
A General Approach for Synthesis of
Supervisors for Partially-Observed

Discrete-Event Systems ?

Xiang Yin ∗ Stéphane Lafortune ∗

∗Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109, USA.

(e-mail:{xiangyin,stephane}@umich.edu)

Abstract: We revisit the synthesis of supervisors for partially-observed discrete-event systems
from a new angle, based on the construction of a new structure called the All Inclusive Controller
(or AIC). We consider control problems for safety specifications, where the legal language is a
prefix-closed sublanguage of the system language. We define the AIC as a bipartite transition
system that embeds all safe supervisors and thus all controllable and observable sublanguages
of the legal language. The structure of the AIC is that of a bipartite graph, reminiscent of
a game between the supervisor and the system, with (i) control states, where all safe control
decisions are enumerated, and (ii) system states, where all feasible observable system events are
executed. The states of the AIC are information states, i.e., subsets of system states. We present
an algorithm for the construction of the AIC. This algorithm exploits the pre-computation of
the so-called extended specification, which makes the safety of a control state a function of the
current information state alone, thereby allowing for on-the-fly construction of the AIC, if so
desired. We discuss the properties of the AIC. We also describe how the AIC can be used for
synthesis of supervisors that possess a desired maximality property.

Keywords: Discrete Event Systems; Supervisory Control and Automata; Partial Observation.

1. INTRODUCTION

This paper is concerned with the control of partially-
observed Discrete Event Systems (DES). Control problems
for DES arise in the study of complex automated systems
where the behavior is inherently event-driven, as well as
in the study of discrete abstractions of continuous, hybrid,
and/or cyber-physical systems. The goal in this paper
is to restrict the behavior of a DES within a prefix-
closed legal language, while accounting for the presence of
uncontrollable and unobservable events, due to the limited
actuation and sensing capabilities in the plant. Unlike the
fully-observed case, synthesizing a supervisor that achieves
some specification in the partially-observed case is more
difficult to deal with, since no supremal solution exists in
general. Thus, more general synthesis methodologies for
supervisors under safety specifications are needed.

A number of other works have considered this prob-
lem. The control of centralized partially-observed DES
was initially studied by Lin and Wonham [1988], Cieslak
et al. [1988]. The problem of synthesizing a safe and non-
blocking partial observation supervisor was shown to be
decidable [Inan, 1994] and solvable [Yoo and Lafortune,
2006]. To deal with computational complexity of off-line
synthesis, online schemes for the computation of the su-
pervisor were proposed in Heymann and Lin [1994] and
Ben Hadj-Alouane et al. [1996]. In [Ben Hadj-Alouane

? This work was partially supported by the NSF Expeditions in
Computing project ExCAPE: Expeditions in Computer Augmented
Program Engineering (grant CCF-1138860).

et al., 1996], the authors gave an online algorithm, which
computes a particular type of maximal solution for a
prefix-closed language specification. In [Yoo and Lafor-
tune, 2006], where the prefix-closed assumption was re-
laxed, the authors provided an algorithm that returns a
nonblocking solution to this problem; however, the max-
imal property cannot be guaranteed. This problem was
also studied from different angles by Overkamp and van
Schuppen [2000] and Arnold et al. [2003]. An alternative
approach to the partial-observation control problem was
studied by allowing the supervisor to be nondeterministic.
Control using nondeterministic supervisors was first advo-
cated by Inan [1994] and extended by Kumar et al. [2005],
in which a weaker notion of observability was studied.

Recently, a new structure called “most permissive observ-
er” was studied in dynamic sensor activation problems in
DES by Cassez and Tripakis [2008] and Dallal and Lafor-
tune [To appear]. This structure captures all controllers
(sensor activation policies) maintaining K-diagnosability.
In this paper, motivated by this previous work, we define a
new structure called All Inclusive Controller (AIC). How-
ever, what we aim to solve here is the standard supervisory
control problem under partial observation. In this new
structure, we enumerate all “safe” control decisions that
are possible at each information state. This structure con-
tains all possible control policies that generate controllable
and observable sublanguages of the specification; this jus-
tifies naming this structure the “all inclusive controller”.
The AIC can be used for finding one “optimal” solution
with respect to some cost criterion.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 2422

Compared with previous approaches, the main contribu-
tion of this paper is that we present a general approach for
synthesizing a supervisor by defining a new deterministic
structure and provide an algorithm for constructing this
structure. The structure of the AIC has the following prop-
erties: (i) The AIC is defined as a deterministic bipartite
transition system. This structure provides a more readily
interpretable solution to this problem, since the alterna-
tion of states in the AIC captures the alternation between
control decisions and observations; (ii) The construction of
the AIC can be achieved on-the-fly, if so desired, since we
prove that safety of a control decision is fully determined
by the current information state, rather than by looking
forward or iterating; and (iii) The structure of the AIC
contains all solutions to this problem. Thus, it can serve
as a basis for finding one maximal and/or one “optimal”
solution w.r.t. some cost criterion.

