
State-Partition-Based Control of Discrete
Event Systems for Enforcement of Regular

Language Specifications ?

Antoine Butez ∗ Stéphane Lafortune ∗∗ Yin Wang ∗∗∗

∗ Ecole Nomale Supérieure de Cachan, France;
(antoine.butez@lurpa.ens-cachan.fr)

∗∗Department of EECS, University of Michigan, Ann Arbor, USA;
(stephane@umich.edu)

∗∗∗ Facebook, Menlo Park, CA, USA; (yinwang@fb.com)

Abstract: We consider the solution of supervisory control problems for discrete event systems
modeled by automata or bounded Petri nets where the specification is expressed as a regular
sublanguage of the system language and where the supervisor is restricted to be state-partition-
based with respect to original system state space, i.e., the state space of the automaton or
the set of reachable markings of the Petri net. State-partition-based supervisors are completely
characterized by a partition of the original system state space into legal and illegal states:
transitions between legal states are always enabled while transitions from legal to illegal states
are always disabled. We present a general algorithm that calculates all state-partition-based
supervisors that result in safe and non-blocking controlled languages. The algorithm uses a
vertex-cover-type algorithm on the representation of the supremal controllable sublanguage in
order to obtain the desired partitions. This work is motivated by the application of discrete
event control techniques to the avoidance of classes of concurrency bugs in multithreaded
programs. State-partition-based supervisors are especially advantageous in that application as
they allow more concurrency at run-time. More generally, this class of supervisors is required
when the representation of the supervisor must be based on the system’s original state space;
this occurs for memoryless supervisors in automaton-based control or in supervision based on
place invariants in Petri-net-based control, for instance.

1. INTRODUCTION

The control theory of discrete event systems modeled by
automata provides algorithmic techniques for handling a
large class of control specifications related to safety and
non-blockingness. Specifically, the theory initiated by Ra-
madge & Wonham [Ramadge and Wonham, 1987, 1989],
often referred to as Supervisory Control Theory (SCT
hereafter), provides algorithmic techniques based on the
notion of the supremal controllable sublanguage [Won-
ham and Ramadge, 1987] for handling safety and non-
blockingness, when these are expressed in terms of a
regular sublanguage of the language marked by the un-
controlled system and when the control capabilities are
limited by the presence of uncontrollable events. The
corresponding solution is guaranteed to be maximally
permissive, with respect to language inclusion. Let the
original model of the uncontrolled system be denoted by
G. In the process of calculating the supremal controllable
sublanguage and of synthesizing the supervisor that will
implement the associated control law, it may be necessary
to refine the state space of G, if the safety specification
requires memorizing how a given state is reached. Specifi-

? The research of the first author was partially supported by Ecole
Normale Supérieure de Cachan. The research of the second author
was partially supported by US NSF grant CCF-1138860 (Expe-
ditions in Computing project ExCAPE: Expeditions in Computer
Augmented Program Engineering).

cally, the automaton H×G needs to be constructed, where
H is the automaton that represents the regular language
safety specification. The control law associated with the
supremal controllable sublanguage solution will then be
encoded as a sub-automaton of H ×G.

Our interest in this paper is on synthesizing state-
partition-based feedback control laws that guarantee safety
and non-blockingness for a given discrete event system
modeled as a finite-state automaton G when the specifica-
tion is a regular sublanguage Lam of the language marked
by G. We assume that the states of the original model G
have physical meaning and that the implementation of the
control law should be in terms of legal vs. illegal states of
the original model, not on the basis of a refined state space
as would occur when constructing H×G in standard SCT.
In other words, given a computed set of legal states of G,
the supervisor will consider as legal any transition between
legal states, and it will consider as illegal any transition
from a legal state to an illegal one. One may wonder why
it is not permitted to define the supervisor as a function
over the state set of H × G; such a supervisor would
then be implemented as a look-up table whose “state” is
updated upon each event occurrence in G. To explain our
motivation for requiring state-partition-based supervisors,
we need to digress to review one control technique for
Petri nets and discuss our prior work on controlling the

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2414



execution of concurrent software. This is done in the next
two paragraphs.

Control of Petri nets by control places: A well-
known control technique for systems modeled by Petri nets
that is maximally permissive for safety control specifica-
tions based on linear inequalities on the marking of the
Petri net is that of Supervision Based on Place Invariants
(or SBPI) [Moody and Antsaklis, 1998]. In that technique,
the control specification is given as a set of linear con-
straints of the form (l, b) that characterize as illegal all
Petri net markings whose dot product with the vector l is
greater than the scalar b, for at least one pair (l, b). Thus,
the specification results in a partition of the reachable set
of markings of the Petri net into legal and illegal ones.
This is a convenient way of capturing legal and illegal
behavior and it results in a simple state-partition-based
implementation of the control law: a transition from a
legal marking to a legal one should be enabled, while a
transition from a legal marking to an illegal one must be
disabled. The SBPI control technique enforces the linear
constraints by building a place invariant with a control
place added to the net for each linear inequality. Control
places result in a “local” implementation of the control law
because only the transitions connected to a control place
are affected at run-time. This avoids the global bottleneck
of an implementation of the control law where the control
action has to be updated upon the occurrence of each
event (as in standard SCT), which effectively allows only
serial execution of the system. Controlling Petri nets by
the SBPI technique and their associated control places
results in a distributed implementation of the control
law that allows for concurrency at run-time. SBPI can
also handle uncontrollable events by performing constraint
transformation [Moody and Antsaklis, 1998, Iordache and
Antsaklis, 2006]. There are several other control techniques
for Petri nets that address different types of safety specifi-
cations and exploit the structural properties of Petri nets;
see, e.g., Holloway et al. [1997], Sreenivas [1997], Seatzu
et al. [2013].

