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Abstract: The goal of this paper is to study the H2-control for Markov Jump Linear Systems
(MJLS) assuming that the controller doesn’t have access to the Markov parameter but, instead,
there is a detector that emits signals which provides information on this parameter. The idea is
to use the information provided by this detector in order to design a feedback linear control that
stochastically stabilizes the closed loop system. A Linear Matrix Inequalities (LMI) formulation
is provided in order to achieve this goal. In the sequel we deal with the H2 control problem
and we show that again an LMI optimization problem can be formulated in order to design
a stochastically stabilizing feedback control with guaranteed H2-cost. We also present some
conditions under which our results recast the usual results for the H2 control of MJLS as
presented in Costa et al. (2004). The case with convex polytopic uncertainty on the parameters
of the system and on the transition probability matrix is also considered.
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1. INTRODUCTION
This paper deals with the H2 control problem for Markov
jump linear systems (MJLS) under partial information on
the jump parameter. We assume that the controller doesn’t
have direct access to the Markov parameter but, instead,
there is a detector that emits signals which provides
information on this parameter. Regarding the MJLS, the
partial observation problem may be associated either with
the state variable, the Markov chain, or yet with both
variables, which is of course the hardest problem. For the
control problem with partial observations of the Markov
chain the readers are referred, for instance, to Caines
and Zhang (1995); Everdij and Blom (1996); Fragoso
(1988). The case with partial information of the state
and perfect measurement of the Markov chain (including
the H2 control problem) is treated, for instance, in Costa
and Fragoso (2007); Costa and Tuesta (2003); de Farias
et al. (2000); Dufour and Elliott (1998); Fragoso and Costa
(2010). The case in which both the state variable and
the Markov chain are only partially observable was also
studied in Dufour and Elliott (1998). The H2-norm control
problem of discrete-time Markov jump linear systems
when part of, or the total of the Markov states is not
accessible to the controller was addressed in do Val et al.
(2002). In this case the non-observed part of the Markov
states is grouped in a number of clusters of observations,
with the case of a single cluster retrieving the situation
when no Markov state is observed.
In this paper we first analyze the stochastic stabilizabil-
ity problem through a feedback control for the MJLS,

using the signal from the detector instead of the un-
known Markov parameter. We show that the existence
of a solution to a set of LMIs provides a stochastically
stabilizing feedback gain for the MJLS. In the sequel it
is provided an LMI optimization formulation in order to
design a stochastically stabilizing feedback control with
guaranteed H2-cost. Notice that following this approach
it is possible to get explicit numerical tools for the H2
control problem of MJLS with partial information, unlike
other approaches as, for instance, in Caines and Zhang
(1995); Everdij and Blom (1996); Fragoso (1988, 1990).
We also present conditions (one of them always satisfied
for the limit case in which the detector provides perfect
information on the Markov parameter), under which our
results recast the usual results for the H2 control of MJLS
as presented in Costa et al. (2004).
The paper is organized as follows. In section 2 we present
the notation adopted in this paper. In section 3 we intro-
duce the problem formulation, assumptions, the definition
of stochastic stabilizability, and some auxiliary results. In
section 4 we present in Theorem 6 the first main result
of the paper, dealing with the stochastic stabilizability
problem. In section 5 we present in Theorem 15 the second
main result of the paper, dealing with the guaranteed H2-
control problem. Section 6 deals with the case in which
there is convex polytopic uncertainty on the the matrices
of the system and on the transition probability matrix of
the Markov chain. The paper is concluded in Section 7
with some numerical examples.
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2. NOTATION
For X and Y complex Banach spaces we set B(X,Y) the
Banach space of all bounded linear operators of X into Y,
with the uniform induced norm represented by ∥.∥. For
simplicity we set B(X) , B(X,X). The spectral radius of
an operator T ∈ B(X) is denoted by rσ(T ). If X is a Hilbert
space then the inner product is denoted by ⟨.; .⟩, and for
T ∈ B(X), T ∗ denotes the adjoint operator of T . As usual,
T ≥ 0 (T > 0 respectively) will denote that the opera-
tor T ∈ B(X) is positive-semi-definite (positive-definite).
In particular, we denote respectively by Rn and Cn the
n dimensional real and complex Euclidean spaces and
B(Cn,Cm) (B(Rn,Rm) respectively) the normed bounded
linear space of all m × n complex (real) matrices, with
B(Cn) , B(Cn,Cn) (B(Rn) , B(Rn,Rn)). Unless other-
wise stated, ∥.∥ will denote the standard norm in Cn, and
for M ∈ B(Cn,Cm), ∥M∥ denotes the induced uniform
norm in B(Cn,Cm). The superscript ∗ indicates the conju-
gate transpose of a matrix, while ′ indicates the transpose.
Clearly for real matrices ∗ and ′ will have the same mean-
ing. The identity matrix will be denoted by I and the trace
operator by tr(.). For N integer set N , {1, . . . , N}. Define
Hn,m as the linear space made up of all N -sequences of
complex matrices V = (V1, . . . , VN ) with Vi ∈ B(Cn,Cm),
i ∈ N. For simplicity, we set Hn , Hn,n and Hn+ such
that V = (V1, . . . , VN ) ∈ Hn+ if V ∈ Hn and Vi ≥ 0 for
each i ∈ N. It is easy to verify that Hn,m is a Hilbert
space when equipped with the inner product ⟨ .; .⟩ given,
for V = (V1, . . . , VN ) and S = (S1, . . . , SN ) in Hn,m, by