This paper is organized as follows. Section 2 describes the
definitions related to the information state and defines
the total controller. In Section 3, we define the recursive
structure of the AIC for the safety control problem. In
Section 4, we define the extended specification, establish
a number of results on safety, and provide an algorithm
to construct the AIC by using the extended specification.
Section 5 establishes the correctness of the AIC and shows
how to synthesize a supervisor from it. We illustrate the
application of the AIC to a collision avoidance problem in
Section 6. Finally, we conclude in Section 7. Due to space
constraints, all proofs have been omitted.

2. SYSTEM MODEL, INFORMATION STATE AND
TOTAL CONTROLLER

2.1 System Model

We assume basic knowledge of DES and common notations
(see, e.g., [Cassandras and Lafortune, 2008]). We model
a DES as a deterministic finite-state automaton G =
(X,E, f, x0, Xm), where X is the finite set of states, E
is the finite set of events, f : X × E → X is the partial
transition function where f(x, e) = y means that there is
a transition labeled by event e from state x to state y, x0
is the initial state, and Xm is the set of marked states.
f is extended to X × E∗ in the usual way. The behavior
of the system is described by the prefix-closed language
L(G), generated by G. In this paper, we only deal with
prefix-closed languages (i.e., blocking is not considered).
Therefore, we assume that Xm = X.

In the supervisory control framework [Ramadge and Won-
ham, 1987], a sublanguage K ⊆ L(G) represents the
desired or legal/safe behavior. A supervisor is imposed on
G with the task of dynamically enabling/disabling events
in order to achieve such a specification. The event set E
is partitioned into two disjoint subsets: Ec, the subset of
controllable events, and Euc, the subset of uncontrollable
events. Under the partial observation assumption [Lin and
Wonham, 1988], E is also partitioned into the subset of
observable events, Eo, and the subset of unobservable
events, Euo. The natural projection, P : E∗ → E∗o , is
defined in the usual manner (see, e.g., [Cassandras and
Lafortune, 2008]). A partial observation supervisor is a
function SP : E∗o → 2E , with the following constraints:

Euc ⊆ SP (s),∀s ∈ E∗o . We say that a control decision is
admissible if it satisfies the above constraint and define
Γ = {γ ∈ 2E : Euc ⊆ γ} as the set of admissible control
decisions. The notation SP /G is used to represent the
controlled system and the language generated by SP /G,
denoted by L(SP /G), is defined recursively in the usual
manner.

For the sake of simplicity, we use the algorithm in the
appendix of [Ben Hadj-Alouane et al., 1996] to pre-process
the trim automaton that generates K, denoted by H where
L(H) = K, and the original system model G, if necessary,
such that the resulting H and G satisfy the following
properties: (i) H is a sub-automaton of G, denoted by
H v G and its state space is denoted by XH ; and (ii)
if f(x, e) = y is defined in G and x, y ∈ XH , then
fH(x, e) = y is also defined in H. This means that the
safety specification K on L(G) is fully captured by a
partition of the state space X of G into legal states, i.e.,
those in XH , and illegal states, i.e, those in X \XH . That
is, any transition between legal states is also legal.

Before moving forward, we define the following operators
that will be used in this paper. The unobservable reach
of the subset of states S ⊆ X under the subset of events
γ ⊆ E is given by, URγ(S) := {x ∈ X : (∃u ∈ S)(∃e ∈
(Euo ∩ γ)∗) s.t. x = f(u, e)}. The extended unobservable
reach of the subset of states S ⊆ X under the subset
of events γ ⊆ E is given by, UR+

γ (S) := URγ(S) ∪
{x ∈ X : (∃u ∈ URγ(S))(∃e ∈ (Eo ∩ γ)) s.t. x = f(u, e)}.
The observation transition of the subset of states S ⊆ X
under observable event e ∈ Eo is given by, Nexte(S) :=
{x ∈ X : ∃u ∈ S s.t. x = f(u, e)}.

2.2 Information State and Total Controller

An information state (IS) is a subset IS ⊆ X of states. We
denote by I = 2X the set of information states. We will use
two kinds of states, Y -states, y ∈ Y , and Z-states, z ∈ Z.
Specifically, Y is the set of information states (i.e., Y = I),
and Z is the set of information states augmented with
enabled events (i.e., Z = I×2E). We use the notation I(z)
and C(z) denote z’s information state and control decision
components, respectively, so that z = (I(z), C(z)). For
example, consider the automaton in Figure 1; a Y -state
y is a state in the form of {1, 2} and a Z-state z is a
state in the form of ({1}, {a, c, uc}), where I(z) = {1} and
C(z) = {a, c, uc}. Also, we define the labeled transition
relation A ⊆ Y × Γ × Z ∪ Z × Eo × Y between Y and
Z-states as follows:

• A transition from a Y -state to a Z-state represents
the unobservable reach and “remembers” the set of
enabled events from the Y -state that leads to it.
Formally, (y, γ, z) ∈ A is a transition from y to z,
labeled with γ ∈ Γ, if:

I(z) = URγ(y) and C(z) = γ (1)

This means that I(z) is the set of states reachable
from some state in y through some string of enabled
unobservable events, and that C(z) is the control
decision made in y. We write hY Z(y, γ) = z.
• A transition from a Z-state to Y -state represents the

observation transition. Formally, (z, e, y) ∈ A is a
transition from z to y, labeled with e ∈ C(z)∩Eo, if:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2423

1 2 4 6

5 7

3

8

Fig. 1. A finite state automaton G. Events are classified as
follows: Eo = {o, uc}, Euo = {a, b, c}, Ec = {a, b, c, o}
and Euc = {uc}. States 3 and 8 are illegal states.

y = Nexte(I(z)) (2)

This means that y is the set of states reachable from
some state in I(z) through an enabled observable
event e. We write hZY (z, e) = y.