Gadara project: In our work on deadlock avoidance
in multithreaded software treated in [Wang et al., 2008,
2009, Liao et al., 2013c] and referred to as the “Gadara
Project 1 ”, we use control places as the implementation
mechanism of the control law on the Petri net model of the
concurrent program. In this case, we showed that the goal
of deadlock-avoidance in the program is exactly captured
by a set of linear inequalities on the state space of its Petri
net model (subject to model accuracy) [Liao et al., 2013b];
structural properties of the net, in the form of siphons,
can be exploited to iteratively construct this set of linear
inequalities [Liao et al., 2013a]. However, there are other
types of concurrency bugs where the control goals can
only be captured by regular language specifications. For
instance, a class of concurrency bugs called order violations
requires specifications such as “b occurs only after a has
occurred, and no more a’s can occur once b has occurred,”
where a and b are program statements corresponding to
transitions in the Petri net model [Lu et al., 2008]. Another
line of work tries to enforce only successfully tested thread
interleavings in production runs [Yu and Narayanasamy,
2009], where certain interleavings can only be modeled by

1 http://gadara.eecs.umich.edu/

regular expressions. To solve these problems, we wish to
build the reachability graph of the Petri net N (which
is assumed to be bounded), work with the automaton
representation G of this graph, and synthesize a state-
partition-based supervisor for G with respect to the orig-
inal regular language specification on the language of N .
The state-partition-based supervisor should be safe and
non-blocking, and it should not disable uncontrollable
events. If the set of legal states of G corresponding to
this state-partition-based supervisor is linearly separable
from the set of illegal states, SBPI can be used directly to
synthesize control places for the resulting linear inequal-
ities. In this regard, the methodology and algorithms in
[Nazeem et al., 2011] can be used to obtain a minimum
set of linear inequalities that effect the desired separation,
which will result in a minimum number of control places.
More general cases can be handled by dividing the set of
legal states into linearly-separable subregions and using a
disjunction of linear classifiers, as done in [Cordone et al.,
2012]. In either case, the synthesized supervisor will be
implementable by control places. In practice, the control
places often connect to very few transitions in the Petri
net that models the multithreaded program. Most of the
transitions (program statements) are not affected by the
control law, which preserves concurrency well and incurs
very little runtime overhead. The transitions affected by
the control places determine which lines of code need to
be instrumented to implement the feedback control law
captured by the state-partition-based supervisor.

The above discussion provides the motivation for the
problem considered in this paper. In summary, we wish
to synthesize state-partition-based supervisors for an au-
tomaton G subject to a regular language specification
Lam ⊆ Lm(G). The state-partition-based supervisor will
be completely characterized by a subset of legal states of
the state set of G, Xlegal ⊆ XG. This will in general come
with a loss of maximal permissiveness as compared with
the optimal solution of SCT. But we are concerned with
applications where this solution, which is represented as
a sub-automaton of H × G, cannot be practically imple-
mented, e.g., for the reasons described above in controlling
software execution. More generally, state-partition-based
supervisors have the benefit of being “memoryless” in
automaton-based control. To the best of our knowledge,
none of the existing literature on supervisory control di-
rectly addresses the problem we have formulated.

This paper is organized as follows. Section 2 provides a
brief summary of notations used throughout the paper and
also a review of the basic supervisory control problem, non-
blocking version, of SCT. Section 3 formally defines the
state-partition-based supervisory control problem consid-
ered in this paper. A general algorithm for solving that
problem is presented in Section 4. The correctness of that
algorithm is demonstrated in Section 5. Finally Section 6
concludes the paper.

