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Abstract: Large-scale networks of undamped coupled oscillators represent both modern
engineered systems and systems from the biological world. The neural network of the brain
is a particular example of motivating interest. The degree to which tracking, predicting
and controlling dynamics in such networks will be successful is conditional on observability.
Observability is considered using large-scale networked clocks, a linearisation of networked
oscillators, through the structure of the observability matrix using Vandermonde matrices.
Observability is found to be particularly poor for these undamped networked clocks. This raises
interesting challenges to elucidate sufficient information from these networks for therapeutic
benefit in medical bionics.
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1. INTRODUCTION

Coupled oscillators networks are fascinating both in the
phenomenon they exhibit and in the diversity of real-
world examples they model. Phenomenon include self-
synchronisation, that is the ability of coupled oscillators
to merge into collective behaviour without the need for
a conductor or driving node in the network. Coupled
oscillator networks can model many engineered distributed
systems that exhibit self-organising behaviour through
synchronisation from modern telecommunications (Pre-
hofer and Bettstetter (2005)) to future power systems
(Butler (2007); Rohden et al. (2012)). The natural world
is also replete with examples, from synchronously flashing
fireflies to the neural networks of brain tissue (Strogatz
and Stewart (1993)).

Observability of these oscillatory networks has motivations
in the need to extract information from such systems, both
human-engineered and biological, to predict, track and
control their dynamics. Networked clocks, as investigated
in this paper, are the linearised counterpart to networks
of coupled non-linear oscillators. An initial insight into
oscillator network observability is considered using linear
approaches.

Existing work in network observability, from early work
in Wu and Monticelli (1985) and Monticelli and Wu
(1985) to more recent advancements in Liu et al. (2013),
seeks to exploit redundancies in connection pathways so
that all states are reachable, through network pathways,
from a subset of states that directly influence the the
system output. By contrast, in this paper we explore a
network with fully connected graph. There is an absence
of any connection redundancies by construction, since each
state is connected through network pathways to every
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other state. This provides a network that is theoretically
observable by measuring from a single state (any single
state), however, severe practical challenges to observability
are found for these networks.

This paper presents a coupled oscillator model in Section
2. A structural analysis of the observability matrix for
the network using Vandermonde matrices is considered
analytically, under the extreme condition of maximally
separated clock frequencies, in Section 3. An analysis of the
broader range of possible observability outcomes, for clock
frequencies drawn from (i) a uniform distribution and (ii)
a Gaussian distribution, is provided through simulation in
Section 4, followed by conclusions in Section 5.

2. NETWORK CLOCK MODEL

Inspired by the neural networks of the brain, we use a
generic and scalable network clock model based on coupled
second order pendula. Wright et al. (1985) devised a simi-
lar coupled oscillator model in 1985 to model state changes
in brain activity as measured by EEG (Electroencephalog-
raphy), that is, electrical recordings from the brain. Fur-
ther background on EEG recordings can be found in Ch.
2 of Varsavsky et al. (2010) and in Niedermeyer and
Lopes Da Silva (2005). As a generic synthetic model which
neglects the complexities of biologically realistic neuron-
dynamics, this is not a model which can tell us anything
about the nature of brain function. This approach is rather
suited instead to the specific task of investigating what
underlying information one may expect to recover from an
observation comprised of a linear map of the state. Vari-
ations of this model were also used towards preliminary
analysis on the brain observation problem (O’Sullivan-
Greene et al. (2009a,b); OSullivan-Greene et al. (2011)).

Each individual oscillator is modelled as a linearised un-
damped pendulum clock,
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Fig. 1. An image showing the structure of the coupling
matrix for a 2-D network of N = 10 clocks with
a fully connected graph. The white boxes indicate
that each clock is coupled to its nearest neighbours
with the maximum coupling magnitude of α. Coupling
strength to other clocks is geometrically decaying by
distance of clock i to clock j as indicated by the
accompanying greyscale bar. The black boxes indicate
that each clock is not coupled to itself.

ẍi + ω̃2
i xi = Fi, i = 1 . . . N, (1)

where xi is the angular position, ω̃i is the natural frequency
of oscillation and Fi is the forcing term of the ith pendulum
defined in (2).

Fi =
∑
j

αij(xj − xi), (2)

Fi consists of a feedback term that couples the position
state from other pendula,

∑
j αij(xj−xi). αij denotes the

coupling strength between clocks i and j.