Example 1. Consider the automaton of Figure 1. For the
initial Y -state y0 = {1}, given control decision γ0 =
{a, b, o}, by definition, the successor Z-state is z0 =
hY Z(y0, γ0) = (URγ0(y0), γ0) = ({1, 2, 3}, γ0). Here, there
is only one observable event o in C(z0). Once event o
occurs, the next Y -state is given by y1 = hZY (z0, o) =
Nexto(I(z0)) = {4, 5}, since f(1, o) = 5, f(2, o) = 4 and
1, 2 ∈ I(z0). However, the control decision γ0 is not a safe
control decision at the initial state, because illegal state 3
could be reached before a new event is observed.

Definition 2.1. (Total Controller). The Total Controller
(TC) is defined as a bipartite transition system T C(G) =
(Y,Z,A,Γ, E, y0), Here, Y and Z are the Y and Z-state
sets, respectively and, A is the set of labeled transitions
defined above where Γ and E are the respective label
sets. The set A contains (i) all transitions from Y -states
to Z-states (all admissible control decisions) and (ii)
all transitions from Z-states to Y -states (all observable
events). The initial state is the Y -state corresponding to
the initial information state, i.e., y0 = {x0}. 2

Since the control decision for a Y -state may not be unique,
we use the notation C(y) to denote the set of control
decisions from a Y -state y. Note that, C(y), y ∈ Y , is a set
of event sets (set of control decisions) and C(z), z ∈ Z, is
a single event set (one control decision).

Remark 1. Because the total controller contains all ad-
missible control decisions after each observation and all
possible event observations after each control decision,
it contains all strings in L(G) and also every admissible
supervisor. As a consequence, this structure contains all
possible supervisors and languages generated by some
controlled system, no matter safe or unsafe. Also, we
observe that the a run of the bipartite structure (alter-
nation between control and observation) also results in an
alternation between Y and Z-states.

Remark 2. There is a special kind of Z-state in TC,
which has no Y -state successors. Formally, we say that
a Z-state z is terminal if (∀x ∈ I(z))(∀e ∈ (Eo ∩
C(z)))[f(x, e) is not defined]. By definition, we know that
the total controller only ends up with a terminal Z-state.

Definition 2.2. (Y -state Supervisor Induced Information
State Evolution). Given a supervisor SP , we define
ISYSP

(y, s) to be the Y -state that results from the occur-
rence of string s, when starting in Y -state y. This can be
computed recursively as follows:

ISYSP
(y, ε) := y

ISYSP
(y, sσ) :=


hZY (hY Z(ISYSP

(y, s), SP (P (s))), σ),
if σ ∈ Eo ∩ SP (P (s))

ISYSP
(y, s),

if σ ∈ Euo ∩ SP (P (s))
undefined, otherwise

(3)

For brevity, we define ISYSP
(y0, s) := ISYSP

(s).

Also, ISZSP
(z, s) is defined analogously, with ISZSP

(s) :=

ISZSP
(z0, s), where z0 = hY Z(y0, SP (ε)). 2

Lemma 1. Given a supervisor SP , for any string s ∈
L(SP /G), we have I(ISZSP

(s)) = {v ∈ X : ∃s′ ∈
L(SP /G) s.t. P (s) = P (s′) ∧ v = f(s′)}.

This lemma implies that the information state reached
by supervisor SP upon the occurrence of string s is only
determined by its projection. Thus, strings that have the
same projection should lead to the same information state.

3. ALL INCLUSIVE CONTROLLER FOR SAFETY

In this section, we define the safety control problem we
need to solve and define the recursive structure of the AIC,
that contains all solutions to this problem.

Definition 3.1. We say an information state i ∈ I violates
safety if there exist a state x ∈ i such that x /∈ XH . Thus,
we define the safety binary function DI : I → {0, 1} as:

DI(i) =

{
1, if ∀x ∈ i : x ∈ XH

0, otherwise
(4)

2

Theorem 2. Supervisor SP maintains safety if and only if
DI(I(z)) = 1, for all reachable Z-states. Mathematically:

∃s ∈ L(SP /G) : z = ISZSP
(s) ∧DI(I(z)) = 0

⇔∃s′ ∈ L(SP /G) : f(s′) /∈ XH

This theorem allows us to transfer the partially-observed
safety control problem to the problem of finding a sub-
graph of the total controller, in which all reachable states
are safe. To formally describe this transformation, let us
first define the notion of safety for Y and Z-states.