⟨V ; S⟩ ,
N∑

i=1
tr(V ∗

i Si). (1)

For Mi ∈ B(Cn,Cm), i ∈ N, we set diag[Mi] the Nm×Nn
block diagonal matrix formed with Mi in the diagonal and
zero elsewhere, that is,

diag[Mi] ,

M1 · · · 0
...

. . .
...

0 · · · MN

 .

We define the operators φ and φ̂ in the following way: for
V = (V1, . . . , VN ) ∈ Hn,m, considering Vi = [vi1 · · · vin] ∈
B(Cn,Cm), vij ∈ Cm

φ(Vi) ,

vi1
...

vin

 ∈ Cmn and φ̂(V ) ,

 φ(V1)
...

φ(VN )

 ∈ CNmn.

For two matrices A and B in B(Cn) we consider A ⊗
B ∈ B(Cn2) as the Kronecker product between these
matrices (see Brewer (1978)).
Consider the stochastic basis (Ω, P, F , {Fk}) and denote
by E(.) the expected value operator, and by E(.|.) the
conditional expected value. We denote by Ln

2 the Hilbert
space of sequences of random vectors z(k), z(k) : Ω → Rn,
with z(k) Fk-measurable, such that

∥z∥2
2 ,

∞∑
k=0

E(∥z(k)∥2) < ∞. (2)

For A ∈ F we set 1A as the Dirac measure or equivalently,
the indicator function of the event A (thus 1A(ω) = 1 if
ω ∈ A, and 0 otherwise).

3. PROBLEM FORMULATION, ASSUMPTIONS AND
DEFINITIONS

We consider in this section the following controlled
discrete-time linear system with Markov jumps on a prob-
abilistic space (Ω, P, F):

x(k + 1) = Aθ(k)x(k) + Bθ(k)u(k), (3)
x(0) = x0, θ(0) = θ0. (4)

Here the state variable is given by x(k) ∈ Rn and the
control variable by u(k) ∈ Rm. We consider that θ(k) is
a Markov chain taking values in the set N = {1, . . . , N}
with transition probability matrix P = [pij ] satisfying:
Hypothesis 1. For each j ∈ N,

N∑
i=1

pij > 0. (5)

