

A SysML based design pattern for the high-level development

of mechatronic systems to enhance re-usability

G. Barbieri*, K. Kernschmidt**, C. Fantuzzi*, B. Vogel-Heuser**

* University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia (Italy)

(e-mail: {giacomo.barbieri, cesare.fantuzzi}@unimore.it).

** Institute of Automation and Information Systems, Technische Universität München, Boltzmannstr. 15,

85748 Garching bei München (Germany) (e-mail: {kernschmidt, vogel-heuser}@ais.mw.tum.de).

Abstract: Model driven engineering approaches can be used to handle the complexity in the development

of modern mechatronic systems, containing a multitude of mechanical, electrical/electronic and software

components. However, up to now SysML, as standard systems engineering language, is not wide spread in

industry yet. Reasons therefore are missing adequate guidelines for the modeling process as well as an

unclear benefit of the created SysML-models. A well-created system model however poses enormous time

advantages during the analysis of change influences in later lifecycle phases of the system and makes an

interdisciplinary reuse of modules in the development of new systems possible. A prerequisite therefore is

the efficient traceability of all information within the system model. Thus, in this paper a SysML based

process for the high-level development of mechatronic systems is applied, reaching from requirements

specification to the detailed modeling of the element-connections (discipline specific as well as

interdisciplinary). Our approach shows how the information from the different levels of abstraction and the

different development phases can be connected, including a functional modularization of the mechatronic

system. In this way, developers can trace change influences more easily. The functional modules can be

used during the development of new systems, resulting in significant shortened development cycles. The

proposed design pattern is shown at the example of a bench-scale model of a production plant.

1. INTRODUCTION

The development of modern mechatronic systems is a

complex task, requiring the specific knowledge of

mechanical engineers, electric/electronic (E/E) engineers and

software engineers as well as an integrated view on the

overall system during the development.

In order to integrate the specific knowledge of each domain,

model-based systems engineering (MBSE) was introduced. It

describes the application of modeling to support system

requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and

continuing throughout the development and later lifecycle

phases (INCOSE, 2007). The vision implies the usage of a

single model, rather than several documents, for capturing

requirements, analyzing problems and designing systems.

The overall objective is to replace a document-centric

working style through a model-centric one.

The Systems Modeling Language (SysML) reuses a subset

of the UML and adds extensions to it in order to become the

standard systems engineering language. It is a graphical

modeling language and can represent complex systems such

as hardware, software, data, personnel, procedures, or

facilities (Friendenthal et al., 2008). It is object-oriented,

supports hierarchical modeling and allows the representation

of these system views: structural, functional, behavioral and

requirements. Moreover, it can be easily extended through

the creation of profiles and can be integrated into existing

tool environments (e.g. Cao et al., 2011). In spite of all these

benefits, up to now SysML is still not widely spread in

industry yet. Typically, the following culture and general

resistances exist:

 "lack of perceived value of MBSE" (Motamedian,

2013);

 difficulties in abstracting real systems and the

consequent generation of large, inflexible and hard to

maintain SysML models. These aspects make the model

information hard to reuse in new projects (Kasser,

2010);

 high learning efforts and the missing of modeling

methods and guidelines (Albers et al., 2013);

 missing of narrative examples that describe the

generation of SysML models and lack of maturity and

usability of the SysML tools (Bone et al., 2009).

Due to these existing problems, we show in this paper a

SysML modeling architecture and design pattern in order to

build models that enhance traceability of the information,

facilitating the analysis of change influences in later lifecycle

phases of the system and reuse for future projects. In this

way, we show a major benefit of the MBSE application,

provide a narrative example and deduce guidelines for the

modeling of mechatronic systems focusing particularly on

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3431

model re-usability. We illustrate the proposed approach at

the example of an existing system through reverse

engineering to compare the results. A development from

scratch can be conducted accordingly, both in the application

of the design pattern for the design of brand-new

components, and the reuse of parts developed in previous

projects and documented in the proposed architecture.

Furthermore, most of the organizations that are using MBSE

have focused on the system designing features of MBSE

more than on other aspects (Motamedian, 2013). For this

reason, we built the model simulating a design from scratch

process of a production plant, following a general system

engineering design methodology. Eventually, we

demonstrated the traceability of information when changes

are implemented in the model.