Definition 3.2. (Safety binary function for Y and Z-state).
We say that a Y -state is safe if it is currently safe and there
exists some supervisor that maintains the safety property
for any future behaviors. Since we cannot choose event
occurrences, we say a Z-state is safe if it is currently
safe and all of its successor Y -states are safe. Thus, we
define two safety binary functions, DY : Y → {0, 1} and
DZ : Z → {0, 1} as follows:

DY (y) =

{
1,

if DI(y) = 1 and
∃γ ∈ Γ : DZ(hY Z(y, γ)) = 1

0, else
(5)

DZ(z) =

{
1,

if DI(I(z)) = 1 and
∀e ∈ (C(z) ∩ Eo) : DY (hZY (z, e)) = 1

0, else
(6)
2

From these definitions, we see that there exists a safe
supervisor for G if and only if DY (y0) = 1, i.e., DI(y0) = 1

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2424

and ∃γ0 : DI(I(z0)) = 1 and ∀e0 ∈ γ0 ∩ Eo : DI(y1) = 1,
and so forth, where z0 = hY Z(y0, γ0) and y1 = hZY (z0, e0).
By using information state evolution, we can say that G
can be safely controlled if and only if ∃SP such that ∀s ∈
L(SP /G), DI(IS

Y
SP

(s)) = 1 and DI(I(ISZSP
(s))) = 1. This

is the same conclusion that is reached from Thm. 2. Using
the above definition, we say that a control decision γ is
safe from Y -state y if DZ(hY Z(y, γ)) = 1, since we know
that there exists a sequence of safe control decisions in
the future. Now, we are ready to define the structure of
the All Inclusive Controller that contains all solutions to
safety control problem.

Definition 3.3. (All Inclusive Controller). The All Inclu-
sive Controller (AIC) is defined as the largest safe sub-
graph of the total controller that is reachable from state y0.
By the safe subgraph, we mean the subsystem of the total
controller consisting only of safe Y and Z-states, and the
transitions between them. The notation AIC(G) is used
to denote the AIC of automaton G. 2

Remark 3. It is equivalent to define the AIC as the trim
of the total controller when removing Y -states such that
DY (·) = 0 and Z-states such that DZ(·) = 0. By Def.
3.2 DY (·) and DZ(·) are defined recursively, therefore the
AIC structure (only) captures all safe control decisions.
Therefore, any supervisor included in the AIC (will be
well defined by Def. 5.1) generates a legal language. It is
not difficult to see that the terminal states of the AIC also
consists of terminal Z-states.

Example 2. Let G be the automaton shown on Figure 1.
By our definition, the resulting AIC ofG is shown in Figure
2 (a formal construction algorithm will be given later).
In the diagram of the AIC, rectangular states correspond
to Y -states and oval states correspond to Z-states. For
initial Y -state {1}, we cannot make control decision {a, b},
because it will unobservably lead to illegal state 3 before
a new event is observed. For Y -state {4, 5}, it is necessary
to disable event a, for otherwise it will lead us to state,
which will uncontrollably lead to an illegal state.

Remark 4. Note that, in Figure 2, at the initial Y -state
y0 = {1}, we can also take control decision {o, c}. However,
event c will never be executed within the resulting unob-
servable reach, thus we regard event c as a “redundant”
event, and eliminate it from the control decisions. This
situation also appears in other states. Formally, we say
that a control decision γ ∈ Γ is irredundant at i ∈ I if,
for all e ∈ γ, there exists x ∈ URγ(i) such that f(x, e) is
defined. To make our structure as compact as possible, we
only show the irredundant control decisions in Figure 2.

4. THE EXTENDED SPECIFICATION AND
CONSTRUCTION OF THE AIC

We first present the extended specification, which can be
used to determine the safety of a Y or Z-state. Then we
provide a construction algorithm for the AIC.

4.1 Extended Specification

Definition 4.1. (Extended Safety Specification). The ex-
tended specification is defined as the set of states that
should never be reached because even if all events in Ec are
disabled forever thereafter, there still exists some sequence

{1}

{1,2},{ , }

{1},{ } {5}

{ , }

{1},

{1,2},{ }
{ } { }

{4,5}

{5,7},{ }
{ }

{1,4,5},{ , } {1,2,4,5},{ , , }

{1,2,4,5},{ , }

{ , , }
{ , }

{ , }

{5},

{1,4,5},{ }

{4,5},
{ }

Fig. 2. The corresponding AIC for Figure 1.

of events such that some illegal state will be reached. To
describe the extended specification, we define a binary
function V : X → {0, 1} 1 , where in the case of prefix-
closed languages, 0 is assigned to a state if and only if it
can uncontrollably reach an illegal state. Mathematically,
∃s ∈ (Euc)

∗ : f(x, s) /∈ XH ⇔ V (x) = 0 2

For example, in Figure 1, we have V (3) = V (8) = V (6) =
0, since 3 and 8 are illegal states and 6 can uncontrollably
lead to illegal state 8. Note that the extend specification
can be calculated offline all at once or online if so desired
(see e.g. [Ben Hadj-Alouane et al., 1994]). In the remainder
of this paper, we assume that the extended specification
has already been pre-calculated.