A simple fully-connected graph is assumed, with strong
local connection and weaker long range connection, as
illustrated in Fig. 1. Additionally, it is assumed that all
model parameters are known.

It is chosen to restrict the model to pure or marginally sta-
ble oscillators rather than include a damping term. While
certainly the brain will naturally deviate into both slightly
underdamped and slightly damped modes of oscillation, it
is envisioned that the natural balance of excitability in
the brain will constrain this damped and underdamped
activity to dynamics that lie near to the critically damped
boundary.

A coupled clock network of N linear clocks (illustrated for
N = 4 in Fig. 2) can be written in state space format as
ẋ = Ax with an ideal EEG measurement of y = Cx
using (A,C) defined in (3,7) where x is the state.

A =


A1 + ε11 ε12 . . . ε1N
ε21 A2 + ε22 . . . ε2N
.
.
.

.

.

.
. . .

.

.

.

εN1 εN2 . . . AN + εNN

 , (3)

where

Ai =

(
0 −ω̃i

+ω̃i 0

)
, (4)

εij =

(
0 0
−αij 0

)
for i 6= j, (5)
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Fig. 2. A network of four interconnecting clocks. Each clock
has an oscillation frequency ω̃i. The coupling between
clocks i and j is given by αij , and a measurement
electrode connects to each clock with strength δi.

εii =

 0 0

+

N∑
k=1

αik 0

 , (6)

C = [ 0 δ1 0 δ2 · · · 0 δN ] , (7)

where δi indicates the relative importance of clock i in the
EEG output signal (the entries of the measurement vector
C satisfy δi ≥ 0 and

∑
i δi = 1). Coupling is chosen to be

symmetric (αij = αji) and positive (αij > 0 ∀ i, j).

For this coupling configuration it is assumed that the
clocks are spatially organised along a 1-dimensional struc-
ture (see Figure 3). Other spatial constructs, such as
extending to 2 or 3 dimensions, would also be possible
for alternative connectivity coefficients.

Consider now the discrete formulation of the system model
given in (9, 10), using the mapping,

A→ eA∆T = Ã. (8)

For simplicity and generic problem formulation we use
a normalised sampling time ∆T = 1 and normalised
frequency range ω̃i ∈ (0, 1].

xk+1 = Ãxk (9)

yk = Cxk (10)

The discrete version of the system in (9) is convenient for
the analysis undertaken in Section 3 and the discrete mea-
surement in (10) is appropriate since all real measurements
are digital in nature.

Next the model presented here will be used to explore the
question of: How observable is x ∈ RN given y ∈ RM?
Of particular interest, given the motivational problem of
observing the brain state from EEG measurements, is
when system order N is particularly large compared to
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the number of measurements M (with one state assigned
per neuron N ≈ 1011, while typically M < 30).

3. STRUCTURE OF THE OBSERVABILITY MATRIX

The observability matrix, O(C, Ã), can be deconstructed
using Vandermonde matrices to gain an insight into the
expected observability properties as a function of network
size. See (Golub and Van Loan, 2013, Ch. 4) for back-
ground information on Vandermonde matrices.

Since Ã (8) contains eigenvalues on the unit circle 1 , Ã
can be generically diagonalised to,

T−1ÃT = diag([ejω1 , e−jω1 , ..., ejωN , e−jωN ]). (11)

The diagonalising state transformation, T, also converts
the C = [0, δ1, 0, δ2, . . .] given in (7) to the full vector,

CT = [δ1, δ1, δ2, δ2, . . .]. If δi = 1 ∀ i, O(CT,T−1ÃT) is
a Vandermonde matrix, V,

V =


1 1 1 . . . 1

e
jω1 e

−jω1 e
jω2 . . . e

−jωN

e
j2ω1 e

−j2ω1 e
j2ω2 . . . e

−j2ωN

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

e
j(2N−1)ω1 e

−j(2N−1)ω1 e
j(2N−1)ω2 . . . e

−(2N−1)jωN

 ,
(12)

Then for a C vector containing any δi, O(CT,T−1ÃT) =
diag(CT)V. The determinant of the observability matrix
is:

det
(
O
(
CT,T−1ÃT

))
= det (diag(CT)) det (V)

=

N∏
i=1

(δi)
2

︸ ︷︷ ︸
Channel Model

∏
1≤i<j≤(2N−1)

(ejγj − ejγi)

︸ ︷︷ ︸
Network Model

(13)

where {
γ2i−1 = ωi
γ2i = −ωi. (14)

(13) is factorised into two distinct components, a channel
model and a network model. The network model gives us
the intrinsic information content in the network. The chan-
nel model provides the read-out of information content
from the network.

