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Abstract: Load control has traditionally been viewed as a useful tool for peak load reduction
in power systems. With the increasing renewable energy penetration in the grid, load control
is also considered as a tool to exploit the storage in dispersed devices naturally present in
power systems such as electric water heaters to mitigate generation variability. Tapping into
the storage dispersed across the power system is challenging because of the large number of
devices that need to be coordinated to produce desirable system level behavior. In this paper a
mean field game theoretic based control architecture is proposed as a load control mechanism
to limit the required flows of information, and produce local constraints conscious decentralized
individual controls which aggregate to a desired mean behavior. A Markovian jump-driven
model of individual electric water heating loads is employed where the mean field effect is
mediated through the quadratic cost function parameters under the form of an integral error.
The corresponding system of mean field Nash equilibrium inducing equations is developed and
numerical simulation results are presented.

1. INTRODUCTION

In this paper the potential of energy storage in dispersed
devices naturally present in electric water heaters is em-
ployed as a tool to mitigate renewable generation variabil-
ity and reduce peak load. The envisioned control architec-
ture is hybrid: (i) centralized in terms of target trajectory
generation for homogeneous groups of energy storage ca-
pable electric devices, so as to preserve overall optimality
characteristics, (ii) decentralized at the implementation
level so as to locally enforce safety and comfort constraints,
as well as to minimize communication requirements. More
specifically, we mention the following implementation prin-
ciples, and argue that a class of decentralized control
schemes based on a so-called mean field game (MFG) setup
(see Lasry and Lions (2006), Huang et al. (2003, 2006,
2007)) can actually meet all the requirements.

(1) Each controller has to be situated locally.

A completely centralized control architecture micromanag-
ing every individual device to be controlled requires a
significant bandwidth as well as a very large computational
power. Moreover, in the event of a loss of communication,
users might face difficulties in the sense of comfort and
safety. When the controller is situated locally, these worries
are void since the controller can locally enforce comfort
and safety constraints. Even if the communication with
the central authority is lost, it is able to maintain the
safety and comfort requirements of the user.

? The authors gratefully acknowledge the support of Natural Re-
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(2) Data exchanges should be kept to a minimum both with
the central authority and among users.

(3) User disturbance should be kept at minimum.

Since the centralized authority is solely interested in the
aggregate consumption, individual trajectories do not need
to necessarily follow the targets set by the authority.
On the contrary, in fact in the case of a population
of controlled electric space heaters, or air conditioners,
or electric water heaters for example, it is desirable to
shape the mean temperature of the population with least
disturbance; ideally without customers even noticing the
effects of the control actions on their comfort level. Also, it
is important to maintain some measure of fairness among
the users when it comes to sharing the control effort.
We shall show that the recent developments in Kizilkale
and Malhamé (2013) allow the flexibility to address these
issues.

In Kizilkale and Malhamé (2013) we introduced Collective
Target Tracking Mean Field Control, where the presence of
large numbers of space heating electric devices is employed
to develop a decentralized mean field control based ap-
proach to the problem of these devices following a desired
mean trajectory. The proposed solution deviates from the
classical formulation which would have each element track
the desired mean temperature thus introducing unneces-
sary control actions. The solution made possible by mean
field theory enforces collective mean temperature tracking
while leaving individual devices freer to remain, if possi-
ble within their comfort zone. In this context, the mean
field effect is mediated by quadratic cost function param-
eters under the form of an integral error, as compared
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to currently prevailing mean field control formulations
(e.g.Huang et al. (2007)) where the mean field effect is
concentrated on the tracking signal.

The model in Kizilkale and Malhamé (2013) applies to
space heaters where temperature evolves according to lin-
ear dynamics subject to random processes of heat addition
and heat losses stemming from human activity within
the dwelling. The random heat processes are modeled as
Brownian motion. This diffusion model is not sufficient to
characterize the dynamics of a water heater where the sys-
tem is mostly isolated, and dynamical parameter changes
take place intermittently with respect to the extraction of
water from the water heater tank. An alternative model
that captures the essence of water heater dynamics is
a Markovian jump process where dynamical parameters
randomly switch between states (Malhamé (1990)). In this
paper, we extend the model introduced in Kizilkale and
Malhamé (2013) to the system of populations where the
dynamical parameters are time varying and characterized
by a sequence of independent Markov chains with identical
generators.