Definition 4.2. Similar to the safety binary function, we
define the extended safety binary function for information
states De

I : I → {0, 1} as:

De
I(i) =

{
1, ∀x ∈ i : V (x) = 1
0, else

(7)

We are now ready to prove two key theorems show that
how we can determine the values of DY (·) and DZ(·) by
using the extended specification.

Theorem 3. For any Y -state y, we have DY (y) = De
I(y).

Theorem 4. For any Z-state z, we have
DZ(z) = De

I(UR+
C(z)(I(z))).

Remark 5. Theorems 3 and 4 imply that the safety of a
Y or Z-state solely depends on itself. We note that the
safety of a Z-state is not solely information state based,
but also depends on its associated control decision, since
adding a new observable event in the control list may lead
to some illegal state, in which case even if its information
state is safe, the extended unobservable reach can still be
unsafe. That is why we also need to check the safety of
its extended unobservable reach, i.e., all reachable states
it could be in before the next control decision is issued.

Corollary 5. (Monotonicity Properties).
(i) If Y -state y1 is safe then so is any Y -state y2 ⊆ y1.
(ii) Any control decision that is safe in Y -state y1 is also
safe in Y -state y2 ⊆ y1.
(iii) If control decision γ1 is safe in Y -state y, then so is
any control decision γ2 ⊆ γ1.

4.2 Construction of the AIC

Definition 3.2 provides us an obvious means for construct-
ing the AIC. Since the safety of a Z-state is defined
1 This binary function was expressed as a cost function V : X →
{0,∞} in [Ben Hadj-Alouane et al., 1994].

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2425

Algorithm 1

1: procedure DoDFS(G, y, V, sl, E)
2: for all el ⊆ E.c do
3: Act← el ∪ E.uc
4: eur ← UR+

Act(y)
5: if [(∀x ∈ eur)V (x) = 1] then
6: Add (y,Act) to sl
7: Mark y as “safe”
8: end if
9: end for

10: if y is not marked “safe” then
11: Mark y as “unsafe”
12: end if
13: for all el ⊆ E.c s.t (y, el ∪ E.uc) ∈ sl do
14: Act← el ∪ E.uc
15: ur ← URAct(y)
16: for all e ∈ Act ∩ E.o do
17: next← Nexte(ur)
18: if next not marked then
19: DoDFS(G,next, V, sl, E)
20: end if
21: end for
22: end for
23: end procedure

universally, to determine whether it is safe or not, one
way is searching through the whole (Y and Z) state space
until all remaining reachable states are either known to be
unsafe, or have already been visited. This approach does
work, but is worse in computational complexity. Recalling
the previous results, Thm. 3 and Thm. 4 allow us to
use the extended specification to simplify this problem by
replacing this whole search by a single calculation each
time we would like to determine the safety of a particu-
lar information state. At any Y -state, we can determine
whether or not taking control decision γ is safe through
three steps: first, we compute z = hY Z(y, γ); second, we
compute the extend unobservable reach of I(z) under γ,
eur = UR+

γ (I(z)) and, third, we verify whether or not the
information state eur satisfies the extended specification.
Since UR+

γ (y) = UR+
γ (I(z)) for z = hY Z(y, γ), steps 1 and

2 can be collected as one step.

The construction algorithm for the AIC is shown in Algo-
rithm DoDFS, which is based on a depth-first search. The
parameters in this algorithm are as follows: G represents
the system for which we want to construct the AIC, y rep-
resents a Y -state, V represents the extended specification
which has been pre-computed, and E contains the sets of
events Ec, Euc, Eo and Euo. Lines 2-12 are used to find
the safe control decisions. This is done by considering each
subset of events el ⊆ E.c, and determining whether it is
safe or not to choose to enable events Act = el∪E.uc. For
each control decision, we compute its extended unobserv-
able reach, and determine the value of De

I(UR+
Act(y)). If

the control decision is safe, then we add y to the state list
sl and we mark y as safe. Lines 13-22 are used to traverse
the space of Y -states. This is done by considering all safe
control decisions of the current Y -state, determining the
next Z-states and, for each such Z-state, computing all
possible Y -state successors and making a recursive call.
Since the number of information states and the number
of events are both finite, the algorithm will eventually

terminate. Note that the final output of this Algorithm
is sl and the initial call is DoDSF(G, y0, V, ∅, E).

Theorem 6. DoDFS correctly constructs the AIC.

Proposition 7. The running time of DoDFS is in
O([2(|X|+|Ec|)]|X||E|). The number of states in the AIC,
in the worst case, is [2|X| + 2(|X|+|Ec|)].

5. PROPERTIES OF THE AIC

In this section, we first prove the correctness of the
AIC, i.e., that this structure contains all possible control
policies that generate the controllable and observable
sublanguages of the specification. Then we discuss how to
synthesize a supervisor from the AIC and study a special
kind of supervisor which is solely information state based.