The rest of the paper is organized as follows: in section 2

related works are described. Section 3 illustrates the utilized

design process and the use case example, while section 4

describes our proposed model architecture and design

pattern. In section 5, the traceability of information in the

model in case of a change is shown. Eventually, conclusions

and future work are presented in section 6.

2. RELATED WORK

Various research works have been carried out on the model

based design of mechatronic systems for the development of

methodologies and modeling strategies that enhance the

traceability of information.

Lindemann et al. (2009) propose to use a matrix-based

approach at the beginning of the development process to

model dependencies between system elements. However,

according to the authors, these elements should be specified

at an early point and later changes should be avoided.

Especially in customer specific mechatronic systems, such as

production plants, changes however often occur also in later

lifecycle phases.

Helms and Shea (2010) extend the methods for

computational design synthesis (generation of alternative

solutions tailored to particular problems and to

computationally describe solution spaces) integrating the

graph grammar approach with concepts from object-oriented

programming. They focus on the practical description of

alternatives and not in design processes which lead to their

generation, and they just consider the mechanical domain of

mechatronic systems.

Anacker et al. (2012) illustrate an architecture for the

development of software engineering solution patterns for

the system design of mechatronic systems. This approach

however, focuses specifically on the software parts and

neglects the other mechatronic domains (mechanics and

electrics/electronics).

Shah et al. (2010) propose a joint SysML model, coupled to

discipline specific models. This has the advantage, in

comparison to the transformation from one specific model to

others, that all required information is included in one model,

ensuring consistency and keeping the right level of

abstraction. Nevertheless, guidelines about what information

should be integrated in the SysML-model are not provided.

Based on this approach, other researchers developed similar

SysML based methods. Bassi et al. (2011) define a design

methodology whose application generates a hierarchy of

models which describe the system at different levels of

abstraction. Chami et al. (2012) introduce a method for an

‘Intelligent Conceptual Design Evaluation’ of mechatronic

systems. However, both approaches do not deal with the

problem of how functional and behavioral aspects can be

incorporated in the design.

Thramboulidis (2013) defines the design process as a

composition of already existing mechatronic components

(MTCs) that properly collaborate in order to fulfill the

functionalities required by the system behavior. However,

the approach does not focus on a design pattern for the

development process. Furthermore, only mechatronic

components are considered and not e.g. purely software

modules.

Our objective is to introduce a design pattern for the design

of all relevant MBSE-aspects of mechatronic systems (i.e.

functional, mechanical, electrical and software), providing a

SysML architecture that enhances traceability of the

information and reuse for future projects.

3. ADOPTED PROCESS AND CASE STUDY

DESCRIPTION

In order to deduce a method for the modeling of mechatronic

systems in a way that enhances model reuse, we simulated a

design from scratch process of a bench-scale model of a

production plant. We followed the V model described in

Biffl et al. (2006), for the design process, and the

requirements writing strategy, presented in Buede (2009).

The result is a hierarchical and iterative process based on

different levels of abstraction: we individuated the system,

the modules and the components levels. A high-level system

model is designed in the first step and the modules in the

module-level inherit its information. Next, the modules are

defined on a high level of abstraction and are broken down

into components. The components then are designed in detail

or already existing (commercial) components are adopted.

These steps were defined as the breakdown phase (left side

of the V model). The detailed information of the lowest level

is integrated then to the higher levels through a detailed

development of the modules first, and finally of the system

level. These steps are described as integration phase (right

side of the V model) of the design process. The verification

and validation phases are not in the focus of this paper.

The design steps, performed at every level of abstraction, are

as following:

The higher-level requirements are broken down and, if

possible to define at this level, a physical principle is

associated based on these requirements. If it is not possible to

define a physical principle yet, the requirements have to be

broken down to the lower levels (e.g. on the system level in

our case study no physical principles could be defined yet).

The knowledge of the physical principle allows the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3432

refinement of the functions that the element must perform

and the subsequent generation of a functional architecture.

Then, the considered element is subdivided in lower level

elements and the functions are allocated to the lower level.

Eventually, a high level architecture is built on the basis of

the available information. The procedure is then applied

accordingly to the next lower level.