2. PRELIMINARIES

Due to space limitations, we assume the reader is famil-
iar with the basic results and notations of SCT. Here-
after, we employ the notation of Chapter 3 in [Cassan-
dras and Lafortune, 2008]. The uncontrolled system is

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2415



modeled by deterministic finite-state automaton G =
(XG, E, fG, x

G
0 , X

G
m) with associated languages Lm(G)

and L(G), where Lm(G) ⊆ L(G). It is assumed that the
state set XG of G has special meaning inherited from the
modeling of the system. For implementation purposes, we
shall require that the feedback control law be expressed
in terms of a partition of XG into Xlegal and Xillegal.
We assume that all events in E are observable and that
E = Ec∪Euc, where Ec and Euc are the sets of controllable
and uncontrollable events, respectively. For notational con-
venience, we define the set of transitions of automaton G
as :

Tr(G) = {(x, e, y) ∈ XG × E ×XG : fH(x, e) = y}

Consider regular language specification Lam ⊆ Lm(G),
and such that Lam ∩ Lm(G) = Lam, i.e., Lam is Lm(G)-
closed. Let Lam be marked by trim automaton H, i.e.,
L(H) = Lam and Lm(H) = Lam. Automaton H is
defined as H = (XH , E, fH , x

H
0 , X

H
m ). From a language

viewpoint, the associated supervisory control problem is,
in the terminology of [Cassandras and Lafortune, 2008],
the Basic Supervisory Control Problem: Non-Blocking
Version, or BSCP-NB:

Problem 1. BSCP-NB
Given DES G with event set E, uncontrollable event set
Euc ⊆ E, and admissible marked language Lam ⊆ Lm(G),
with Lam assumed to be Lm(G)-closed, find a non-blocking
supervisor S such that:

(1) Lm(S/G) ⊆ Lam

(2) Lm(S/G) is “the largest it can be,” that is, for any
other non-blocking supervisor Sother:

Lm(Sother/G) ⊆ Lam ⇒ Lm(Sother/G)⊆Lm(S/G) .

It is well known that the solution of BSCP-NB is the
supervisor S such that

L(S/G) = L↑Cam and Lm(S/G) = L↑Cam
as long as L↑Cam 6= ∅. The ↑ C operation consists of taking
the supremal controllable sublanguage (with respect to
L(G) and Euc). The desired supervisor S is encoded by
the trim automaton Hsol such that

Lm(Hsol) = L↑Cam = Lm(H)↑C

From the standard algorithm for the ↑ C operation, Hsol

is a sub-automaton of H×G, denoted by Hsol v (H×G).

3. PROBLEM STATEMENT

In this paper, we take a more restrictive approach that the
language-based BSCP-NB reviewed in the preceding sec-
tion. We assume that we are given G and Lam (represented
by trim automaton H), and we wish to synthesize a state-
partition-based supervisor, denoted by Sspb, which will be
encoded by a sub-automaton of G, denoted by Glegal.
The notion of state-partition-based supervisor is defined
as follows. Let XG, the state space of G, be partitioned
into XG = Xlegal ∪ Xillegal, the “legal” and “illegal”
state sets, respectively. Let Glegal = Trim

(
G|Xlegal

)
, i.e.,

Glegal is the restriction of G to its subset of legal states,
Xlegal. Any transition in Tr(G) that originates or ends at
a state in Xillegal is removed, and then the trim operation

is performed. Hence, Glegal encodes a supervisor for G,
Sspb : L(G)× E → 2E , defined as follows:

e ∈ Sspb(s) iff ∃y ∈ X s.t. (fG(x0, s), e, y) ∈ Tr(Glegal)

This definition implies that Sspb is defined over the state
space of G, and the control law of Snpb is completely char-
acterized by Xlegal. Any transition between legal states of
G is legal, and any transition to/from an illegal state of G
(i.e., a state in Xillegal) is illegal; note that legal transitions
may be removed by the trim operation. Of course, an
arbitrary Xlegal may not yield an admissible correspond-
ing (state-partition-based) supervisor, as it may violate
the controllability condition of supervisory control theory,
which states that uncontrollable transitions must always
be enabled by a supervisor.

In view of the above, we formally formulate the problem
addressed in this paper as follows.

Problem 2. State-Partition-Based Control of DES
Given DES G with event set E, uncontrollable event set
Euc ⊆ E, and admissible marked language Lam ⊆ Lm(G),
with Lam assumed to be Lm(G)-closed, find a set Xlegal ⊆
X, with its corresponding Glegal = Trim

(
G|Xlegal

)
, such

that:

(1) L(Glegal) is controllable with respect to L(G) and Euc

(2) Lm(Glegal) ⊆ L↑Cam.

The above definition of Glegal ensures that L(Glegal) =

Lm(Glegal), i.e., Glegal is non-blocking. Thus, the aim in
state-partition-based control is to find Xlegal such that its
corresponding Glegal marks a controllable language that is
a safe solution given the specification Lam. Consequently,
Glegal will indeed encode a safe and non-blocking state-
partition-based supervisor.

The solution to Problem 2 may not be unique. In fact,
the requirement of global maximal permissiveness that
is an integral part of the formulation of BSCP-NB does
not hold anymore in the present context, since there
may be incomparable solutions Glegal that mark maximal
controllable subsets of L↑Cam. The methodology provided
in Section 4 will find one solution respecting the set of
constraints in Problem 2; it may also be used to find
all possible solutions Xlegal, if so desired, by repeated
application of the algorithms provided therein.

4. STATE-PARTITION-BASED CONTROL

4.1 Main Algorithm

We provide in this section an algorithm, called Main
Algorithm and formally stated as Algorithm 1 below, that
enforces regular language specifications on an automaton
using a partition of the state-space of the automaton,
according to the requirements of Problem 2.