5.1 Correctness of the AIC

We start by revisiting the well-known properties of con-
trollability and observability. We say that a prefix-closed
sublanguage K is controllable if, (∀s ∈ K,σ ∈ Euc)(sσ ∈
L(G)⇒ sσ ∈ K); and K is observable if, (∀s, s′ ∈ K,σ ∈
Ec)(P (s) = P (s′) ∧ sσ ∈ K ∧ s′σ ∈ L(G) ⇒ s′σ ∈ K).
Then, we first define the notion of the AIC included su-
pervisor and then use this concept to define the notion of
the AIC included language.

Definition 5.1. (AIC Included Supervisor). A supervisor
SP : E∗o → Γ is said to be included in AIC(G) if,

(∀s ∈ L(SP /G))[SP (P (s)) ∈ C(ISYSP
(s))]

We use the notation S(AIC(G)) to denote the set of
supervisors included in AIC(G). 2

Definition 5.2. (AIC Generated Language). A language L
is said to be generated by AIC(G) if,

(∃SP ∈ S(AIC(G)))[L(SP /G) = L]

We use the notation LAIC(AIC(G)) to denote the set of
languages generated by AIC(G). 2

Remark 6. By the Controllability and Observability The-
orem (see, e.g., [Cassandras and Lafortune, 2008]), for a
prefix-closed language L, controllability and observability
are necessary and sufficient conditions for the existence
of a supervisor SP such that L(SP /G) = L. Thus, the
statement of synthesizing a controllable and observable
sublanguage and the statement of synthesizing a supervi-
sor to restrict the behavior are equivalent. We can define
either notion first, and it will lead to the same result.

Theorem 8. There exists a supervisor SP for system G
such that L(SP /G) ⊆ L(H) iff AIC(G) is non-empty.

We are now ready to prove the correctness of the AIC. The
next results shows that the AIC structure (only) contains
all solutions to the partially-observation control problem.

Theorem 9. If AIC(G) is non-empty, then

(L = L ⊆ L(H) ∧ L is observable ∧ L is controllable)

⇔ L ∈ LAIC(AIC(G))

5.2 State Based Property of the AIC

Theorem 9 provides us with a clear way for synthesizing
a supervisor. By Def. 5.1, since safety is the only issue we
consider, then for any string s, the control decision made

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2426

based on the projection P (s) must be within the control
decision set of its corresponding information state ISYSP

(s)
in the AIC, i.e., for each Y -state y, we can arbitrarily
choose a control decision which is defined in the AIC, and
following the same step after a new observation, and so
forth, until reaching a terminal Z-state.

As discussed above, if we solely consider safety, then
randomly picking a control decision at each information
state does satisfies the requirement; however, in most
of the cases, we would like to do more. There are two
issues to consider. First, randomly choosing a control
decision can only guarantee safety; however, in many
situations, we want to find a maximal solution. Second,
by Def. 5.1, we know that an AIC included supervisor
is string based, not information state based. Thus, to
synthesize a supervisor from the AIC, it is possible to
take different control decisions upon different visits to
the same state. However, for many purposes (e.g., saving
the memory of the controller), it is desirable to restrict
attention to information-state-based supervisors, rather
than remembering all the histories.

Definition 5.3. (IS-Based Supervisor) A partially-observed
supervisor SP : P (L(G)) → 2E is said to be information-
state-based (IS-based) if (∀s, t ∈ L(SP /G))[ISYSP

(s) =

ISYSP
(t)⇒ SP (P (s)) = SP (P (t))]. 2

The above definition means the following. If a supervisor
is IS-based, it implies that it will take the same control
decision every time it visits the same information state.
Thus, an IS-based supervisor can be defined as SI : I →
2E . We define SI(AIC(G)) ⊆ S(AIC(G)) as the set of
IS-based supervisors included in the AIC. Clearly, the
cardinality of SI(AIC(G)) is finite.

It is well known that the property of observability is more
difficult to deal with than the property of controllability,
because it is not preserved under union in general, i.e., the
operation ↑O does not always exist. As stated above, we
usually wish to find a maximal (w.r.t. set inclusion) solu-
tion. Unfortunately, in general, not all maximal solutions
can be expressed by IS-based supervisors. However, in
some special cases, IS-based supervisors provide a simple
way for us to find maximal solutions. We present three
results in this regard.

Proposition 10. There exists at least one IS-based super-
visor SI ∈ SI(AIC(G)) such that L(SI/G) is a maximal
controllable and observable sublanguage.

Proposition 11. Assume that Ec ⊆ Eo. If L ⊆ L(H) is
a maximal controllable and observable sublanguage, then
there exists an IS-based supervisor SI ∈ SI(AIC(G)) such
that L(SI/G) = L.

Proposition 12. There exists an IS-based supervisor SI ∈
SI(AIC(G)) such that L(H)↑(CN) ⊆ L(SI/G), where
↑(CN) is the supremal controllable and normal sublanguage
operation.