After the lowest level (components level) has been designed

in detail, an iterative refinement of the upper levels is

conducted until the creation of an integrated detailed model

of the requirements, the fulfilled functions, the behavior, and

the structure of the entire system is possible.

For the highest level (the system level), the requirements are

inherited from the “system context”. This is composed by the

system boundaries (all the actors and the quantities that

interact with the system under development), the operational

concept (the information exchanged with the external

systems), and the stakeholder requirements (the needs of

individuals or organizations that have direct interests).

As a use case example, we analyzed the development and

design process for a bench-scale model of a production plant

(Fig. 1). It consists of typical parts of a production system

and is controlled by a single PLC. In the first part (stack) the

working pieces, which arrive from an upstream system (e.g.

prior production steps) are stored and then pushed separately

to the handover position of a crane. The crane picks the work

pieces, lifts them, and displaces them to the outlet position,

which is located in an angle of 90° to the handover position.

After the work pieces are placed by the crane, they are stored

again in an outlet-storage (slide) from where they can be

used for further processing by the downstream system. Thus,

different mechanical (e.g. slide), electric/electronic (e.g. the

5/2 directional-valve of the vacuum gripper), and software

components (e.g. crane control) are used, and require an

integrated development, which we will analyze.

Fig. 1. CAD model of the case study (based on Legat et al.,

2013).

4. MODELING APPROACH AND ARCHITECTURE

In this section, the architecture and strategies utilized to

connect the information, developed during the breakdown

phase (‘design view’ package in Fig. 2) and to represent all

the system information once the integration phase is

completed (the other packages in Fig. 2) are described. The

architecture illustrated below, is applied to all elements of

every level of abstraction.

Fig. 2. Model architecture applied to the system level:

hyperlinks were created to directly access to the selected

view and to jump to the upper or lower level of abstraction.

4.1 Design view

This view (Fig. 3) contains the evolution of the information

developed during the breakdown phase. In the integration

phase, an iterative refinement will be applied to it.

Nevertheless, the ‘design view’ package will not be modified

in the later design phases, because the refined information

will be represented in the other views. This is necessary to

document the steps that have brought the developers to the

choice of a certain design solution.

Fig. 3. Design view of the crane module; a package is

created for every step of the breakdown phase

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3433

Element requirements

The element requirements (e.g. module requirements on the

module level) are inherited from the upper level

requirements and from the “Functions to elements

allocations” of the upper level design view. If it is possible,

based on the existent information, a physical principle is

associated to the element (e.g. crane block in Fig. 3).

The following shortcomings about the SysML requirement

block and diagram can be individuated (Ozkaya, 2006):

 additional properties should be added to the standard

requirement class in order to enhance traceability;

 if one-to-many and many-to-many relations exist,

the diagrams become cluttered with lines reducing

legibility;

 the diagram does not offer a higher level of

abstraction to support requirement navigation.

Fig. 4. Requirements profile: a stereotype is created for every

level of abstraction

For these reasons, we have developed a requirements profile

(Fig. 4) and propose to represent requirements in tables

rather than in diagrams. Through the additional properties, it

is possible to document how a requirement is broken down

and, when the iterative process starts, how the requirement

influences the upper levels (iterative breakdown property).

Moreover, some (non functional) requirements can be just

satisfied at a certain higher level, while the lower level

elements have an influence on it (e.g. the total system

production rate); so we integrated the satisfy status property.

We then set connections among the requirements themselves

and among requirements and other model elements through

the standard SysML relationships:

 derive for organizing break down and iterative break

down requirements dependencies;

 satisfy for connecting requirements with the design

elements which fulfill them;

 verify for bridging the requirement with the test-

case;

 trace for connecting elements that help on deriving

requirements (e.g. simulations).

The requirement tables contain all these properties and

relationships. In this way, every requirement is traced and it

is possible to navigate among the different abstraction-levels

of requirements and related model elements.

Functional architecture

After the requirements breakdown, the functional

architecture can be generated. An activity is created for

every functional requirement and all the activities are

ordered and connected, through control flows in the activity

diagram, for the definition of the functional architecture (Fig.

6). Further development steps e.g. discrete event simulations

could be performed for refining the element requirements

(e.g. time constraint for the execution of an action).