We assume that θ(k) is not directly observed but, instead,
there is a finite set M = {1, . . . M} such that a signal
θ̂(k) ∈ M is emitted associated to the Markov chain θ(k),
independently of all previous and present values of the
other processes. More precisely, let F̂0 be the σ-field gen-
erated by {x(0), u(0), θ(0)} and F̂k be the σ-field generated
by {x(0), u(0), θ(0), θ̂(0), . . . , x(k), u(k), θ(k)} (therefore
excluding θ̂(k) at time k). We assume that θ̂(k) ∈
{1, . . . , M} is related to θ(k) in such a way that

P (θ̂(k) = ℓ | F̂k) = P (θ̂(k) = ℓ | θ(k)) = αθ(k)ℓ, ℓ ∈ M,
(6)

with
∑M

ℓ=1 αiℓ = 1 for each i ∈ N. Therefore we have that
at each time k we observe the signal θ̂(k). We define for
each i ∈ N,

Ii , {ℓ ∈ M; αiℓ > 0} = {ki
1, . . . , ki

τ i},

I ,
N∪

i=1
Ii ⊂ M.

We have 2 extreme situations:
a) M = N and αii = 1, for i ∈ N, which would

correspond to the situation in which θ̂(k) = θ(k), that
is, θ(k) is known. In this case Ii = {i} and I = N.

b) M = 1 and αi1 = 1 for all i ∈ N, which corresponds
to the situation in which θ̂(k) doesn’t provide any
information about θ(k), that is, θ(k) is unknown.

We will consider state-feedback controls using the observed
emitted signal θ̂(k) instead of the unknown variable θ(k),
that is, u(k) will be of the following form:

u(k) = K
θ̂(k)x(k), (7)

for Kℓ ∈ B(Rn,Rm), ℓ ∈ I. Associated to a control as in
(7) set for i ∈ N, ℓ ∈ Ii,

Aiℓ , Ai + BiKℓ. (8)

We define for each i ∈ N the following operators E , T , L
in B(Hn). For V = (V1, . . . , VN ) ∈ Hn, and i, j ∈ N,
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Ei(V ) =
N∑

j=1
pijVj , (9)

Tj(V ) =
N∑

i=1

∑
ℓ∈Ii

pijαiℓAiℓViA
′
iℓ, (10)

Li(V ) =
∑
ℓ∈Ii

αiℓA
′
iℓEi(V )Aiℓ. (11)

For R = {Riℓ ∈ B(Rn); i ∈ N, ℓ ∈ Ii}, define for j ∈ N,

Dj(R) =
N∑

i=1

∑
ℓ∈Ii

pijαiℓRiℓ. (12)

The following result will be useful in the sequel.
Proposition 2. We have that T ∗ = L.

Proof. See Costa et al. (2014). 2

We recall the following definition of stochastic stabilizabil-
ity.
Definition 3. We say that system (3) is stochastically
stabilizable if there exists Kℓ ∈ B(Rn,Rm), ℓ ∈ I, such
that for u(k) as in (7) we have, for every initial condition
x0 with finite second moment and every initial Markov
state θ0, that

∥x∥2
2 =

∞∑
k=0

E(∥x(k)∥2) < ∞. (13)

We denote by K the set of feedback gains K = {Kℓ; ℓ ∈ I},
such that stochastically stabilizes system (3).

Consider u(k) as in (7). Define
Qi(k) = E(x(k)x(k)∗1{θ(k)=i}), i ∈ N,

and Q(k) = (Q1(k) . . . , QN (k)) ∈ Hn. Let Fk stand for the
σ-field generated by {x(0), θ(0), θ̂(0), . . . , x(k), θ(k), θ̂(k)}.
The next proposition gives a time evolution for Q(k).
Proposition 4. We have that

Q(k + 1) = T (Q(k)). (14)

Proof. See Costa et al. (2014). 2

Define the matrices

Φij =
[
pijαiki

1
I · · · pijαiki

τi
I
]

, Φ =

 Φ11 · · · ΦN1
...

. . .
...