The supervisor in Proposition 10 can be constructed by
taking a fixed control decision c ∈ C(y), such that ∀c′ ∈
C(y) : c 6⊂ c′, for any reachable Y -state y. Proposition
12 could be regarded as a corollary of Theorem 5 in
[Ben Hadj-Alouane et al., 1996]. Such a supervisor can be
constructed as follows. For each Y -state y ∈ Y , pick a fixed
control decision c ∈ C(y), such that: (i) ∀c′ ∈ C(y) : c 6⊂ c′

83 4 5 762

8

7

6

5

7.5

7.5 9.5
9.5

X

Y

Vehicle X is controllable;

We can choose velocity V={2,3},

 with disturbance 0≤d<1;

It can not be measured perfectly,

max

ˆ , 0.5x x e e  

Vehicle Y is uncontrollable,

with constant velocity v=3;

It can be measured perfectly.





 Goal: Two vehicles successfully cross the

 intersection (red region), without collision



(avoid being in the intersection at the same time).

Fig. 3. An vehicle control problem

and, (ii) ∀c′′ ∈ C(y) satisfying (i): Puo(c) 6⊂ Puo(c′′), where
Puo(c) means eliminate all observable events in c.

Example 3. Consider again the example we studied in
Figures 1 and 2. We want to synthesize the IS-based
supervisor of Prop. 12. For initial Y -state {1}, we can
pick control decision {b, o} and take {b, c, o} at {4, 5}.
Since the only successor Y -state of the Z-state reached
by taking {b, c, o} from {4, 5} is itself, we finish the syn-

thesis procedure and the closed-loop language is {(boc)∗o}.
Here, the supremal and normal language is empty, clearly
L(H)↑(CN) ⊆ L(SI/G). Furthermore, we see that L(SI/G)
is also a maximal language.

6. ILLUSTRATIVE EXAMPLE

This section is devoted to an example of a collision avoid-
ance problem in vehicular networks. The example is to
illustrate the application of the proposed AIC structure.
For more details (modeling and analysis) about the super-
visory control of vehicular networks, the reader is referred
to [Dallal et al., 2013]. Here, we will only briefly introduce
and use results from that work.

Each vehicle is modeled by ẋ = v+ d, where x ∈ X ⊂ R is
the state, v ∈ V ⊂ R is the control input, and d ∈ D ⊂ R
is the disturbance input. Moreover, we assume that the
measurement is imperfect, i.e., x̂ = x + e, ||e||∞ ≤ emax,
where x̂ ∈ X ⊂ R is the measurement value. In our
particular problem, as shown in Figure 3, we assume that
vehicle X is controllable and can take velocity v = 2 or 3
with disturbance 0 ≤ d < 1 and measurement uncertainty
emax = 0.5; vehicle Y is uncontrollable, with constant
velocity v = 3, however, its position can be measured
perfectly, i.e., emax = 0. Our goal is to guarantee that
all vehicles successfully cross the intersection safely, i.e.,
by avoiding being in the intersection at the same time.
It is shown in [Dallal et al., 2013] that the problem of
synthesis a safe supervisor for the continuous system can
be transferred into a DES control problem by proper
abstraction. Furthermore, we assume that the initial state
of the continuous system is (2, 6) and at discrete event
level, the prior information for X is {1, 2, 3}.
The DES modelG of this system by abstraction is shown in
Figure 4, where: events in layer Λ represent measurements,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2427

{5},12 {6},12

{5,6},12 {7},12 {6,7},12 {7,8},12 {8},12 {8,9},12 {9},12 {9,10},12{10},12

{10,11},12 {11},12

{8},12{7,8},12{7},12{3},12 {4},12 {3,4},12 {4,5},12 {5},12 {5,6},12 {6},12 {6,7},12

{3},12 {3,4},12 {4},12 {4,5},12 {5},12 {5,6},12 {6},12 {6,7},12 {7},12

{7},9{6,7},9{6},9{5,6},9{5},9{3},9 {3,4},9 {4},9 {4,5},9

{3,4},9 {4,5},9 {5,6},9 {6,7},9 {4},9 {5},9 {6},9

{1,2},9 {2,3},9 {3,4},9 {2},9 {3},9

{2},9{2,3},9{1,2},9

{2,3},6{1,2},6 {2},6

Fig. 4. The DES model G for Figure 3

({1,2},6) ({2,3},6) ({2},6)

({1,2,3},9) ({1,2,3},9) ({1,2,3},9) ({2,3,4},9) ({2,3},9) ({2,3},9) ({2,3},9)

({3,4,5},9) ({4,5,6},9) ({4,5},9) ({5,6},9)

({3,4,5},9) ({4,5,6},9) ({4,5},9) ({5,6},9)

({3,4},9) ({4,5},9)({3},9) ({4},9) ({5},9) ({6},9)({5,6},9)

({3,4},12)
({6,7},12)({5,6,7},12)