Fig. 5. Part of the system functional architecture: fault

detection, error handling, communication with the system

context and initialization and termination phases are not

represented.

Functions to lower elements allocations

The functions are then allocated to the lower level elements:

the element is represented as block with the allocated

functions as attributes (e.g. Module 2 block in Fig. 3).

 High level representation

Eventually, a high level representation of the system can be

built considering just the physical parts and the item flows

among the elements, in order to give an overall idea of its

structure. The detailed design of software,

electrical/electronic and mechanical parts as well as their

connections cannot yet be included here, as they first can be

defined specifically after the lowest level (components) has

been designed.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3434

4.2 Requirements view

This view contains all the requirements of the considered

element: both the ones of the design view and the ones

derived after the integration process. As described above, we

utilized tables and the illustrated profile to represent the

requirements. Thus, after the entire development process is

finished, this package includes the complete list of all

requirements concerning the respective element.

4.3 Integrated view

In the integrated view the concrete element-structure with all

the interfaces is represented (Fig. 6). The connections among

the different domains has to be taken into account; e.g. a

sensor has to be considered with its electrical connection to

the PLC, as well as its representation in the software, where

it sets a variable if a work piece is detected. For modeling the

structural view, we applied the SysML profile

SysML4Mechatronics (Kernschmidt and Vogel-Heuser,

2013). It enables a detailed specification of the ports in the

different disciplines (i.e. in Fig. 6 grey ports: mechanics,

white: electrics/electronics, black: software), as well as an

analysis and visualization of change influences. In this way,

the system model can also be used in later lifecycle phases of

the mechatronic system. Thus, if a change shall be

implemented, the change influences on the system can be

analyzed prior in the model before they are applied to the

real system, reducing the system down-time to a minimum.

Next to the change analysis, the detailed integrated model

serves as linking pin to the single discipline specific

developments and implementations. The software-blocks

(«SW block») show the real software architecture and can be

used as skeletons of function blocks in the IEC61131-3

implementation. The electrical ports, which specify the

communication, represent the I/O mapping of the sensors

and actuators in the model and can be taken over directly in

the settings of the programming environment. As described

above, the system modularization during design was driven

by its functionality rather than by the mechanical structure.

Thus, in order to consider geometrical togetherness, the

mechanical ports are used between the components within

the same module, but also beyond the (functional) module

borders. For example, valves are used in different modules,

however, from a mechanical point of view, they are all

integrated in the same valve cluster (not shown in Fig. 6) and

thus, are connected mechanically to the valve cluster.

4.4 Behavioral view

This view contains two diagrams: an activity diagram with

the functional architecture refined in a software viewpoint

(Fig. 7) and the element state machine (Fig. 8). In the

integration phase of the design process, the functional

architecture of the design view is modified on the basis of

the lower levels information; e.g. further activities could be

implemented. Then, a software functional architecture is

built considering just the activities that will contribute to the

control system definition: the activities that are executed

automatically by the mechanical parts without the necessity

of a command will be neglected (e.g. in Fig. 7 ‘Collect, store

and provide WPs’ are not inserted because implicitly

performed by the stack and slide modules).

Fig. 7. Refinement of the system functional architecture

represented in Fig. 5.

Fig. 6. Representation of the crane module in SysML4Mechatronics

«module»

Crane1 : Crane

«module»

: TurningTable
«module»

CraneCylinder : Cylinder

«module»

V1 : VacuumGripper
«softwareblock»

: CraneControl

«mechanicalblock»

: CraneBody

«eeblock»

: 5/2-

Directional-

Valve

«eeblock»

: MicroSwitch

«softwareblock»

: VacuGripperControl

«mechanicalblock»

: VacuGripperBody

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3435

Eventually, the element state machine is built on the basis of

the software functional architecture (Fig. 8).

Fig. 8. Part of the stamping plant state machine. The

Displace WP state machine of the crane module is called in

the Displace WP state.

Following this hierarchical modeling approach, a modular

control system is obtained, which, once the lower levels state

machines are defined, allows the design of the control

system at a higher level of abstraction. For example, in the

Displace WP state (Fig. 8), a crane state machine that

contains all the actions executed by the crane to displace a

WP is called; this implies the actions: lift the crane, turn to

the pickup position, lower, take in the WP, lift again, turn to

the outlet position, lower and release WP.