Consider next the case where (13) is maximised. The
most well-connected channel model provides the maximum
1 The clock network can be written in continuous form as, ẍ +

Wx = 0 where ẍ = [ẍ1 ẍ2 . . . ẍN ]
′
, x = [x1 x2 . . . xN ]

′
(′

denotes transpose) and

W =


ω̃
2
1 +
∑

j
α1j −α12 −α13 · · · −α1N

−α12 ω̃
2
2 +
∑

j
α2j −α23 · · · −α2N

−α13 −α23 ω̃
2
3 +
∑

j
α3j · · · −α3N

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

−α1N −α2N −α3N · · · ω̃2
N +
∑

j
αNj


W is a positive definite matrix for αij > 0 ∀ i, j, therefore,

there exists z = Tx and z̈ = Dz such that D = TWT−1 is a
diagonal matrix. Specifically, D = diag(ω2

1 , ω
2
2 , . . . , ω

2
N ), where ωi

are the natural frequencies of a purely oscillatory coupled network (a
network with αij = 0 ∀ i, j), which are simply shifted or perturbed
in frequency from the individual clock natural frequencies ω̃i.

1 2 3 4 N5

Fig. 3. The spatial organisation for a 1-dimensional net-
work of N clocks. Each circle represents a clock and
the connection line thickness depicts the strength of
connection.

read-out available. Since δi is constrained by
∑
i δi =

1, δi > 0 then a uniform measure of the state where
δi = 1

N ∀ i gives the maximum read out of information
content. A maximally informative oscillator network (pro-
viding the most energy in the determinant) would have
eigenvalues uniformly separated around the unit circle
(intuitively, multiple well-separated frequencies are eas-
ier to observe than a dense spectral arrangement with
same number of frequencies). Next the determinant of
the Vandermonde Matrix is evaluated for this case of
eigenvalues of Ã uniformly distributed around the unit
circle (ωi = kπ

2N , for i = 1, 2, . . . , N, and k = 2i− 1).

Theorem 1. For the Vandermonde matrix V in (12) that
represents a coupled oscillator network model,

det(V) = jNNN2N , (15)

under the condition that the network’s eigenvalues are
chosen to be maximally separated around the unit circle.

Proof. From (13) we have that:

det(V) =
∏

1≤i<j≤(2N−1)

(ejγj − ejγi), (16)

This can be expanded, as shown in (18), using γ2i−1 = ωi,
γ2i = −ωi and (17).

ωi =
kπ

2N
, for i = 1, 2, . . . , N, and k = 2i− 1. (17)

These frequencies, ωi, are chosen such that ejγi are uni-
formly distributed around the unit circle for maximum
separation between eigenvalues.

det(V) =(e−jω1 − ejω1)(ejω2 − e−jω1)

.(ejω2 − ejω1)(e−jω2 − ejω2)

.(e−jω2 − e−jω1)(e−jω2 − ejω1) . . .

=

Euler pairs︷ ︸︸ ︷
(2j sin(ω1)) (2j sin(ω2)) . . .

.
(

4
(
2 sin

(
ω1+ω2

2

)
sin
(
ω1−ω2

2

))2)
. . .︸ ︷︷ ︸

Remaining exponential pairs

(18)

There are N Euler pair terms and N !
2!(N−2)! = N(N−1)

2

remaining exponential pairs terms for combinations of
(ωi, ωj).
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det(V) = jN22N2−N

Factor a︷ ︸︸ ︷
N∏
i=1

sin(ωi)

.
∏

(i,j):i<j

(
sin
(
ωi+ωj

2

)
sin
(
ωi−ωj

2

))2

︸ ︷︷ ︸
Factor b

, (19)

Consider the following identity on the geometry of the sine
function from Bibak et al. (2009),

N−1∏
k=1

sin(kπN ) =
N

2N−1
. (20)

As a corollary of this,
N/2∏
k=1

sin(kπN ) =

√
N

2N−1
. (21)

Using (20), factor a in (19) can be reduced to,
N∏
i=1

sin(ωi) =

∏2N−1
k=1 sin( kπ2N )∏N−1
k=1 sin(kπN )

=
2N

22N−1

N
2N−1

=
1

2N−1
. (22)