Φ1N · · · ΦNN

 ,

Ψi =

 Aiki
1

⊗ Aiki
1

...
Aiki

τi
⊗ Aiki

τi

 , Ψ = diag[Ψi], A = ΦΨ

A ∈ B(RNn2
); Φ ∈ B(Rn2(τ1+...+τN ),RNn2

)
Ψi ∈ B(Rn2

,Rn2τ i

), Ψ ∈ B(RNn2
,Rn2(τ1+...+τN )). (15)

We have the following matricial representation for the time
evolution of Q(k).
Proposition 5. We have that

φ̂(Q(k + 1)) = Aφ̂(Q(k)). (16)

Proof. See Costa et al. (2014). 2

4. STOCHASTIC STABILIZABILITY
In this section we present conditions for stochastic sta-
bilizability of system (3). In subsection 4.1 we derive
conditions (sufficient and necessary and sufficient) for the
general Markov chain setting. In this scenario, the LMI
formulation gives a sufficient condition for stochastic sta-
bilizability. Subsection 4.2 deals with some special cases
(including the Bernoulli jump case, which corresponds to
the situation in which pij = pj > 0 for all i, j) where we
derive necessary and sufficient LMI conditions.

4.1 General Markov Chain

The following result presents conditions for stochastic
stabilizability of system (3).
Theorem 6. Consider the following assertions:

i) System (3) is stochastically stabilizable.
ii) There exists Kℓ ∈ B(Rn,Rm), ℓ ∈ I such that for Aiℓ

as in (8), and A as in (15), we have that rσ(A) < 1
(or equivalently, rσ(T ) < 1 or rσ(L) < 1).

iii) There exists Kℓ ∈ B(Rn,Rm), ℓ ∈ I and V ∈ Hn,
V > 0, such that for Aiℓ as in (8),

V − T (V ) > 0. (17)
iv) There exists Kℓ ∈ B(Rn,Rm), ℓ ∈ I and P ∈ Hn,

P > 0, such that for Aiℓ as in (8),
P − L(P ) > 0. (18)

v) There exists Kℓ ∈ B(Rn,Rm), Gℓ, ℓ ∈ I, Riℓ, i ∈ N,
ℓ ∈ Ii, such that for Aiℓ as in (8),[

Riℓ AiℓGℓ

⋆ Gℓ + G′
ℓ − Di(R)

]
> 0, i ∈ N, ℓ ∈ Ii. (19)

We have that i) ⇔ ii) ⇔ iii) ⇔ iv) and v) =⇒ iii).

Proof. See Costa et al. (2014). 2

4.2 Some Necessary and Sufficient LMI Conditions
Let us provide next a hypothesis so that all assertions in
Theorem 6 are equivalent.
Hypothesis 7. Assume that M ≤ N , M ⊂ N, and for each
i, k ∈ N and ξ ∈ Ik, we have that piξ = pik.

Notice that the case M = N and αii = 1 for i ∈ N, so
that Ii = {i} (which corresponds to the situation in which
θ̂(k) = θ(k), that is, θ(k) is known) satisfies Hypothesis
7 since that in this case Ik = {k} and clearly piξ = pik

for ξ ∈ Ik. The case in which pij = 1
N for all i, j ∈ N

(which corresponds to the situation in which all modes
are independent and equally like to occur) also satisfies
Hypothesis 7. In what follows set I = (I1, . . . , IN ) ∈ Hn+

as (notice that, from Hypothesis 1,
∑N

i=1 pij > 0)

Ij ,
N∑

i=1
pijI > 0. (20)

We have the following proposition:
Proposition 8. If Hypothesis 7 is satisfied then in Theorem
6 we have that i) =⇒ v).

Proof. See Costa et al. (2014). 2

From Theorem 6 and Proposition 8 we have the following
corollary.
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Corollary 9. If there exists Lℓ, Gℓ, Riℓ, i ∈ N, ℓ ∈ Ii, such
that [

Riℓ AiGℓ + BiLℓ

⋆ Gℓ + G′
ℓ − Di(R)

]
> 0, i ∈ N, ℓ ∈ Ii (21)

then system (3) is stochastically stabilizable with Kℓ =
LℓG

−1
ℓ . Moreover if Hypothesis 7 holds then system (3)

is stochastically stabilizable if and only if there exists Lℓ,
Gℓ, Riℓ, i ∈ N, ℓ ∈ Ii satisfying (21).