5. TRACEBILITY OF INFORMATION IN THE MODEL

TO ANALYZE CHANGES

In order to show how our proposed modeling approach

enhances traceability, the steps that have led to the utilization

of Micro-Switches as sensors for the crane positions, are

illustrated in Fig. 9.

The “digital signals constraint” (stakeholder requirement),

affects the derived lower level requirements and the physical

parts that fulfil them. The physical parts include thereby also

electrical connections as well as their representation in the

software (e.g. variable-value). Through this chain all the

information related to the Micro Switch adoption (i.e.

requirements, mechanical, electrical/electronic and software

domains) can be traced. In an appropriate software tool, e.g.

MagicDraw, rational chains (as the one in Fig. 9) can be

created automatically through a relational map option.

In the following the effects of a change in the stakeholder

requirements is demonstrated: The new stakeholder

requirement “Analogue signals have to be utilized” is broken

down to the requirements on the lower levels, and finally

influences the component requirement for the selection of an

adequate sensor. In our case, an encoder has to be used for

the crane position feedback instead of Micro Switches. This

change has also influences on the electrics and the software,

namely that an analogue signal between 0-10V has to be

processed by the PLC and in the software the crane position

feedback must be represented as ‘real type’ variable (These

change influences on the other system elements can be

analyzed in the SysML4Mechatronics model).

Fig. 9. Design viewpoint for the adoption of a Micro Switch.

It carries a Boolean software variable, called “Sg_Micro

Switch”, and has an electrical “out” port (called Mic) which

provides a 24V signal if the Micro Switch is on and 0V if it

is off.

In an equivalent way the change can be analyzed if a

component is exchanged (e.g. if during maintenance a sensor

has to be exchanged that is not available anymore and thus,

has to be replaced by another one). Hereby the model can

show if all requirements are still fulfilled by the new

component.

The example demonstrated how the proposed design pattern

allows a complete traceability of the modeled information:

every change can be inserted in a rational chain that contains

all involved elements and requirements.

6. CONCLUSIONS AND OUTLOOK

In this paper we presented a SysML based design pattern for

the high-level development of mechatronic systems, which

illustrates a major benefit of model driven engineering

through enhancing the reusability of models. A prerequisite

therefore is the traceability of all information in the model,

developed during the design, from requirements specification

to the detailed modeling of the system structure and

behavior.

Therefore, we defined an adequate model architecture, which

can be applied on each level of abstraction (system level,

module level, and component level) during the development

process. In order to enable the traceability of the breakdown

of requirements we introduced a specific SysML-profile,

defining on which level a requirement is satisfied and from

which requirements it is derived.

For modeling the integrated structural view of the system we

utilized the SysML profile SysML4Mechatronics, which

enables a detailed port-specification and analysis of the

discipline-specific and interdisciplinary relationships in the

mechatronic system.

Thus, by utilizing our presented methodologies, changes in

later stages of the system lifecycle can be traced back to the

according requirements and other effected components. In

this way, the change influences can be estimated more

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3436

efficiently, leading to shorter system down times and less

unexpected faults during the implementation of the change.

Through the inclusion of all relevant information in the

presented modeling architecture a reuse of components,

modules or entire (sub-) systems in further projects can be

conducted easily by the developers, by integrating simply the

prior model to the new project-model on the respective level.

Our approach was shown in this paper at the example of a

bench-scale model of a production plant, as a next step the

design pattern will be implemented in a real industrial use-

case to show the scalability and applicability of our

approach. As different approaches exist for the automatic

generation of code (e.g. Vogel-Heuser et al., 2005), Fantuzzi

et al., 2011), their usage in the presented approach could

enhance the benefit of an integrated, model based design

approach of mechatronic systems even further.

ACKNOWLEDGMENT

We thank the German Research Foundation (Deutsche

Forschungsgemeinschaft – DFG) for funding this work as

part of the collaborative research centre

‘Sonderforschungsbereich 768 – Managing cycles in

innovation processes – Integrated development of product-

service-systems based on technical products’ (SFB768).

REFERENCES

A. Albers and C. Zingel, "Challenges of model-based systems

engineering: A study towards unified term understanding

and the state of usage of SysML," in Smart Product

Engineering: Proceedings of the 23rd CIRP Design

Conference, 2013.