The first part of Algorithm 1 is to find the optimal
solution of Problem 1. As explained in Section 2, the
optimal solution is the supremal controllable sublan-
guage of Lam = Lm(H) with respect to L(G) and
Euc. Assume that it is not the empty solution. Let
Hsol = (Xsol, E, fsol, x

sol
0 , Xsol

m ) be the trim automaton

that marks this solution, i.e., Lm(Hsol) = (Lm(H))
↑C

and

L(Hsol) = Lm(Hsol).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2416



Automaton Hsol is a sub-automaton of the product au-
tomaton H × G. Thus, any state in Hsol can be mapped
back to a state of G: ∀x ∈ Xsol,∃(xH , xG) ∈ XH ×
XG : x = (xH , xG). This means that some states of G
are now split in Hsol; for instance, for some xG ∈ XG

there may exist (x1, x2) ∈ X2
H such that (x1, xG) and

(x2, xG) are both in Xsol. The fundamental problem of
state based-control is to avoid those split states. Further-
more, the language generated by Hsol is a sublanguage
of the one generated by G, i.e., L(Hsol) ⊆ L(G). Hence,
some transitions which were initially in G may not have
corresponding ones in Hsol. Those transitions were in fact
deleted during the product between G and H or during
the ↑ C operation, as they were either unsafe, violated
controllability, or caused blocking. We refer to them as the
illegal transitions. As we want to create a solution that is
sub-automaton of G, we have to know what states of G
are connected to those deleted transitions. To do so, we
introduce the set of transitions denoted by TRed, which is
the set of transitions that no longer exist in Hsol:

TRed = {((xH , xG), e, (yH , yG)) ∈ Xsol × E ×Xsol :

((xG, e, yG) ∈ Tr(G)) ∧ (((xH , xG), e, (yH , yG)) /∈ Tr(Hsol))}

From Hsol and TRed, we construct a new automaton,
called Htotal, where we add all the transitions in TRed to
Hsol. In other words, Htotal = (Xsol, E, ftotal, x

sol
0 , Xsol

m ),
where ftotal is built in terms of its corresponding Tr(Htotal):

Tr(Htotal) = Tr(Hsol) ∪ TRed

The next step of our algorithm to solve Problem 2 is to
find a set of states of Htotal that covers the set TRed, in
the following sense: for each transition in TRed, either its
origin state or its destination state should be contained in
the covering set. In this manner, if this cover set is deleted
from Htotal, then by a trim operation, all the transitions
in TRed (which are illegal) will be deleted as well. To solve
this problem, we apply a vertex-cover-type algorithm,
Algorithm 2, which is described below in Section 4.2. Its
output is the set Xcover ⊆ Xsol. By construction of Xcover,
if the state set of Htotal is restricted only to the set Xsol \
Xcover, then the trim automaton Trim

(
Htotal|Xsol\Xcover

)
does not contain any illegal transitions of TRed. Hence, the
language generated by this automaton is by construction
safe, but it might not be controllable anymore.

To address the above lack of controllability, the last step of
Algorithm 1 is to do another supremal controllable opera-
tion, namely, the supremal controllable sublanguage of the
language marked by automaton Trim

(
Htotal|Xsol\Xcover

)
,

with respect to L(G) and Euc. That is why we intro-
duce the automaton Hfinal such that Lm(Hfinal) =(
Lm

(
Trim

(
Htotal|Xsol\Xcover

)))↑C
(with respect to L(G)

and Euc). By construction, Lm(Hfinal) is safe and con-
trollable, and automaton Hfinal is non-blocking. When(
Lm

(
Trim

(
Htotal|Xsol\Xcover

)))↑C
is performed, there is

no need to build the product automaton(
Trim

(
Htotal|Xsol\Xcover

))
×G

because the necessary state refinement G has already been
done in the construction of Hsol. Hence, in that manner,
Hfinal is a guaranteed to be a sub-automaton of Hsol; this
implies that Xfinal ⊆ XH ×XG.

Hfinal respects all the properties needed and all of its
states can be mapped back to a state of G. Therefore, we
finally obtain the desired set of legal states of G, Xlegal,
which is defined as follows :

Xlegal = {x ∈ XG : ∃xH ∈ XH , (xH , x) ∈ Xfinal}
This selection of Xlegal is justified by two results that
we present and prove in Section 5. For now, we briefly
describe the essence of these results. Property 4 insures
that each state of G that was initially split in Hsol is no
longer split in Hfinal. In turn, this implies Proposition 6,
which proves that the languages generated by Hfinal and
Glegal are identical. We conclude that Glegal also respects
the safety, controllability and non-blocking properties, as
proved in Theorem 8. The above results are formally stated
and proved in the next section, Section 5. Before that, we
complete the description of the Vertex Cover Algorithm,
Algorithm 2, and present an example.