Proof. See Costa et al. (2014). 2

The Bernoulli Jump Case:
We consider now another particular scenario in which
again a condition written as an LMI formulation is nec-
essary and sufficient for stochastic stabilizability of sys-
tem (3). This is achieved by assuming that the transition
probabilities of the Markov chain satisfy:
Hypothesis 10. For some p1 > 0, . . . , pN > 0 we have that

pij = pj , ∀ i, j ∈ N, (22)

which is the so-called Bernoulli jump case. Defining now
the operator

D̄(R) =
N∑

i=1

∑
ℓ∈Ii

piαiℓRiℓ, (23)

we have the following result:
Theorem 11. The following assertions are equivalent.

a) System (3) is stochastically stabilizable.
b) There exists Kℓ ∈ B(Rn,Rm), ℓ ∈ I and X > 0, such

that for Aiℓ as in (8),

X −
N∑

i=1

∑
ℓ∈Ii

piαiℓAiℓXA′
iℓ > 0. (24)

c) There exists Kℓ ∈ B(Rn,Rm), G, Riℓ, i ∈ N, ℓ ∈ Ii,
such that for Aiℓ as in (8),[

Riℓ AiℓG
⋆ G + G′ − D̄(R)

]
> 0, i ∈ N, ℓ ∈ Ii. (25)

Proof. see Costa et al. (2014) 2

From Theorem 11 the following corollary is immediate.
Corollary 12. System (3) is stochastically stabilizable if
and only if there exists Lℓ, G, Riℓ, i ∈ N, ℓ ∈ Ii such that[

Riℓ AiG + BiLℓ

⋆ G + G′ − D̄(R)

]
> 0, i ∈ N, ℓ ∈ Ii. (26)

Moreover if (26) holds then system (3) is stochastically
stabilizable with Kℓ = LℓG

−1.

Proof. See Costa et al. (2014). 2

5. H2-CONTROL
5.1 General Markov Chain
We consider now the following controlled discrete-time
linear system with Markov jumps:

x(k + 1) = Aθ(k)x(k) + Bθ(k)u(k) + Eθ(k)w(k), (27)
z(k) = Cθ(k)x(k) + Dθ(k)u(k), (28)
x(0) = x0, θ(0) ∼ µ. (29)

where the output variable is given by z(k) ∈ Rp, the
input variable by w(k) ∈ Rr and the initial probability

for θ0 given by P(θ0 = i) = µi > 0, i ∈ N . In what
follows we assume, for the definition of the H2 norm, that
rσ(A) < 1 (see (15)) and that es ∈ Rr is the vector formed
by zeros except for the sth element, which is equal to 1.
In addition, consider system (27) with a stochastically
stabilizing control u(k) = K

θ̂(k)x(k) as in (7). Set for
i ∈ N, ℓ ∈ Ii,

Ciℓ = Ci + DiKℓ.
The H2 norm associated to system (27)-(28) with the
feedback control gain Kℓ, ℓ ∈ I, denoted by ∥GK∥2, is
defined as follows.
Definition 13. Denote by zs the output (28) with initial
condition x0 = 0 and µi = P(θ0 = i) > 0, i ∈ N, in (29)
and w(k) = 0 for k ≥ 1 and w(0) = es. The H2 norm is
defined as

∥GK∥2
2 =

r∑
s=1

∥zs∥2
2. (30)

Notice that this definition is as in Definition 4.7 of Costa
et al. (2004), and when restricted to the so-called deter-
ministic case (N = 1 and p11 = α11 = 1), it reduces to
the usual H2-norm. As in Proposition 4.8 of Costa et al.
(2004) we have the following result.
Proposition 14. Let V ∈ Hn+ and P ∈ Hn+ be the
unique solution of the observability and controllability
Grammians respectively:

V = T (V ) + E, (controllability Grammian) (31)
P = L(P ) + C, (observability Grammian) (32)

where E = (E1, . . . , EN ) ∈ Hn, C = (C1, . . . , CN ) ∈ Hn

are given by

Ej =
N∑

i=1
µipijEiE

′
i, Ci =

∑
ℓ∈Ii

αiℓC
′
iℓCiℓ.