H. Anacker, J. Gausemeier, R. Dumitrescu, S. Dziwok and

W. Schafer, "Solution patterns of software engineering

for the system design of advanced mechatronic systems,"

in International Workshop on research and Education in

Mechatronics, (Paris, France), November 2012.

L. Bassi, C. Secchi, M. Bonfe, and C. Fantuzzi, “A SysML-

based methodology for manufacturing machinery

modeling and design,” IEEE Trans. Mechatron., vol. 16,

no. 6, pp. 1049–1062, 2011.

S. Biffl, D. Winkler, R. Höhn, H. Wetzel, “Software Process

Improvement in Europe: Potential of the new V-Modell

XT and Research Issues,” in Journal Software Process:

Improvement and Practice, Vol. 11, no. 3, pp. 229-238,

2006.

M. Bone and R. Cloutier, "The Current State of Model Based

Systems Engineering: Results from the OMG SysML

Request for Information 2009," in Conference on

Systems Engineering Research, CSER, (Hoboken, NJ,

USA), March 2010.

D. M. Buede, "The Engineering Design of Systems". Wiley,

2009.

Y. Cao, Y. Liu, and C. J. Paredis, "System-Level Model

Integration of Design and Simulation for Mechatronic

Systems based on SysML," Mechatronics, September

2011.

M. Chami, H. Bou Ammar, H. Voos, K. Tuyls, and G. Weiss,

“A Nonparametric Evaluation of SysML-Based

Mechatronic Conceptual Design," in Conference on

Artificial Intelligence, 2012.

C. Fantuzzi, F. Fanfoni, C. Secchi, and M. Bonfè, “A Design

Pattern for translating UML software models into IEC

61131-3 Programming Languages,” in 18th IFAC

World Congress (pp. 9158–9163), September 2011.

S. Friendenthal, A. Moore, and R. Steiner, "A Practical

Guide to SysML: The Systems Modeling language".

Morgan Kaufmann, 2008.

B. Helms, and K. Shea, “Object-Oriented Concepts for

Computational Design Synthesis,” in International

Design Conference, Dubrovnik, Croatia, May 2010.

INCOSE, "Systems Engineering Vision 2020," tech. rep.,

International Council on Systems Engineering Seattle,

USA, 2007.

J. E. Kasser, "Seven systems engineering myths and the

corresponding realities," in Systems Engineering Test

and Evaluation Conference, (Adelaide, Australia), 2010.

K. Kernschmidt, and B. Vogel-Heuser, “An interdisciplinary

SysML based modeling approach for analyzing change

influences in production plants to support the

engineering,” in 9th annual IEEE International

Conference on Automation Science and Engineering

(IEEE CASE 2013), August 17-21, 2013, Madison, WI,

USA.

C. Legat, J. Folmer, and B. Vogel-Heuser, “Evolution in

Industrial Plant Automation: A Case Study,” in 39th

Annual Conference of the IEEE Industrial Electronics

Society (IECON 2013), Austria, Vienna, 2013.

U. Lindemann, M. Maurer and T. Braun, “Structural

Complexity Management. An Approach for the Field of

Product Design,” Berlin, Germany: Springer 2009.

B. Motamedian, "MBSE Applicability Analysis," International

Journal of Scientific and Engineering Research, 2013.

I. Ozkaya, "Representing requirement relationships," in

Requirements Engineering Visualization, First

International Workshop on 2006.

A.A. Shah, A.A. Kerzhner, D. Schaefer, and C.J.J. Paredis,

"Multi-View Modeling to Support Embedded Systems

Engineering in SysML," in Graph transformations and

model-driven engineering, Eds. 2010, G. Engels, C.

Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel,

Berlin, Germany: Springer, 2010, pp. 580-601.

K. Thramboulidis, “Overcoming Mechatronic Design

Challenges: the 3+1 SysML-view Model," Computing

Science and Technology International Journal, January

2013.

B. Vogel-Heuser, D. Witsch and U. Katzke, “Automatic Code

Generation from a UML model to IEC 61131-3 and

System Configuration Tools,” Int. Conf. on Control and

Automation, Budapest, 27-29 June 2005, pp. 1034-1039.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3437