Algorithm 1 Main Algorithm

Input: G, H s.t. Lm(H) = Lam, E = Ec ∪ Euc

Output: Xlegal

1. Build Hsol, the solution of Problem 1

Lm(Hsol) = (Lm(H))
↑C

2. Calculate TRed and build Htotal

Htotal = (Xsol, E, ftotal, x
sol
0 , Xsol

M ) and Tr(Htotal) =
Tr(Hsol) ∪ TRed
3. Run Algorithm 2 on Htotal to generate a solution
Xcover

4. Build Hfinal by

Lm(Hfinal) =
(
Lm

(
Trim

(
Htotal|Xsol\Xcover

)))↑C
5. Build Xlegal

Xlegal = {x ∈ XG : ∃xH ∈ XH , (xH , x) ∈ Xfinal}

4.2 Vertex Cover Algorithm

In order to select the states that, once deleted from
Htotal, will delete all the transitions in TRed, we propose
Algorithm 2. This is a vertex-cover-type algorithm that
allows to find all the possible cover solutions, if it is run
in an exhaustive search mode.

The algorithm requires as input the states of Htotal and
also its set of transitions that is divided into two disjoint
sets Tr(Hsol) and TRed, as well as the event set E. The
output of the algorithm is a set of states of Htotal that is
sufficient to cover all the transitions in TRed; we denote
this output set by Xcover. We now explain in detail the
steps of Algorithm 2.

The first step of the algorithm consists in initializing the
local variables. D is the set of states to be deleted to ensure
that a transition in TRed will also be deleted. V denotes
the set of states that have already been visited and do
not need to be expanded anymore. We also introduce X1

which is the set of states that are direct children of the
initial state. If a transition from the initial state to one of
its children is in TRed, then we set the child to be deleted,
and also set it to “visited”, because it is not necessary
anymore to expand the search from this successor in later
steps as it has already been deleted. It is not appropriate
to select the initial state of Htotal to be deleted because in
that case the solution to the state-partition-based control

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2417



Algorithm 2 Vertex Cover Algorithm

Input: Xsol, T r(Htotal) = Tr(Hsol) ∪ TRed, E
Output: Xcover

1. Initialization
Xcover = ∅, D = ∅, V = {x0}, i = 1
X1 = {x1 ∈ Xsol : ∃e ∈ E, (x0, e, x1) ∈ Tr(Htotal)}
for all x1 ∈ X1 do

if (x0, e, x1) ∈ TRed then
D ← D ∪ {x1}
V ← V ∪ {x1}
X1 ← X1 \ {x1}

end if
end for
2. States reachable by strings of length i+ 1
for all xi ∈ Xi do

if xi ∈ V then
Break

else
Xi+1 = {xi+1 ∈ Xsol : ∃e ∈ E, (xi, e, xi+1) ∈
Tr(Htotal)}
for all xi+1 ∈ Xi+1 do

if (xi, e, xi+1) ∈ TRed then
Select xd = xi or xd = xi+1

D ← D ∪ {xd}
V ← V ∪ {xd}
if xd = xi then
Xi+1 ← Xi+1 \ {x ∈ Xsol : ∃e ∈
E, (xi, e, x) ∈ Tr(Htotal) ∧ @(yi, a) ∈ Xi ×
E, (ya, e, x) ∈ Tr(Hsol)}

else
Xi+1 ← Xi+1 \ {xd}

end if
end if

end for
V ← V ∪ {xi}

end if
end for
i← i+ 1
3. Check if there is any state in Xi to explore
if Xi 6= ∅ then

Go to 2.
else

Go to 4.
end if
4. Return the cover set
Xcover = D
Return Xcover

problem would be empty; hence, that choice need not be
considered for these types of transitions in TRed.

The iteration step is Step 2. In this step we consider that
we have a set Xi of xi’s to be expanded. First, if xi ∈ V ,
it means it has already been deleted or expanded in a
previous step k < i. So it does not need to be examined,
and the algorithm heads back for another xi ∈ Xi. Else, if
xi 6∈ V , then we add to the set Xi+1 all the direct children
of xi, which will be visited in the next iteration. And for all
those children xi+1, we test if they are connected to xi with
a transition in TRed. If yes, we make an arbitrary choice
between xi and xi+1 for the state to be added into the
deleted state set D. We call this state xd. Then xd is set to
be visited, i.e., xd ∈ V because it is deleted. If xd = xi+1,

then we remove it from the set of states to be examined
in the next iteration. However if xd = xi, then we remove
all its children from Xi+1, in order not to examine them
(as it is pointless) in iteration i+ 1. Notice however that a
child is not removed from Xi+1 if there exists a transition
from another x ∈ Xi to the child. We then set the state xi
as visited, i.e., xi ∈ V . When this procedure is done for all
xi ∈ Xi, we increment the iteration counter and we test if
we have other states to examine. If the new Xi is empty,
then we are done exploring and the algorithm returns the
cover set Xcover = D; else we go Step 2 again.

Remark 3. In an exhaustive search mode for all possible
solutions Xcover, we would consider both choices for xd at
Step 2 and run the remaining of the algorithm for both
instances; this would be done each time there is a choice,
thereby generating a tree of solutions.