Then

∥GK∥2
2 =

N∑
i=1

∑
ℓ∈Ii

αiℓ tr(CiℓViC
′
iℓ) =

N∑
i=1

µi tr(E′
iEi(P )Ei).

Proof. See Costa et al. (2014). 2

Consider now the following LMI optimization problem.

Υ = inf
Wiℓ,Riℓ,Gℓ,Lℓ

N∑
i=1

∑
ℓ∈Ii

αiℓ tr(Wiℓ)

subject to: for i ∈ N, ℓ ∈ Ii,[
Riℓ − µiEiE

′
i AiGℓ + BiLℓ

⋆ Gℓ + G′
ℓ − Di(R)

]
> 0, (33)[

Wiℓ CiGℓ + DiLℓ

⋆ Gℓ + G′
ℓ − Di(R)

]
≥ 0. (34)

From Proposition 14 we get the following result.
Theorem 15. For any feasible solution Wiℓ, Riℓ, Gℓ, Lℓ of
the LMIs (33), (34), we get that K = {Kℓ = LℓG

−1
ℓ , ℓ ∈

I} ∈ K, and ∥GK∥2
2 ≤

∑N
i=1

∑
ℓ∈Ii

αiℓ tr(Wiℓ). Thus,
infK∈K ∥GK∥2

2 ≤ Υ.

Proof. See Costa et al. (2014). 2

5.2 Some Strengthened Results
As in Proposition 8, for the case in which Hypothesis 7 is
satisfied, Theorem 15 can be strengthened as follows.
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Proposition 16. If Hypothesis 7 holds then in Theorem 15
we have that infK∈K ∥GK∥2

2 = Υ.

Proof. See Costa et al. (2014). 2

The Bernoulli Jump Case:
We suppose now that Hypothesis 10 holds. The first result
on H2 analysis goes next.
Proposition 17. We have that

∥GK∥2
2 =

N∑
i=1

∑
ℓ∈Ii

piαiℓ tr
{

CiℓXC ′
iℓ

}
, (35)

where X ∈ Rn×n is the unique solution to the following
generalized Lyapunov equation:

X =
N∑

i=1

∑
ℓ∈Ii

piαiℓAiℓXA′
iℓ +

N∑
i=1

µiEiE
′
i. (36)

Proof. See Costa et al. (2014) 2

The preceding proposition yields the following result,
regarding the synthesis of H2 optimal controllers. Set

ζ(W ) =
N∑

i=1

∑
ℓ∈Ii

piαiℓ tr {Wiℓ} . (37)

It will be shown next that the design of H2 optimal
controllers may be expressed by the following optimization
problem, with decision matrices Wiℓ, G, Riℓ, and Lℓ of
appropriate dimensions for ℓ ∈ I, i ∈ N:

Υ̂ = inf ζ(W ) (38a)
subject to [

Wiℓ CiG + DiLℓ

⋆ G + G′ − D̄(R)

]
> 0, (38b)[

Riℓ − µi

pi
EiE

′
i AiG + BiLℓ

⋆ G + G′ − D̄(R)

]
> 0. (38c)

Theorem 18. For any feasible solution of the LMIs (38b),
(38c), we get that K = {Kℓ = LℓG

−1, ℓ ∈ I} ∈ K, and
∥GK∥2

2 ≤ ζ(W ). Moreover infK∈K ∥GK∥2
2 = Υ̂.

