the physical demands are 
somehow reduced. In the safety-critical systems arising from 
such diverse industry as aviation, space, railway and nuclear 
power, humans normally play the role of 
monitoring/supervision and decision-making. The human 
performance in those systems plays a pivotal role in the 
overall performance of the human-machine system as a 
whole. Once human performance breakdown occurs, the 
man-machine system would severely malfunction or 
breakdown. In order to maintain the safety of these systems, 
human performance must be quantitatively investigated. 
Therefore, the studies on the impact of Mental WorkLoad 
(MWL) on work performance are essential to enhance the 
safety and productivity (Hockey, 1997; Wilson and Fisher, 
1995; Hanskins and Wilson, 1998; Wilson and Russell, 
1999). 

Although human operator usually can achieve higher-level 
task goals by investing more efforts and use of risky 
strategies, s/he is likely to be in a vulnerable (or high-risk) 
cognitive state well prior to explicit performance decrement. 

In the risky state, the operator can still deal with the 
foreseeable demands, but cannot respond promptly to those 
unforeseeable or difficult events, which may lead to serious 
consequences (Hockey, 1997). To avoid severe accidents 
caused by the decrement in human performance, human 
cognitive state (HCS) must be evaluated and then used to 
allocate adaptively the tasks between human and machine 
parts in the integrated system with an aim to achieve optimal 
performance of the two integral components. 

The basic objective of the present investigation is to find a 
way to objectively and accurately recognize/identify HCS 
that may fluctuate over time. The paper is organized in the 
following structure. The experimental collection of the 
psychophysiological and performance data (such as Heart 
Rate (HR), electroencephalogram (EEG) and other measures) 
from 10 subjects is first described. Then the extraction of the 
most salient subject-specific features of the HCS is discussed. 
Finally the results of use of Fuzzy C-Means (FCM) algorithm 
to classify the HCS data are presented and analyzed, followed 
by some meaningful conclusions drawn. 

2. DATA ACQUISITION EXPERIMENTS 

The automation-enhanced Cabin Air Management System 
(aCAMS) was adopted to simulate a complex, safety-critical, 
multi-variable, and multi-task process control environment. 
This would overcome the drawbacks of most previous work 
that often used over-simplified task patterns in their studies. 
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The aCAMS software platform, whose function modules are 
shown in Fig. 1, was initially developed for European Space 
Agency (ESA) to study the level and stressors of stress or 
strains imposed on the astronauts under highly separated and 
confined work and living environment (Hockey, 1997). 

The operator subject was required to maintain such air quality 
indices as CO2, oxygen, pressure, temperature, and humidity 
within normal ranges. The levels of task difficulty were 
varied across different task conditions by changing gradually 
(stepwise) the number of variables requiring manual control 
by the operator. The physiological (ECG, EEG, etc.) data 
were simultaneously recorded while the operator performs 
the control tasks assigned in each task condition. 

A total of 10 college student subjects, all with engineering 
majors, were used in our experiments. Before the formal 
experiments started, in manual mode of aCAMS each subject 
had taken over 10 hrs to get himself familiarized to the 
aCAMS software platform as well as the simulated control 
tasks. Each subject was asked to participate in 2 sessions of 
experiment, each of which was arranged at the same 
time-period but at different days so as to avoid the effects of 
circadian rhythms. The experimental session lasted for about 
135 mins with 9 consecutive task conditions, each lasting for 
about 15 mins with different level of task difficulty. The 
subjective ratings were performed between 2 conditions, 
lasting for about 20 sec. Right after the health questionnaire 
and subjective ratings, the control tasks were started up. In 
addition to the ECG and EEG data, the work performance 
data of the subject were also recorded. 

The EEG data were measured by using 32 electrodes which 
was configured according to the standard international 10-20 
electrode placement system. The EEG data sampling rate is 
preset as 2048 Hz. The band-pass filter with a passing band 
between 1.6 and 55 Hz were used to preprocess the EEG 
signals. The data preprocessing was completed on the 
BioSemi system. After preprocessing procedures, we 
obtained the HR data every second, EEG data every 2 
seconds, and primary-task performance data (i.e., 
time-in-range) every second. 