Statistical mechanics inspired models of large aggregates of
energy storage associated loads, particularly space heating
and cooling loads, to be controlled within peak shaving and
valley filling load management programs by direct control
were presented in Malhamé and Chong (1985), whereas
the modeling methodology was applied to electric water
heaters in Laurent and Malhamé (1994).

Using dispersed storage for accommodating renewable in-
termittency is a growing area of research. Dispersed energy
storage for frequency regulation in the presence of wind
energy is investigated in Callaway (2009). This work uses
the aggregate load modeling framework in Malhamé and
Chong (1985) and extends it for improved transient analy-
sis. Dynamic pricing for controlling the load of aggregates
of large commercial buildings is analyzed in Mathieu et al.
(2010), and domestic heating systems are employed as
heat buffers in Tahersima et al. (2011). A decentralized
charging control strategy for large populations of plug-in
electric vehicles (PEVs) using the mean field methodology
is presented in Ma et al. (2010).

In Section 2 the Markovian jump linear quadratic Gaus-
sian multi-agent mean state tracking problem is reviewed.
Then in Section 3 we present the linearly controlled water
heater dynamics together with a cost function that has
been formulated to penalize the deviation of the popu-
lation mean temperature from the desired mean temper-
ature. A classical linear quadratic solution is presented,
followed by the collective target tracking Markovian jump
mean field solution. L2 stability of the individual systems
and equilibrium properties of the population are given.
Lastly, in Section 4, we provide associated simulation
results together with comparisons to a simplistic target
tracking control formulation.

2. BACKGROUND ON MARKOVIAN JUMP LINEAR
QUADRATIC GAUSSIAN MEAN FIELD CONTROL

In order to meet the three requirements above, the princi-
ples of the mean field control methodology (Huang et al.
(2007)) are employed. This framework is based on a decen-

tralized scheme whereby each agent calculates its individ-
ual best response to the anticipated action profile of the
population. The anticipation of the population response
curve is possible because the numbers are sufficiently large
that the law of large numbers applies. Under technical
constraints together with the assumption of each agent’s
individual rationality, the approach looks for a Nash Equi-
librium as the number of users goes to infinity when agents
implement their stabilizing best response actions. The
anticipation of the action profile is carried out offline and
locally with statistical information obtained based on a
parsimonious population measurement scheme and avail-
able at the start of the control horizon. The control scheme
is fully decentralized; i.e., no communication is required
amongst individual controllers throughout the horizon.

A Review of the Markovian Jump LQG Multi-Agent
Heterogeneous Population Mean State Tracking Problem
(Wang and Zhang (2012))

A large population of N stochastic dynamic agents is con-
sidered where agents are stochastically independent, but
which shall be cost coupled and such that the individual
dynamics are defined by

dxit =
(
Aθ

i
txit +Bθ

i
tuit + cθ

i
t

)
dt+Dθitdwit, t ≥ 0, (1)

1 ≤ i ≤ N , where for agent Ai, xi ∈ Rn is the
state, ui ∈ Rm is the control input; wi ∈ Rr is a
standard Wiener process on a sufficiently large underlying
probability space (Ω,F , P ) such that wi is progressively

measurable with respect to Fwi,θi := {Fwi

t × F θ
i

t ; t ≥
0}. {θit, 1 ≤ i ≤ N} is a sequence of independent
continuous time Markov chains taking values in Θ =
{1, 2, ..., p} with the identical infinitesimal generator Λ =
{λij , i, j,= 1, ..., p} progressively measurable with respect

to Fwi,θi . We denote the population average state by

x(N) = (1/N)
∑N
i=1 x

i.