({5,6},12)({4,5,6},12)({4,5},12)({3,4,5},12)
{2}or{3}

or{2,3}

{2}or{3}

or{2,3}

{2}or{3}

or{2,3}
{2}or{3}

or{2,3}

{2}or{3}

or{2,3}
{2} {2}

{3}{2} {2,3} {2} {3}{2} {2,3}

{ }{ } { } { }

{ }

{2} {2,3}
{3} {2} {2} {2,3} {3}

{ }

{2}or{3}or {2}or{3}or {2}or{3}or {2}or{3}or {2}or{3}or
{2} {2}

2 32 2
23 3 32

{2,3} {2,3} {2,3} {2,3} {2,3}

{ } { } { } { }

Fig. 5. The All Inclusive Controller for G

which are uncontrollable but observable; events in layer
Uuc represent the actions of uncontrollable vehicles, which
are uncontrollable and unobservable; events in layer D
represent the disturbances, which are uncontrollable and
unobservable; and events in layer Uc represent the actions
of controllable vehicles, which are controllable and observ-
able. By the safety criteria provided in [Dallal et al., 2013],
we know that states ({9, 10}, 12), (10, 12), ({10, 11}, 12)
and (11, 12) are illegal, because two vehicles are possibly
colliding in the intersection.

By our construction algorithm, the AIC for G is shown in
Fig. 5. For simplicity, we use a single state qm to represent
the set of states in which at least one vehicle has already
crossed the intersection. Following the properties discussed
in the previous sections, the AIC contains all possible
safe control policies for this problem. Note that in this
model the event set satisfies Ec ⊆ Eo. By Prop. 11, we see
that the unique (IS-based) maximally permissive solution
exists; it consists of the decisions highlighted in Fig. 5. The
intuition of the solution is that, in the worst case (largest
measurement uncertainty and largest disturbance), vehicle
X should keep the slowest velocity, waiting for vehicle Y
to cross the intersection first, in order to guarantee no
collision will ever happen.

7. CONCLUSION

We revisited the problem of synthesizing a controllable and
observable safe sublanguage for a partially observed dis-
crete event system. We defined the All Inclusive Controller,

whose structure contains all the solutions to the problem.
Also, we defined the extended specification, established
several results on safety, and provided an algorithm to
effectively construct the AIC by making use of the ex-
tended specification. Finally, the correctness of the AIC
was proved and how to synthesize a supervisor based on
the information state was discussed. In the future, we will
investigate: 1) improving the efficiency of our construc-
tion algorithms; 2) extending to decentralized structure;
3) dealing with non-prefix-closed languages, i.e., blocking
(deadlock and livelock) should be considered; and 4) find-
ing a single optimal controller, w.r.t. some cost criterion.

REFERENCES

A. Arnold, A. Vincent, and I. Walukiewicz. Games
for synthesis of controllers with partial observation.
Theoretical Computer Science, 303(1):7–34, 2003.

N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Variable
lookahead supervisory control with state information.
IEEE Trans. Autom. Control, 39(12):2398–2410, 1994.

N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Cen-
tralized and distributed algorithms for on-line synthesis
of maximal control policies under partial observation.
Discrete Event Dyn. Syst.: Theory Appl., 6(4):379–427,
1996.

C.G. Cassandras and S. Lafortune. Introduction to Dis-
crete Event Systems. Springer, 2nd edition, 2008.

F. Cassez and S. Tripakis. Fault diagnosis with static and
dynamic observers. Fund. Inform., 88(4):497–540, 2008.

R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. Su-
pervisory control of discrete-event processes with partial
observations. IEEE Trans. Autom. Control, 33(3):249–
260, 1988.

E. Dallal and S. Lafortune. On most permissive observers
in dynamic sensor activation problems. IEEE Trans.
Autom. Control, To appear.

E. Dallal, A. Colombo, D. Del Vecchio, and S. Lafortune.
Supervisory control for collision avoidance in vehicular
networks with imperfect measurements. In Proc. 52th
IEEE Conf. Decision Contr., 2013.

M. Heymann and F. Lin. On-line control of partially
observed discrete event systems. Discrete Event Dyn.
Syst.: Theory Appl., 4(3):221–236, 1994.

K. Inan. Nondeterministic supervision under partial obser-
vations. In 11th International Conference on Analysis
and Optimization of Systems: Discrete Event Systems,
pages 39–48. Springer, 1994.

R. Kumar, S. Jiang, C. Zhou, and W. Qiu. Polynomial
synthesis of supervisor for partially observed discrete-
event systems by allowing nondeterminism in control.
IEEE Trans. Autom. Control, 50(4):463–475, 2005.

F. Lin and W.M. Wonham. On observability of discrete-
event systems. Inform. Sciences, 44(3):173–198, 1988.

A. Overkamp and J.H. van Schuppen. Maximal solutions
in decentralized supervisory control. SIAM J. Control
Optim., 39(2):492–511, 2000.

P.J. Ramadge and W.M. Wonham. Supervisory control
of a class of discrete event processes. SIAM J. Control
Optim., 25(1):206–230, 1987.

T.-S. Yoo and S. Lafortune. Solvability of centralized
supervisory control under partial observation. Discrete
Event Dyn. Syst.: Theory Appl., 16(4):527–553, 2006.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2428