 

Fig. 1. The functional configuration of an aCAMS. 

3. DATA PREPROCESSING AND ANALYSIS 

The measured data (including ECG, EEG, etc.) needs to be 

preprocessed before appropriate HCS feature selection 

(Zhang et al., 2008a, b). In this paper, we finally selected 4 

significant features, namely HR, HRV2, TLI1, TLI2, which are 

shown to be more sensitive to the variations in task load. The 

4 important features of the HCS are first introduced in the 

following. 

HR represents the mean value of HR within a sampling 

interval (i.e., 1 min). HRV2 is the ratio of the standard 

deviation and mean of HR data within a sampling interval 

(i.e., 1 min) and defined by (Zhang et al., 2008a, b): 
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TLI1 and TLI2 are two EEG-based Task Load Indices (TLI) 

defined as the ratio of theta and alpha band powers of the 

EEG signals measured from certain electrodes placed on 
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where Fz, Pz, AFz, CPz, and POz stand for 5 EEG electrodes 

in international 10-20 system, respectively;  θ (4-8Hz), α 

(8-13Hz), and β (13-22Hz) are the commonly-divided EEG 

frequency bands corresponding to different rhythms inherent 

in the EEG signal; and TIR is derived from the data of 

system-in-deviation and represents the percentage of the time, 

during which the primary task performance lies within the 

normal range pre-specified. 

There are all together 10 subjects, each performing 2 sessions 

of data collection experiment. Each session lasted for about 

135 min (=15 min / condition * 9 conditions). Due to the 

short period (around 0.5 min) of subjective ratings and 

presetting of different task conditions, we discarded the first 

and last 0.5 min data in each task-load condition, in this way 

there is 14-min data in each task-load condition. After 

down-sampling the measured data to 1 Hz, we finally obtain 

126 (= 14 points / condition * 9 conditions) data points in 

each session of dataset. In our work, the sample data from the 

1st session (s1 in short will be used hereafter) will be used for 
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training the fuzzy classifier, while the 2nd session (s2 in short 

will be used hereafter) dataset for checking its generalization 

(or prediction) performance. 

4. HCS CLASSIFICATION APPROACH AND RESULTS 

In this section we will adopt Fuzzy C-Means (FCM) 

algorithm to classify the HCS data. 

4.1 FCM algorithm 

Depending on the nature of the problem, fuzzy recognition 
offers flexible modeling by extending the 0-1 membership to 
the membership in the interval of [0, 1] (Gustafson and 
Kessel, 1979). The use of fuzzy models also makes it easier 
to solve pattern recognition problems (Windham, 1982). 
Solving a non-fuzzy model usually involves an exhausted (or 
comprehensive) search in the whole space. Some key 
variables only take two discrete value of 0 or 1. In contrast, 
all variables in fuzzy models are continuous and the gradient 
computing can be performed to find the optimal search 
direction. The key problem of fuzzy recognition is to find the 
respective classes assigned to a series of data. One of the 
most well-known fuzzy clustering approaches is the FCM 
algorithm (Pal and Bezdek, 1995).  With FCM the 
membership degree with which a data point belongs to a 
certain cluster can be obtained, which offers a new approach 
to mapping the data in higher-dimensional feature space onto 
a set of clusters (Krishnapuram and Keller, 1996). The task of 
FCM algorithm is to find the membership degree matrix 

and cluster center matrix  to minimize U V
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where denotes the matrix of membership 

degrees, with the center 

of the i-th cluster, and is the weighting exponent. 

The computational procedure of FCM algorithm consists of 

the following 4 steps: 
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Step 4: If ( 1) ( )l lU U    (small constant), the algorithm 

would stop; otherwise assign l←l+1 and loop back to Step 2. 