The cost function for agent Ai, 1 ≤ i ≤ N , is given by

JNi (ui, u−i) = E
∫ ∞
0

e−δt
[
‖xit −mN

t ‖2Q + ‖uit‖2R
]
dt, (2)

where Q ≥ 0 and R > 0. The cost-coupling is assumed to

be in the form of an averaging function mN
t := m(x

(N)
t +

η), η ∈ Rn. The term ui is the control input of the agentAi
and u−i denotes the control inputs of the complementary
set of agents A−i = {Aj , j 6= i, 1 ≤ j ≤ N}.
Each agent Ai, 1 ≤ i ≤ N , obtains the positive definite
solution to the coupled algebraic Riccati equations

Πj

(
Aj − δ

2
I

)
+

(
Aj − δ

2
I

)>
Πj

−ΠjBjR−1Bj
>

Πj +

p∑
k=1

λjkΠj +Q, 1 ≤ j ≤ p. (3)

For a given posited mass tracking signal x∗ ∈ Cb[0,∞)
the mass offset function si is generated by the coupled set
of differential equations
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− dsjt
dt

= (Aj − δI −BjR−1Bj>Πj
t )
>sjt −Qx∗t + Πjcj

+

p∑
k=1

λjks
k
t , 1 ≤ j ≤ p, (4)

for t ∈ [0,∞). Then, the optimal tracking control law is
given by

u◦t = −
p∑
j=1

I[θt=j]R
−1Bj

>
(Πjxt + sjt ), t ≥ 0. (5)

Note that x∗ is assumed to be fixed although unknown. For
that x∗ to be sustainable, it must be collectively replicated
by the agents implementing their best responses to that
signal. Thus, system (4), (5) must be complemented by a
fixed point requirement leading to the mean field equation
system in Definition 1 below.

Definition 1. Markovian Jump (MJ) Mean Field (MF)
Equation System on t ∈ [0,∞):

−ds
j
t

dt
= (Aj − δI −BjR−1Bj>Πj)>sjt −Qx∗t + Πjcj

+

p∑
k=1

λjks
k
t , 1 ≤ j ≤ p,

dx̄jt
dt

= (Aj −BjR−1Bj>Πj)x̄jt +

p∑
k=1

λkj x̄
j
t + ζjcj

− ζjBjR−1Bj>sjt , 1 ≤ j ≤ p,

x̄t =

p∑
j=1

x̄jt ,

x∗t = m(x̄t + η), t ∈ [0,∞),
(6)

where

• x̄jt := E(x̄tI[θt=j]), and,
• ζ = [ζ1, ..., ζp] is the steady state distribution of the

Markov chain.

Global Observation Control set UNg : The set of control

inputs UNg consists of all feedback controls adapted to FNt
where FNt is the σ-field generated by the set {xjτ , θjτ ; 0 ≤
τ ≤ t, 1 ≤ j ≤ N}.
Theorem 2. MJ MF Stochastic Control Theorem (Wang
and Zhang (2012))

Under technical assumptions (see Wang and Zhang (2012)),
the MJ MF Stochastic Control Law (5) generates a set of

controls UNMF , {(ui)0; 1 ≤ i ≤ N}, 1 ≤ N <∞, with

u0t = −
p∑
j=1

I(θt=j)R
−1Bj

>
(Πjxt+s

j
t ), t ≥ 0, 1 ≤ j ≤ p,

(7)
such that

(i) the MF equations (6) have a unique solution;
(ii) all agent system trajectories xi, 1 ≤ i ≤ N, are L2

stable;
(iii) {UNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for

all ε > 0; i.e., for all ε > 0, there exists N(ε) such
that for all N ≥ N(ε)

Fig. 1. Stratification in a water heater

Table 1. Parameters for Water Heater Dynam-
ics

xi temperature of the ith segment
ui control action at the ith segment
ṁL fluid mass flow rate to the load

Q̇i rate of energy input by the heating element
xenv temperature of the environment
xL temperature of the inlet fluid
M i mass of the fluid in the ith segment
Ai surface area of the ith segment
Cpf specific heat of the fluid
U loss coefficient betwen the tank and its environment

JNi
(
(ui)0, (u−i)0

)
− ε ≤ inf

ui∈UN
g

JNi
(
ui, (u−i)0

)
≤ JNi

(
(ui)0, (u−i)0

)
.