Note that it is possible that the states of Htotal might not
all be examined by the algorithm. This is because the cover
algorithm takes care of the connectivity in the transition
structure of Htotal. If a state is not visited, it means all
the states from which the unvisited state is accessible have
been deleted. To save computation time, the algorithm will
not analyze this state, and it will be removed by the trim
operation when building Hfinal.

4.3 Example

To illustrate Algorithm 1 and Algorithm 2, consider Ex-
ample 3.3 from Chapter 3 in [Cassandras and Lafortune,
2008], which is inspired by concurrency control in database
management systems [Lafortune, 1988].

Consider two database transactions, T1 = a1b1 and T2 =
a2b2. Event xi models an operation by transaction i on
database item x. The uncontrolled execution of T1 and T2
in modeled by automaton G in Fig. 1. From the theory of
database concurrency control, the only admissible strings
are those where a1 precedes a2 if and only if b1 precedes b2.
This specification is modeled by automaton H in Fig. 1.
The objective is to build sub-automaton Glegal of G such
that the generated language is safe with respect to the
specification, is controllable, and is non-blocking. In this
example, for the sake of simplicity, we assume that all the
events are controllable, i.e., Euc = ∅.
The first step of the main algorithm is to build Hsol such

that Lm(Hsol) = (Lm(H))
↑C

. In this particular case, as
every event is controllable and as H ×G is non-blocking,
Hsol and H are isomorphic. Due to space limitations, we
set Hsol = H (i.e., the states of Hsol are renamed). The
second step of the main algorithm is construct the set of
illegal transitions TRed. Since state 5 is the only state of
G that is split in Hsol, we have to include in TRed all the
transitions in G that leave or enter state 5. This leads to

TRed = {(2, a2, 10), (4, a1, 5), (5, b2, 8), (10, b1, 6)}
Indeed, if we consider for example the transition (2, a2, 5)
in G, then all the copies of 2 in Hsol have to be connected
to all the copies of 5 in Hsol. State 2 is already connected
to 5 but not to 10 of Hsol, so (2, a2, 10) is added as an
illegal transition in TRed. Automaton Htotal is built as
automaton Hsol with the transitions in TRed added to its
transition function; it is shown in Fig. 2.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2418



Fig. 1. Automata G and H

The cover algorithm provides a cover set Xcover that will
ensure that all the transitions in TRed will be deleted
by the trim operation on Htotal restricted to the set
of states not included in the cover. In this example,
we consider that the cover algorithm returns Xcover =
{4, 8, 10}. From this cover set we build the final automaton
Hfinal, shown in Fig. 2 and such that Lm(Hfinal) =(
Lm

(
Trim

(
Htotal|Xsol\XCover

)))↑C
. Since in this example

all events are controllable, this results in Hfinal being the
trim of automaton Htotal restricted to the set of states
Xsol \ Xcover. The last step is to identify the states of
G that are legal. The set of legal states Xlegal is the
set of states of G such that one copy remains in Hfinal.
In this case, we obtain Xlegal = {1, 2, 3, 5, 6, 9}. Finally,
Glegal, shown in Fig. 2, has the same structure as Hfinal,
so Glegal = Hfinal. The resulting state-partition-based
supervisor is more restrictive than the supremal solution
Hsol = H, but its implementation is state-based as it does
not need to memorize how state 5 was reached, which is the
essential requirement for state-partition-based supervisors.

We briefly discuss other solutions. The other two inter-
esting (i.e., minimal in terms of set inclusion) solutions
for Xcover are X2

cover {2, 5, 6} (the symmetric solution
to above), and X3

cover {5, 10}. In the case of X2
cover, we

would obtain X2
legal = {1, 4, 7, 10, 8, 9}, while for X3

cover,

we would obtain X3
legal = {1, 4, 7, 8, 2, 3, 6, 9}. The latter

solution represents serial executions of T1 and T2. If some
events are uncontrollable, then this may rule out some of
the above solutions. For instance, if a2 is uncontrollable,
then the first choice of Xcover, {4, 8, 10}, now leads to an
empty solution (at Step 4 of Algorithm 1). In this case,
the symmetric solution X2

cover {2, 5, 6} is preferable, as it
does not require disabling a2.

Fig. 2. Automata Htotal and Hfinal

5. PROPERTIES OF ALGORITHMS

In this section, we prove the correctness of Algorithm 1.
We first prove a result about Hfinal, Proposition 4, then a
result about Glegal, Proposition 6, and conclude with the
main result, Theorem 8.