Due to the geometry of maximally separated eigenvalues
around the unit circle, as defined in (17), factor b in (19)
can be expressed as,∏
i,j:i<j

(
sin
(
ωi+ωj

2

)
sin
(
ωi−ωj

2

))2

=

( N∏
k=1

sin
(
kπ
2N

))N−1
N/2∏
k=1

sin
(
kπ
N

)2

. (23)

Using the identity in (21), (23) becomes,( N∏
k=1

sin
(
kπ
2N

))N−1
N/2∏
k=1

sin
(
kπ
N

)2

=

[(√
2N/22N−1

)N−1(√
N/2N−1

)]2

= 2N−1

(
2N

22N−1

)N
. (24)

Substituting (22) and (24) into (19) gives,

det(V) = jN22N2−N 1

2N−1
2N−1

(
2N

22N−1

)N
= jNNN2N . (25)

Making the trivial assumption that N is even, gives,

det(V) = NN2N , (26)

which completes the proof. �

Corollary 1. As a corollary to Theorem 1, for the observ-

ability matrix, O
(
C, Ã

)
, with Ã defined in (8) and C

defined in (7),

det
(
O
(
C, Ã

))
=

1

NN
, (27)

under the condition that the network’s eigenvalues are
chosen to be maximally separated around the unit circle
and there is a uniform measurement of the state.

Proof. From (13) we have that

det
(
O
(
CT,T−1ÃT

))
=

N∏
i=1

(δi)
2det(V), (28)

For a uniform measurement of the state δi = 1
N ∀ i and

(28) becomes,

det
(
O
(
CT,T−1ÃT

))
=

N∏
i=1

(
1

N

)2

det(V), (29)

Lastly the effect of the transformation T in (11) should be
considered.

O
(
C, Ã

)
= O

(
CT,T−1ÃT

)
T−1 (30)

where T is a block diagonal matrix with each diagonal 2×2
block: [(−j, 1)′, (+j, 1)′]. Using (29), (30) and the results
of Theorem 1 gives,

det
(
O(C, Ã)

)
=

N∏
i=1

(
1

N

)2

︸ ︷︷ ︸
1

N2N

det(V)︸ ︷︷ ︸
jNNN2N

det(T−1︸ ︷︷ ︸
(−1

2j )
N

)

=
(−1)N

NN
, (31)

Making the trivial assumption that N is even gives,

det
(
O(C, Ã)

)
=

1

NN
, (32)

which completes the proof. �

det
(
O(C, Ã)

)
thus converges to zero with increasing net-

work order N , with a rate that is faster than exponential,
despite a very large determinant from the network model
alone. This indicates that observability from oscillatory
networks is exceedingly ill-posed. That said, however, from
a purely numerical representation viewpoint, the very large
determinant from the network model is problematic in
and of itself. V comprises of (2N)2 numerically-orderly
elements of order 1. Yet det (V) is exceptionally large
(det (V)→ 2NNN ). Exceptionally large determinants are
equally as problematic as exceptionally small determinants

(for example det
(
O(C, Ã)

)
→ 1

NN ) in terms of numerical

representation.

4. SIMULATION RESULTS

In the previous section it was found through Theorem
1 that, under the extreme case of maximally separated
eigenvalues, the determinant of the Vandermonde matrix
that represents the clock network, det(V), grows expo-
nentially with network order N . In this section, through
simulation over a range of networks sizes, the range of
expected values for det(V) (defined in (16)) is explored
more generally by considering (i) eigenspectra uniformly
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Fig. 4. Histograms of values for determinant of V for
networks of N clocks, where clock network frequencies
were drawn from a uniform distribution in the range
(0 - π rad/s) over 100, 000 trials. Determinant values
were distributed across 100 logarithmically spaced
bins. The vertical dotted line (in red) is the theoret-
ical limit for maximally spaced frequencies as shown
analytically in Theorem 1.

distributed around the unit circle and (ii) eigenspectra
with a truncated Gaussian distribution centred with mean
µ = π

2 and variance σ2 = 0.5 on the unit circle.

4.1 Uniform Distribution

Figure 4 illustrates the range of determinant values for
networks where clock network frequencies were drawn from
a uniform distribution in the range (0 - π rad/s) over
100, 000 trials. This choice of frequencies generates eigen-
spectra that are uniformly distributed around the unit
circle. The absolute values of the resulting determinant
values (|det(V)|) were distributed across 100 logarithmi-
cally spaced bins. The vertical dotted line (in red) is the
theoretical limit for equally spaced frequencies as shown
analytically in Theorem 1 (det(V) = 2NNN , where N is
the number of clocks in the network).