In essence Theorem 2 states that the Markovian Jump MF
equation system produces a set of decentralized control
policies for each agent, which collectively become arbi-
trarily close in performance to a Nash equilibrium in the
space of feedback strategies, provided the number of agents
increases sufficiently.

3. ELECTRIC WATER HEATER MODELS

The dynamics of the temperature of a water heater tank
subject to thermal stratification can be modeled by assum-
ing that the tank consists of n fully mixed equal volume
segments as shown in Figure 1. For the thermal dynamics
we adopt the linear model given in Klein (1976) which is
below with the nomenclature specified in Table 1.

M iCpf
dxit
dt

= UAi(xenv − xit) + ṁL
t C

pf (xi+1
t − xit)

+ Q̇iuit, t ≥ 0, i 6= n,

M iCpf
dxit
dt

= UAi(xenv − xit) + ṁL
t C

pf (xLt − xit)

+ Q̇iuit, t ≥ 0, i = n.

(8)

Note that in (8) ṁL represents the amount of water being
pulled from the tank per time unit. We will treat water
demand as a stochastic process denoted by θt, t ≥ 0,
which is a continuous time Markov chain taking values
in Θ = {1, 2, ..., p}, where the states represent different
types of water demand such as dishwashing, hand-washing,
shower etc. Note that, in general, electric heating can only
be contributed in the top and bottom segments.
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The dynamics of a water tank therefore can be written in
linear form as:

dxt
dt

= Aθtxt +But + cθt , t ≥ 0.

3.1 Classical MJ Linear Quadratic (MJLQ) Tracking

Dynamics for a population of N water heaters is given as

dxit
dt

= Aθ
i
txit +Buit + cθ

i
t , t ≥ 0, 1 ≤ i ≤ N. (9)

Following the results of a global optimization analysis, it is
assumed that the central authority has determined that it
is best that the mean temperature of a given population of
water heater tracks some fixed target temperature signal
y, thus creating for example a temporary power relief on
the system. In the MJ Linear Quadratic (MJLQ) tracking
formulation each agent’s cost function is defined as

JNi (ui, u−i) = E
∫ ∞
0

e−δt
[
(Hxit − y)2q + ‖uit‖2R

]
dt,

(10)
where H = [1/n, ..., 1/n].

The problem with this approach is that each agent min-
imizes its own cost function and tracks the same signal.
Even though the central authority is only interested in
aggregate behaviour and in particular the mean tempera-
ture, this control approach causes all agents to track the
target signal, which is undesirable.

3.2 Collective Target Tracking Mean Field Model

We employ the dynamics for the heaters given in (9).
We also assume that the initial mean temperature of
the population of the heaters is above the control center
dictated target y for that mean (power relief required).
The infinite horizon cost function for agent Ai, 1 ≤ i ≤ N ,
is defined instead as follows:

JNi (ui, u−i) = E
∫ ∞
0

e−δt
[
(Hxit − z)2qzt+

(Hxit −Hxi0)2qx0 + ‖uit‖2R
]
dt, (11)

where H = [1/n, ..., 1/n], and where z, is a direction
assigned to each agent in the population and the mean
of the layers of each agent’s deviation from this direction
is penalized by the deviation penalty coefficient qzt , t ∈
[0,∞), which captures the mean field information and
calculated as the following integrated error signal :

qzt =

∣∣∣∣∫ t

0

(Hx
(N)
t − y)dt

∣∣∣∣ .
The justification for the above cost function is that for

a system where z < y < x
(N)
0 , by pointing individual

agents towards what is considered as the minimum comfort
temperature z, it dictates a global decrease in their indi-
vidual temperatures. This pressure for decrease persists
as long as the differential between the mean temperature
and the mean target y is high. The role of the integral
controller is to mechanically compute the right level of
penalty coefficient q which, in the steady-state, should
maintain the mean population temperature at y. When
this happens, due to the second term on the cost function

which penalizes each individual’s temperature from its ini-
tial temperature, individual agents reach themselves their
own steady state (in general different from y and closer
to their comfort zone than classical MJLQ tracking would
dictate). In order to derive the limiting infinite population
MF equation system, and analogously to the more classical
MJ MF LQ case in Section 2, we start this time assum-
ing a given (although unknown) cost penalty trajectory
qz ∈ Cb[0,∞) and a constant qx0 . Given qzt , t ≥ 0,
individual agents Ai, 1 ≤ i ≤ N , solve a classical target
tracking MJLQ problem with time varying cost coefficient
with Riccati gain Πi

t, t ≥ 0, evolving as follows:

− dΠj
t

dt
= Πj

t

(
Aj − δ

2
I

)
+

(
Aj − δ

2
I

)>
Πj
t

−Πj
tBR

−1B>Πj
t +

p∑
k=1

λjkΠk
t + (qzt + qx0)H>H,

1 ≤ j ≤ p for t ∈ [0,∞). Moreover, for a given direction z,
the Markov state dependent offset function sit is generated
by the differential equation

− dsjt
dt

= (Aj − δI −BR−1B>Πj
t )
>sjt − qztH>z

− qx0H>xi0 + Πj
tc
j +

p∑
k=1

λjks
k
t , 1 ≤ j ≤ p.

Then, the optimal tracking control law is given by

u◦t = −
p∑
j=1

I[θt=j]R
−1B>(Πj

txt + sjt ), t ≥ 0. (12)

The calculation of the unknown qzt , t ≥ 0, is obtained by
requiring that qzt , t ≥ 0, must be such that the individual
agents carrying their corresponding optimal responses
must collectively replicate qzt , t ≥ 0, itself. This fixed
point requirement leads to the last equation in Definition 3
below for the Collective Target Tracking MJ MF Equation
System.

Definition 3. Collective Target Tracking MJ MF Equation
System on t ∈ [0,∞):

−dΠj
t

dt
= Πj

t

(
Aj − δ

2
I

)
+

(
Aj − δ

2
I

)>
Πj
t

−Πj
tBR

−1B>Πj
t +

p∑
k=1

λjkΠk
t + (qzt + qx0)H>H,

−ds
j
t

dt
= (Aj − δI −BR−1B>Πj

t )
>sjt − qztH>z

− qx0H>x̄0 + Πj
tc
j +

p∑
k=1

λjks
k
t ,

dx̄jt
dt

= (Aj −BR−1B>Πj
t )x̄

j
t +

p∑
k=1

λkj x̄
j
t + ζjcj

− ζjBR−1B>sjt ,

x̄t =

p∑
k=1

x̄jt ,

qzt =

∣∣∣∣∫ t

0

(Hx̄t − y)dt

∣∣∣∣ .
(13)
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One recalls

• x̄jt = E(x̄tI[θt=j]),
• Λ = {λij , i, j = 1, ..., p} is the infinitesimal generator

of the Markov chain, and,
• ζ = [ζ1, ..., ζp] is the steady state distribution of the

Markov chain.

Note that the MF Equations for this model is significantly
different from (6). Indeed system (6) is amenable to
analysis within a linear systems framework while system
(13) is fundamentally nonlinear (because of the form of
qzt , t ≥ 0) and special arguments have to be developed for
analysis of existence and uniqueness of solutions.

3.3 ε-Nash Theorem

Here we present the main theorem of the paper. It provides
an MF stochastic control law that achieves a Nash equi-
librium at the population limit when applied by all agents
in the system. Moreover, an ε-Nash equilibrium property
holds for any finite population.

Theorem 4. Collective Target Tracking MJ MF Stochastic
Control Theorem

Under technical conditions (Kizilkale and Malhamé (2014)),
the Collective Target Tracking MJ MF Stochastic Control
Law (12) generates a set of controls UNcol , {(ui)0; 1 ≤ i ≤
N}, 1 ≤ N <∞, with

u◦t = −
p∑
j=1

I[θt=j]R
−1B>(Πj

txt + sjt ), t ≥ 0,

such that

(i) all agent system trajectories xi, 1 ≤ i ≤ N, are L2

stable;
(ii) {UNcol; 1 ≤ N < ∞} yields an ε-Nash equilibrium for

all ε > 0.