Proof. See Costa et al. (2014) 2

6. CONVEX POLYTOPIC UNCERTAINTY
In this section we consider the matrices [A B] ,
[A1 . . . AN B1 . . . BN ] in (3) or (27) and the transition
probability matrix P are not precisely known but belong
to a polytopic domain, that is, ([A B] ,P) ∈ Γ, where

Γ ,
{(

[A B] ,P
)

; [A B] =
ξ∑

s=1
γs [As Bs] ,

P =
ξ∑

s=1
γsPs, γ ∈ Λ

}
,

and Λ , {γ = (γ1, . . . , γξ);
∑ξ

s=1 γs = 1, γs ≥ 0, s =
1, . . . , ξ}, with [As Bs] = [As

1 . . . As
N Bs

1 . . . Bs
N ] and the

transition probability matrices Ps = [ps
ij ], s = 1, . . . , ξ,

assumed to be known. We present next the definition of
robust stochastic stabilizability.
Definition 19. We say that system (3) is robust sto-
chastically stabilizable if there exists Kℓ ∈ B(Rn,Rm),

ℓ ∈ I, such that for u(k) as in (7) we have, for every(
[A B] ,P

)
∈ Γ, every initial condition x0 with finite

second moment and every initial Markov state θ0, that
(13) holds. We denote by Kr the set of feedback gains
K = {Kℓ; ℓ ∈ I}, such that robust stochastically stabilizes
system (3).

We present next a sufficient condition for the existence of
K ∈ Kr.
Proposition 20. Suppose that there exists Lℓ, Gℓ, Riℓ,
i ∈ N, ℓ ∈ Ii, such that[
Riℓ As

i Gℓ + Bs
i Lℓ

⋆ Gℓ + G′
ℓ − Ds

i (R)

]
> 0, i ∈ N, ℓ ∈ Ii, s = 1, . . . , ξ,

(39)
where Ds

j (R) =
∑N

i=1
∑

ℓ∈Ii
ps

ijαiℓRiℓ. Then system (3)
is robust stochastically stabilizable with K = {Kℓ =
LℓG

−1
ℓ , ℓ ∈ I} ∈ Kr.

Proof. See Costa et al. (2014). 2

Consider now the following LMI optimization problem.

Υ = inf
Wiℓ,Riℓ,Gℓ,Lℓ

N∑
i=1

∑
ℓ∈Ii

αiℓ tr(Wiℓ)

subject to: for i ∈ N, ℓ ∈ Ii, s = 1, . . . , ξ,[
Riℓ − µiEiE

′
i As

i Gℓ + Bs
i Lℓ

⋆ Gℓ + G′
ℓ − Ds

i (R)

]
> 0, (40)[

Wiℓ CiGℓ + DiLℓ

⋆ Gℓ + G′
ℓ − Ds

i (R)

]
≥ 0. (41)

We have now a robust version of Theorem 15.
Proposition 21. For any feasible solution Wiℓ, Riℓ, Gℓ, Lℓ

of the LMIs (40), (41), we get that K = {Kℓ = LℓG
−1
ℓ , ℓ ∈

I} ∈ Kr, and ∥GK∥2
2 ≤

∑N
i=1

∑
ℓ∈Ii

αiℓ tr(Wiℓ). Thus,
infK∈Kr ∥GK∥2

2 ≤ Υ.

Proof. See Costa et al. (2014) 2

7. NUMERICAL EXAMPLES
Example 1

Consider two operation modes, and a binary detector of
the form

[αiℓ] =
[

γ 1 − γ
1 − γ γ

]
, γ ∈ [0, 1], (42)

so that N = M = 2. The parameter γ determines the
quality of the estimator; for instance, detection is perfect
for γ = 1, and of little use when γ = 0.5. Our objective in
this simulation is to investigate how the proposed design
methods depend upon the quality of the estimator, as far
as the guaranteed H2 cost is concerned.
We also consider in this example the following parameters,
chosen randomly:

A1 =

 0.7017 −1.2276 0.3931 −0.6368
−0.4876 −0.6699 −1.7073 −1.0026
1.8625 1.3409 0.2279 −0.1856
1.1069 0.3881 0.6856 −1.0540

 ,
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A2 =

−0.0715 −0.5420 0.6716 0.6250
0.2792 1.6342 −0.5081 −1.0473
1.3733 0.8252 0.8564 1.5357
0.1798 0.2308 0.2685 0.4344

 ,

along with

B1 = B2 =
[
I2
02

]
, C1 = C2 =

[
I4

02×4

]
,

D1 = D2 =
[
04×2
I2

]
, E1 = E2 = I4,

where In, 0n and 0n×m stand for n × n identity and
zero matrices, and n × m zero matrices, respectively. The
initial distribution of the Markov chain was picked as
µ1 = µ2 = 0.5, and the transition matrix of the Markov
chain was considered in the experiment as

P =
[
0.6942 0.3058
0.6942 0.3058

]
,

which fits within the Bernoulli jump case. We obtained
in this case the results shown in Figure 1, where the
guaranteed H2 cost from Theorem 15 is compared with
the benchmark cost from Theorem 18. As we can see, the
solutions coincide in the “exact” detector scenario that
γ ∈ {0, 1}, but the cost from Theorem 15 degrades for
worse detectors. The worst H2 cost corresponds to the
maximal entropy scenario (γ = 0.5) where, as anticipated,
the detector’s output is of little use in determining the
current operation mode.
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Fig. 1. Example 1: H2 cost Υ guaranteed by Theorem
15 (solid), and optimal/exact H2 cost (dashed). The
optimal cost coincides with Υ̂ (corresponding to The-
orem 18), as expected.

Example 2
In this section we consider Samuelson’s macroeconomic
model, as in Blair and Sworder (1975). In this case the
system parameters are as in (Costa et al., 2004, Section
8.1.2), and we assume that three possible symbols can
be detected (M = 3). The second and third symbols
correspond precisely to the second and third operation
modes (α22 = α33 = 1), but we suppose that, whenever
the first symbol is detected, there is a probability that
the current operation mode is actually “boom” instead
of “normal”. The probability is governed by a parameter
0 ≤ γ ≤ 0.6, so that:

α11 = 1 − γ, α12 = γ. (43)
In this case, the numerical results are shown in Figure
2, where the guaranteed H2 cost Υ is shown for different
values of the probability of erroneous detection γ. As we
can see, in this example the proposed control design can
be employed in situations where the first operation mode
is erroneously detected as frequently as 60% of the time.
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Fig. 2. Example 2: H2 cost guaranteed by Theorem 15.
REFERENCES

W. P. Blair and D. D. Sworder. Feedback control of a
class of linear discrete systems with jump parameters
and quadratic cost criteria. International Journal of
Control, 21:833–844, 1975.

J. W. Brewer. Kronecker products and matrix calculus
in system theory. IEEE Transactions on Circuits and
Systems, CAS-25:772–781, 1978.

P. E. Caines and J. Zhang. On the adaptive control of jump
parameter systems via nonlinear filtering. SIAM Journal
on Control and Optimization, 33:1758–1777, 1995.

O. L. V. Costa and M. D. Fragoso. A separation principle
for the H2-control of continuous-time infinite Markov
jump linear systems with partial observations. Journal
of Mathematical Analysis and Applications, 331:97–120,
2007.

O. L. V. Costa and E. F. Tuesta. Finite horizon quadratic
optimal control and a separation principle for Markovian
jump linear systems. IEEE Transactions on Automatic
Control, 48:1836–1842, 2003.

O. L. V. Costa, M. D. Fragoso, and R. P. Marques.
Discrete-Time Markov Jump Linear Systems. Springer-
Verlag, 2004.

O. L. V. Costa, M. D. Fragoso, and M. G. Todorov. A
new approach for the H2 control of Markov jump linear
systems with partial information. Technical report,
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