The range of possible determinant values is exceptionally
broad, from very small values to very large values. This
range broadens as N increases. The median value of
|det(V)| grows as N increases, however, the gap between
the maximum determinant found through simulation and
the theoretical 2NNN limit also increases with N . This
is as expected since the likelihood of randomly obtaining
N equally separated or near equally separated eigenvalues
is low for large N . It is more likely instead that at least
some of the eigenvalues will be separated by angles that
are significantly smaller than perfectly uniform separation,
thus lowering the determinant (since sin(ωi − ωj) factors
creates small numbers in the overall product in (18) for
small ∆ = ωi − ωj .)

4.2 Gaussian Distribution

Biologically, the likelihood of brain networks with uni-
formly distributed spectral content as described in Section
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Fig. 5. Histograms of values for determinant of V for
networks of N clocks, where clock network frequen-
cies were drawn from a Gaussian distribution, with
mean, µ = π

2 and variance σ2 = 0.5 over 100, 000
trials. Determinant values were distributed across 100
logarithmically spaced bins. The vertical dotted line
(in red) is the theoretical limit for equally spaced
frequencies as shown analytically in Theorem 1.

(4) is low. An alternative distribution is therefore explored
here. A Gaussian distribution of frequency values is more
bio-realistic in the case of the brain’s oscillators, where
similar frequencies manifest around typical functional be-
haviour (for example slower oscillations appear during
sleep and the auditory cortex oscillates with frequencies
to match external auditory stimuli).

Figure 5 illustrates the range of determinant values for
networks where clock network frequencies were drawn from
a truncated Gaussian distribution with range (0, π), with
mean, µ = π

2 and variance σ2 = 0.5 over 100, 000 trials.
This choice of frequencies generates eigenspectra that are
normally distributed on the unit circle, centred at π

2 .
The absolute values of the resulting determinant values
were distributed across 100 logarithmically spaced bins.
The vertical dotted line (in red) is the theoretical limit
for equally spaced frequencies as shown analytically in
Theorem 1 (det(V) = 2NNN ).

Under this Gaussian configuration, the determinant values
are all small (predominantly < 1, for N > 10). Similar to
the case of uniform frequency allocation, the range broad-
ens as N increases and the gap between the maximum
determinant found through simulation and the theoretical
2NNN limit also increases with N . Unlike the uniform
case, however, here the median value of |det(V)| decreases
as N increases and there exists markedly larger gaps be-
tween the determinant values found through simulation
and the theoretical 2NNN limit even for relatively small
network sizes of N = 30 clocks.

These small determinants and their large distance from
the theoretical 2NNN limit can be explained by the
high likelihood of obtaining very small differences between
angles with a Gaussian distribution (since sin(ωi − ωj)
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factors creates exceptionally small numbers in the overall
product in (18) for ∆ = ωi − ωj ≈ 0 .)

5. CONCLUSIONS

Using a highly abstracted model of a coupled oscillator
brain network, practical observability of such systems is
found to be exceptionally poor. This abstracted problem
formulation is a simplification of any real world prob-
lem with all parameters known and by dealing with a
stationary environment. These systems are theoretically
observable. The pair (C,A) of form given in (7) and (3)
can be shown to be observable using the Popov-Belevitch-
Hautus test (Kailath, 1980, Ch 2), even in the case where
only a single state is connected to the output (δi = 0 ∀ i 6=
k, δk = 1), under the condition that the clocks oscillate at
distinct frequencies (i.e. ωi 6= ωj , ∀ i 6= j). Despite this
vast simplification and theoretical observability, from a
purely mathematical point of view, practical observability
of these systems is ill-posed.

Inferences from this work for oscillatory distributed engi-
neering systems (including future power grids and telecom-
munication systems) and oscillatory biological systems (in-
cluding observation of neural activity in the brain) indicate
that large scale observability is utopian. Instead concen-
trating on tracking dynamics within very localised sub-
systems of the network seems to be more achievable. This
particularly has implications for tracking and predicting
neural activity, for applications such as epileptic seizure
prediction, where attempts to reconstruct underlying dy-
namics across large areas of the brain using relatively few
electrodes are problematic.
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