Proposition 4. At most one copy of each state of G re-
mains in Hfinal:

∀(x1H , xG) ∈ Xfinal,@x2H ∈ XH , x
1
H 6= x2H :

(x2H , xG) ∈ Xfinal

Proof 5. The proof is by contradiction. Let us suppose
that two copies of a state of G remain in Hfinal:

∃(x1H , x2H , xG) ∈ XH ×XH ×XG, x
1
H 6= x2H , such that:{
(x1H , xG) ∈ Xfinal

(x2H , xG) ∈ Xfinal

We use the notation x1 = (x1H , xG) and x2 = (x2H , xG).
Since x1 ∈ Xfinal, we know that this state is accessible
from at least one state (because a Trim operation was
performed). Hence, there exists a pair (xp, e) ∈ Xfinal×E
such that there exists a transition between xp and x1 in
Hfinal, i.e., (xp, e, x1) ∈ Tr(Hfinal). But by construction
of Htotal, there exists a red transition between xp and
x2, i.e., ∃t ∈ TRed such that t = (xp, e, x2). From the
cover algorithm and from the Trim operation on Htotal, we
know that all the red transitions are deleted by deleting
either one of the two states connected to each transition.
So for transition t, either xp or x2 should have been
deleted in Hfinal. If x2 was deleted, then the hypothesis
is wrong. On the other hand, if xp was deleted, then x1
was not accessible anymore and was also deleted. (The
same argument can be repeated for each xp such that

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2419



(xp, e, x1) ∈ Tr(Hfinal), since each one of them will be
connected to x2 by a red transition in Htotal.) We conclude
that the hypothesis that x1 and x2 both exist in Hfinal is
wrong. Q.E.D.

Proposition 6. The languages generated and marked by
Glegal and Hfinal are the same:

L(Glegal) =L(Hfinal)

Lm(Glegal) =Lm(Hfinal)

Proof 7. Let us prove first that the generated languages
of Glegal and Hfinal are equal, i.e., s ∈ L(Glegal) ⇔
s ∈ L(Hfinal). The proof is by induction on the length
of strings.
Base Case : ε ∈ L(Glegal) and ε ∈ L(Hfinal).
Induction hypothesis: Assume that t ∈ L(Glegal) iff t ∈
L(Hfinal) for any t of length n.
Induction step: (⇐) : Consider σ ∈ E such that tσ ∈
L(Hfinal). There exists

(
(x1H , x

1
G), (x2H , x

2
G)
)
∈ (Xfinal)

2

such that
(
(x1H , x

1
G), σ, (x2H , x

2
G)
)
∈ Tr(Hfinal). Since

L(Hfinal) ⊆ L(G), we have that tσ ∈ L(G). By definition
of Xlegal, x

1
G and x2G are elements of Xlegal. So tσ is also

an element of the language of Glegal, i.e., tσ ∈ L(Glegal).
(⇒) : Consider σ ∈ E such that tσ ∈ L(Glegal). There ex-
ists

(
x1G, x

2
G

)
∈ X2

legal such that
(
x1G, σ, x

2
G

)
∈ Tr(Glegal).

Since x1G and x2G are elements of Xlegal, then there ex-
ists

(
x1H , x

2
H

)
∈ X2

H such that
(
(x1H , x

1
G), σ, (x2H , x

2
G)
)
∈

Tr(Hfinal). So tσ is also an element of the language of
Hfinal, i.e., tσ ∈ L(Hfinal).
This completes the proof that L(Glegal) = L(Hfinal).

The second part of the proposition is so a consequence of
the first part. By construction, if xG is a marked state of
Glegal, then there exists xH ∈ XH such that (xH , xG) is
also marked in Hfinal. And as the languages generated by
the two automata are the same, then so are their marked
languages, i.e., Lm(Glegal) = Lm(Hfinal). Q.E.D.

Theorem 8. Algorithm 1 always produces a safe and non-
blocking solution.

Proof 9. First, we argue that Hfinal represents a safe and

non-blocking solution: (i) By construction, LHfinal ⊆ L↑Cam
and it is controllable with respect to L(G) and Euc; and

(ii) Moreover, Lm(Hfinal) ⊆ L↑Cam and Lm(Hfinal) =
L(Hfinal). The result is then immediate from Proposition
6. Q.E.D.

Remark 10. Algorithm 2 allows to choose between which
state to consider as “illegal” for each transition t ∈ TRed.
Since this choice is arbitrary, the solution provided by
Algorithm 1 will not be unique as it will depend on the
instantiation of the choices in Algorithm 2. Let us denote
by S the set of all the possible solutions to Problem 2:

S =
{
Xlegal ⊆ XG : Lm(Glegal) ⊆ L↑Cam,

L(Glegal) is controllable, and Lm(Glegal) = L(Glegal)
}
.

It is not hard to show that any Xlegal ∈ S can be obtained
from Algorithm 1 by proper selection of the set Xcover in
Step 3, which in turn is achieved by making the proper
choices in Algorithm 2. This means that we can, is so
desired, generate all the solutions in S by exhaustively
considering all the admissible choices in Algorithm 2.
And if we have generated all the solutions in S, we will

thereby have generated all the maximal state-partition-
based solutions, in the sense of set inclusion. We can only
find maximal solutions because in general the union of two
elements of S may not by in S itself, i.e., (X1, X2) ∈ S2 6⇒
X1 ∪X2 ∈ S.