4.2 Results and discussion 

The HCS of each subject was classified by using the FCM 

into three classes with their corresponding labels c1 (Good), 

c2 (Average), and c3 (Risky). For each subject, there are two 

datasets (measured from s1 and s2, respectively), each 

consisting of 126 data points. The s1 dataset was classified, 

then the s2 dataset was done again. In this way, the 

Classification Consistency Rate (CCR) between two sessions 

of dataset can be computed. In the FCM, the Membership 

Degree (MD) and cluster center matrices are first randomly 

initialized. The initialized MDs give the grades of 

membership, with which each data point belongs to some 

cluster. The initialized cluster centers predetermine the 

number and initial position of data clusters in the feature 

space. Following the initialization process, the FCM starts its 

iterative computing procedure. Finally, in order to obtain a 

crisp classification label, the class with the maximum MD is 

selected as the class, to which a data point belongs. 

First all the data was normalized to the range between 0 and 1. 

The 1st and 2nd-session dataset were clustered by the FCM, 

respectively, using the same initialization parameters (i.e., the 

MD and cluster center matrices). The CCR was then defined 

as the percentage of the time-series data, which get the same 

classification label at certain time instant in both s1 and s2. In 

Table 2, the first row is the 2D features with 4 possible 

combination of variables, namely (HR, TIR)，(HRV2, TIR)，
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(TLI1, TIR), and (TLI2, TIR) and the first column corresponds 

to individual subjects. The data whose CCR is higher than 

60% are shown in bold font. The same computational 

approach is used for other 9 subjects. The CCRs for all 

subjects are then summarized by Table 2, from which obvious 

inter-subject difference can be easily detected, for instance 

the best classification performance (i.e., CCR > 60%) was 

achieved for subjects F and J while much worse for subjects 

D and H. 

Now consider using the 2D feature (HR, TIR) as the input of 

the fuzzy classifier for subject F. The feature plane of the 1st- 

and 2nd-session dataset is shown in Fig. 2a) and 2b), 

respectively, where the red marks give the three cluster 

centers. The comparison of the classification results based on 

s1 and s2 dataset is illustrated in Fig. 3a), where s1 and s2 

data points are marked with squares and circles, respectively. 

It can be seen that most data points which are classified to c1 

lie at the beginning and final time intervals, whereas those 

belonging to c2 and c3 are distributed in the middle part of 

the time axis. The more detailed classification results for 

subject F were summarized by Table 1, from which it is seen 

that 9.5% number of data points correspond to the risky 

operator state, whereas more than 90% Average or Good state 

and that over a half of the data points in both s1 and s2 were 

classified into c1. These results agree well with the 

phenomenon that there are a large number of nearly perfect 

TIR (i.e., near or equal to 1) data points in both s1 and s2. 

Furthermore, it seems that the classification of data points 

from s1 and s2 is more consistent in c3 than in other two 

classes. Due to the border (or boundary) between c1 (Good) 

and c2 (Average) is fuzzier in nature, it is intuitively natural 

that it may be more difficult to discriminate the two classes. 

The comparison of the class MDs due to s1 and s2 dataset is 

shown in Fig. 3b), in which most MDs are larger than 0.5 and 

most MDs assigned with c1 are especially higher (quite a few 

even reach 1, implying the classification results with 

complete degree of belief). The computed CCR for subject F 

reaches 69.05%. 

Next, consider the Task-Load Level (TLL) as another 

supplementary feature and combine it with TIR to constitute 

a 2D feature vector. According to our special experimental 

design – cyclical loading scheme, the TLL was designed to 

vary from low to high, then from high to low, i.e., 1→2→ 

3→ 4→ 5→ 4→ 3→ 2→ 1, corresponding to a series of 9 

task-load conditions each with certain TLL which can be 

quantified as the number of variables requiring manual 

control by the operator. Obviously the TLL can also be 

considered as an index of task difficulty for the operator. 