4. SIMULATIONS

Here in the first simulation we simulate a population of 200
identical water heaters with 2 stratification layers where
the mean initial temperature in the population is 57◦C.
The central authority sets the target temperature to 55◦C
over a 5 hours horizon, and provides the target temper-
ature trajectory to each controller while local controllers
solve an MJLQ tracking problem as provided in Section
3.1.

For the simulations we use the dynamics given in (8),
where ṁL

t := Kθt, t ≥ 0, and θt ∈ {0, 1}, t ≥ 0, is a
two-state continuous time Markov chain with infinitesimal
generator

L =

[
−0.5 0.5

7 −7

]
.

Note that these values correspond to an average of 288
liters of water consumption in 24 hours. The selected
parameter values are provided in Table 2. We employ the
cost function provided in (11) where qx0 = 10000 and
R = 0.05× I2×2.

In this experiment the central authority sets the target
temperature to 55◦C, and all agents are assigned to track
50◦C by applying Collective Target Tracking MJ MF

Table 2. Parameter Values for Water Heater
Dynamics

K 0.05 l/sec

Q̇i 4500 J/s
xenv 25◦C
xL 15◦C
M i 139 l
Ai 1.715 m3

Cpf 4190 J/(kg◦C)
U 1.05 J/(sm2K)
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Fig. 2. Agents Applying Collective Target Tracking MJ
MF Control: All Agents Following the Low Comfort
Level Signal
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Fig. 3. Aggregate Power Consumption

control. The trajectories for only 10 agents are presented
and the calculated mean field signal is shown in Figure 2.
It can be seen that while the mean temperature still settles
at 55◦C, the population is disturbed much less than the
MJ LQ tracking implementation.

The aggregate power consumption plot is provided in
Figure 3 for a system of 1000 water heaters. Not only
the algorithm provides immense relief at the early stages
of the horizon, but it also provides a smooth transition
to the steady state power consumption profile without a
delayed payback peak typical of direct control schemes of
thermostats.

In Figure 4 for the same simulation we plot the itera-
tions of a Collective Target Tracking MJ MF successive
substitutions algorithm to identify the fixed point mean
temperature trajectory until convergence occurs.

For the next experiment, we study a population of initial
mean temperature at 57◦C. We separate the population
in two groups where the first group consists of the agents
above 57◦C initial temperature and the second group con-
sists of the ones below 57◦C. Both groups are assigned
to track 50◦C. In order to achieve a level of fairness, the
first group is assigned a smaller control penalty coefficient
R. Collective Target Tracking MJ MF control is applied
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Fig. 5. Agents Applying Collective Target Tracking MJ
MF Control: Different r for subpopulations

to these groups, and the simulation result is provided
in Figure 5. It can be seen that the MF based integral
error control scheme leads the mean temperature of the
whole water heaters population to 55◦C while soliciting
the agents with higher initial temperatures more intensely
than those with colder initial temperatures. This illus-
trates how one could shape the collective tracking response
for greater fairness.

5. CONCLUDING REMARKS

In this paper we extended the collective target tracking
MF control methodology to the cases where the dynamics
are modeled through Markovian jump processes. This
formulation allows the characterization of the dynamics
of a water heater where the water consumption event is
modeled as a Markovian jump process. The presence of
large numbers of electric devices associated with energy
storage is employed to develop a decentralized mean field
control based approach to the problem of these devices
following a desired mean trajectory. Given the statistics of
the hot water consumption events and provided with the
mean temperature target trajectory as well as the initial
mean temperature in the controlled group, the devices
generate their own control locally, and thus enforce their
safety and comfort constraints locally as well.

In future work we shall concentrate on the analysis of
existence and uniqueness conditions for solutions of the
fixed point MJ MFG system in Definition 3. Also, we
shall consider the impact of temperature comfort and
safety constraints on the aggregate control performance.
Finally, the case of periodic target trajectories will also be
considered.
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