6. CONCLUSION

Motivated by the fact that state-partition-based supervi-
sors are especially advantageous and/or required in several
application domains, we presented a new state-partition-
based method of controlling automata for enforcing a
regular language specification in a non-blocking manner.
Starting from a system model in the form of an automaton,
the algorithm that we presented constructs a partition of
the state set of the automaton that characterizes each
reachable state as legal or illegal. This partition must
satisfy the following properties: (i) transitions between
legal states are always legal while transitions from legal
to illegal states are always illegal and controllable; (ii)
the restriction of the original system to the set of le-
gal states is non-blocking. Hence, the partition induces
a state-partition-based supervisor that is safe and non-
blocking with respect to the given regular language spec-
ification. When applied exhaustively over all possible se-
lections within it, our algorithm generates all partitions
that satisfy the above two properties. Hence, all maximal
solutions are also generated. The choice of which maximal
solution(s) is/are better is application-dependent, and it
will be dictated by the chosen performance optimization
goal. For instance, in the concurrent software application
area discussed in Section 1, compilers could use profiling
to find the maximal solution that results in “maximum”
concurrency in practice.

Our methodology can be applied to controlling labeled
bounded Petri nets subject to regular language specifica-
tions, by constructing the reachability graph of the Petri
net and working with its automaton representation. In the
case where the obtained partition can be effected by linear
inequalities, the resulting supervisor can be implemented
by control places, which is advantageous in terms of run-
time overhead.

REFERENCES

C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Springer, second edition, 2008.

R. Cordone, A. Nazeem, L. Piroddi, and S. Reveliotis.
Maximally permissive deadlock avoidance for sequential
resource allocation systems using disjunctions of linear
classifiers. In IEEE 51st Annual Conference on Decision
and Control (CDC), 2012, pages 7244–7251, 2012.

L. Holloway, B. Krogh, and A. Giua. A survey of Petri net
methods for controlled discrete event systems. Discrete
Event Dynamic Systems: Theory and Applications, 7(2):
151–190, 1997.

M.V. Iordache and P.J. Antsaklis. Supervision based on
place invariants: A survey. Discrete Event Dynamic
Systems: Theory and Applications, 16(4):451–492, 2006.
ISSN 0924-6703.

S. Lafortune. Modeling and analysis of transaction ex-
ecution in database systems. IEEE Transactions on
Automatic Control, 33(5):439–447, May 1988.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2420



H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and
S. Mahlke. Optimal liveness-enforcing control of a class
of Petri nets arising in multithreaded software. IEEE
Transactions on Automatic Control, 58(5):1123–1138,
May 2013a.

H. Liao, Y. Wang, H.K. Cho, J. Stanley, T. Kelly, S. Lafor-
tune, S. Mahlke, and S. Reveliotis. Concurrency bugs
in multithreaded software: Modeling and analysis using
Petri nets. Discrete Event Dynamic Systems: Theory &
Applications, 23(2):157–195, June 2013b.

H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis,
T. Kelly, and S. Mahlke. Eliminating concurrency bugs
in multithreaded software: A new approach based on
discrete-event control. IEEE Transactions on Control
Systems Technology, 21(6):2067–2082, November 2013c.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world concur-
rency bug characteristics. In Architectural Support for
Programming Languages and Operating Systems, 2008.

J. O. Moody and P. J. Antsaklis. Supervisory Control
of Discrete Event Systems Using Petri Nets. Kluwer
Academic Publishers, Boston, MA, 1998.

A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune.
Designing compact and maximally permissive dead-
lock avoidance policies for complex resource allocation
systems through classification theory: The linear case.
IEEE Transactions on Automatic Control, 56(8):1818 –
1833, August 2011.

P. J. Ramadge and W. M. Wonham. Supervisory control
of a class of discrete event processes. SIAM J. Control
& Optimization, 25(1), 1987.

P. J. Ramadge and W. M. Wonham. The control of discrete
event systems. Proc. IEEE, 77(1):81–98, January 1989.

C. Seatzu, M. Silva, and J. H. Van Schuppen. Control
of Discrete-Event Systems. Automata and Petri net
Perspectives, volume 433. Springer London, 2013.

R.S. Sreenivas. On the existence of supervisory policies
that enforce liveness in discrete-event dynamic systems
modeled by controlled Petri nets. IEEE Transactions
on Automatic Control, 42(7):928–945, 1997.

Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and
S. Mahlke. Gadara: Dynamic deadlock avoidance for
multithreaded programs. In OSDI ’08 – Proceedings of
the 8th Usenix Symposium on Operating Systems Design
and Implementation, pages 281–294, 2008.

Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and
S. Mahlke. The theory of deadlock avoidance via discrete
control. In POPL ’09 – Proceedings of the 36th annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 252–263, 2009.

W. M. Wonham and P. J. Ramadge. On the supremal
controllable sublanguage of a given language. SIAM J.
Control & Optimization, 25(3):637–659, May 1987.

J. Yu and S. Narayanasamy. A case for an interleaving
constrained shared-memory multi-processor. In Proc.
36th International Symposium on Computer Architec-
ture, June 2009.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2421