The operator is usually in good functional (or cognitive) state, 

i.e., c1, under lowest TLL and in not-so-good state with other 

TLLs. The HCS classification results shown in Fig. 3a) agree 

well with this observation. Although the functional state of a 

subject may be somewhat different in two experimental 

sessions arranged at different days, under the same 

experimental conditions and procedures the CRR is still as 

high as nearly 70% for subject F, which initially 

demonstrated the feasibility and effectiveness of the FCM for 

the HCS classification. The classification procedure used is 

the same as above. It is seen that the CRR has been 

dramatically improved, for instance the lowest one is 72.22% 

for subject G and the highest one 100% for subject K. The 

results of HCS classification based on that 2D feature vector 

are shown to be very encouraging. Furthermore, let us 

concatenate the 2 session dataset of each subject into a new 

dataset, on which the FCM was used again. The classification 

results based on the concatenated dataset are shown by the 

last column of Table 2 to be better than those when using the 

s1 and s2 data separately. In summary, our results have 

demonstrated that the FCM-based method can achieve 

satisfactory HCS classification performance provided that the 

proper features are selected. 
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a)                        b) 

Fig. 2. Feature (HR and TIR) plane for subject F: a) s1; b) s2. 
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a)                        b) 

Fig. 3. Comparison of HCS classification results using the 

data from 2 sessions of subject F: a) class label; b) class MD. 

Table 1. The results of the 3-class HCS classification 

based on 2 features (i.e., HR and TIR) for subject F. 

Session # c1 (Good) c2 (Avg.) c3 (Risky) 

s1 69 (54.76%) 45(35.71%) 12 (9.52%)

s2 72 (57.14%) 42(33.33%) 12 (9.52%)

Table 2. Comparison of the FCM-based HCS 

classification performance (indexed by the CCR values) 

for all 10 subjects using different feature vector selected. 

 
(HR, 

TIR) 

(HRV2, 

TIR) 

(TLI1, 

TIR) 

(TLI2, 

TIR) 

(TLL,

TIR) 
2TIR

A 0.3968 0.5318 0.4444 0.5238 0.9921 0.7619

C 0.4206 0.3175 0.5635 0.5159 0.8571 0.6349

D 0.3571 0.4206 0.6587 0.6429 0.8889 0.7222

E 0.3810 0.5318 0.5952 0.5476 0.8889 0.5873

F 0.6905 0.5873 0.5714 0.3889 0.7540 0.8968

G 0.5079 0.4444 0.4762 0.4048 0.7222 0.5397

H 0.2857 0.5079 0.4921 0.6349 0.8810 0.7302

J 0.6032 0.5238 0.5397 0.4841 0.7857 0.5476

K 0.5476 0.4444 0.3889 0.3254 1.0000 0.7540

L 0.5397 0.4206 0.4365 0.4444 0.8095 0.6746

If all the five candidate features, namely HR, HRV2, TLI1, 

TLI2 and TIR, are used jointly for the classification of the 

momentary HCS into three classes, in the following the 

classification results for subject F (s1) will be presented. The 

five candidate features derived from the data from s1 and s2 

are shown in Fig. 4a) and b), respectively. Each feature 

consists of 126 data points. 

0 50 100 150
60

80

100
(Input1)HR of session 1

0 50 100 150
60

80

100
(Input1)HR of session 2

0 50 100 150
0

0.1
0.2

(Input2)HR2 of session 1

0 50 100 150
0

0.1
0.2

(Input2)HR2 of session 2

0 50 100 150
0

0.5
1

(Input3)TLI1 of session 1

0 50 100 150
0

0.5
1

(Input3)TLI1 of session 2

0 50 100 150
0.5

1
1.5

(Input4)TLI2 of session 1

0 50 100 150
0
1
2

(Input4)TLI2 of session 2

0 50 100 150
0

0.5
1
(Output)Time In Range of session 1

Time Index
0 50 100 150

0

0.5
1
(Output)Time In Range of session 2

Time Index
 

a)                       b) 

Fig. 4. The five candidate features vs time for subject F: a) s1; 

b) s2 

The classification results for the s1-data of subject F are 

shown in Fig. 5 and Fig. 6, where the c1 (Good), c2 (Average) 

and c3 (Risky) are marked in blue, green and red, 

respectively. The three cluster centers ( ) 

are given in Table 3. 

5 , 1, 2,i i v  3

Table 3. Centers of the three clusters (subject F; s1) 

Cluster HR HRV2 TLI1 TLI2 TIR 

c1-Good 71.0920 0.0742 0.5045 0.7786 0.9938

c2 –Avg. 75.3002 0.0705 0.4332 0.7633 0.8892

c3-Risky 80.3072 0.0554 0.4545 0.7756 0.7823

  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2961



This work was supported by the National Natural Science 
Foundation of China under Grant No. 61075070 and Key 
Grant No. 11232005. 

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

REFERENCES 

Gustafson, D.E. and Kessel, W.C. (1979), Fuzzy clustering 

with a fuzzy covariance matrix, in Proc of the IEEE-CDC, 

San Diego, CA, pp. 761-766. 

Hanskins, T.C. and Wilson, G. F. (1998), A comparison of 

heart rate, eye activity, EEG and subjective measures of 

pilot mental workload during flight, Aviation, Space, and 

Environmental Medicine, Vol. 69 (4), pp. 360-367. Fig. 5. The 3-class HCS classification results (subject F; s1). 

Hockey, G.R.J. (1997), Compensatory control in the 

regulation of human performance under stress and high 

workload: A cognitive energetically framework, 

Biological Psychology, pp. 45-73. 

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Krishnapuram, R. and Keller, J.M. (1996), The possibilistic 

c-means: Insights and recommendations, IEEE Trans. on 

Fuzzy Systems, Vol. 4, pp. 385-393. 

Pal, N.R. and Bezdek, J.C. (1995), On cluster validity for the 

fuzzy c-means model, IEEE Trans. on Fuzzy Systems, Vol. 

3 (3), pp. 370-379. 

        a)              b)               c) 

Fig. 6. The membership grades: a) class1; b) class2; c) class3. 
Windham, M. P. (1982), Cluster validity for the fuzzy 

c-means clustering algorithm, IEEE Trans. on  Pattern 

Analysis and Machine Intelligence, Vol. 4 (4), pp. 

357-363. 

5. SUMMARY AND CONCLUSIONS 

The main goal of this work is to classify the HCS-related 

physiological to provide an objective basis for designing the 

AA-based human-machine systems. The HCS was classified 

into three classes, corresponding to Good, Average and Risky 

operator cognitive state. 

Wilson, G.F. and Fisher, F. (1995), Cognitive task 

classification based upon topographic EEG data, 

Biological Psychology, Vol. 40, pp. 239-250. 

Wilson, G.F. and Russell, C.A. (1999), Operator functional 

state classification using neural networks with combined 

physiological and performance features, in Proc. of 43rd 

Human Factors and Ergonomics Annual Meeting, pp. 

1099-1102. 

The results reported have shown the effectiveness of the 

FCM-based method for the HCS classification if the proper 

(or influential) physiological features are selected. Moreover, 

significant individual difference across subjects was also 

observed from the results. Based on the quantitative 

assessment of the HCS, the cognition-demanding tasks can 

be adaptively allocated between human operator and machine 

agents so as to avoid the serious or even catastrophic 

consequences of operator cognitive function breakdown 

(Zhang et al., 2008a, b). In conclusion, the current work may 

provide a solid basis for implementing adaptive control of 

human-machine cooperative systems in safety-critical 

scenarios. 

Zhang, J.-H., Wang, X.-Y., Mahfouf, M., Linkens, D.A. et al. 

(2008a), Use of heart rate variability analysis for 

quantitatively assessing operator’s mental workload, in 

Proc. of the Intl Conf. on Biomedical Engineering and 

Informatics (BMEI), Vol. 1, pp. 668-672. 

Zhang, J.-H., Wang, X.-Y., Mahfouf, M., Linkens, D.A. et al. 

(2008b), Fuzzy logic based identification of operator 

functional states using multiple physiological and 

performance measures, in Proc. of the Intl Conf. on 

Biomedical Engineering and Informatics (BMEI), Vol. 1, 

pp. 570-574. 
ACKNOWLEDGMENTS 

  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2962


