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Abstract: Portfolio selection concerns identifying an optimal composition of various risky
assets and their corresponding holding amounts such that the corresponding investment strategy
strikes a balance between maximizing the expected investment return and minimizing investment
risk. While market frictions make full diversification impractical, cardinality constrained mean-
variance (CCMV) portfolio selection problem emerges as a natural remedy: Given an asset
pool with total n assets and a given cardinality s < n, optimally choose s assets from the
entire asset pool such as to achieve a mean-variance efficiency. Unfortunately, CCMV has been
proved to be NP hard and has been posted in front of optimization society as a long-standing
challenge. By invoking structural market information and utilizing fast clustering algorithm
for classification, we develop in this paper an effective heuristic scheme to identify approximate
solutions for large-scale CCMV problems. More specifically, by constructing grouping constraints
generated from factor-model based clustering algorithm and attaching them to the mixed integer
programming formulation associated with the CCMV problem, we are able to significantly
reduce the computational complexity, thus offering a fast algorithm with relatively high quality
solution.

Keywords: Financial optimization, portfolio selection, mean-variance formulation, clustering
algorithm, factor model, mixed integer programming

1. INTRODUCTION

Modern portfolio selection starts with the ground breaking
work of mean-variance formulation proposed by Markowitz
(1952), which provides a quantitative framework as an
analytical engine to achieve good investment performance.
Most fundamentally, the mean-variance formulation cap-
tures an essential multi-objective nature between the two
conflicting goals in portfolio management, maximizing the
investment return and minimizing the investment risk, and
offers a systematic approach to strike a balance between
them. As a natural generalization of the mean-variance
analysis, the framework of mean-risk trade-off analysis
has become a standard in portfolio management, in ac-
companying with emergence of numerous alternative risk
measures.
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One of the most important guiding principles derived from
the mean-variance framework is that investors should al-
ways diversify their investment, thus diversifying invest-
ment risk. If we faithfully follow Markowitz’s doctrine,
investors who primely care about the mean and variance of
the portfolio return should construct their optimal portfo-
lios from among all risky assets available in the market.
Such an ideal solution in a frictionless world, however,
becomes unrealistic in most real-life applications. Due to
various forms of market frictions, such as management
fees and transaction costs, almost all investors only invest
in a limited number of risky assets. Such a significant
gap between the ideal and real markets motivates the
research community to investigate in the last 20 years the
cardinality constrained mean-variance (CCMV) portfolio
selection problem. More specifically, CCMV portfolio se-
lection problem can be stated as follows: Given an asset
pool with total n assets and a given cardinality s < n,
optimally choose s assets from the asset pool such as to
achieve a mean-variance efficiency. It is evident that the
challenge is how to identify a small number of risky assets
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to achieve a performance as close as possible to the market
portfolio.

Unfortunately, the cardinality constrained mean-variance
portfolio selection problem has been known to be NP-hard
(Gao and Li (2013)). The literature in tackling CCMV can
be classified into two categories, exact and heuristic algo-
rithms. Although adopting different relaxation schemes,
all exact algorithms invoke branch-and-bound algorithms
to attain an optimality. Bienstock (1996) proposes to use a
surrogate constraint to replace the cardinality constraint
in the relaxation phase of the algorithm. Bertsimas and
Shioda (2009) develop an exact solution approach by using
a convex relaxation resulted from ignoring the cardinality
constraint. Such a relaxation leads to a formulation ready
for Lemke’s pivoting method. Li et al. (2006) consider in
their study several discrete features in real trading, includ-
ing the cardinality constraint. Utilizing the monotonicity
of the zero norm corresponding to the cardinality con-
straint and other geometric characteristics of the quadratic
objective contour, they develop some cutting schemes to
reduce the feasible region successively in a branch-and-
bound solution process. Different from the majority of
the existing literature which has primarily focused on
some direct relaxations of the cardinality constraint, Gao
and Li (2013) recently consider modifying the objective
function to some separable relaxations, which are immune
to the hard cardinality constraint. Keeping the cardinality
constraint preserves certain inherent features of the primal
problem, thus enabling a combination of an analytical solv-
ability of the cardinality constrained separable relaxations
and their corresponding polynomial-time dual search algo-
rithms. Gao and Li (2013) report that their BnB algorithm
outperforms the CPLEX solver significantly for problems
(without side constraints on portfolio) with a relatively
large dimension (up to dimension 300).

In the category of heuristic algorithms, Blog et al. (1983)
propose a dynamic programming heuristic which is ap-
plicable only to small-scale portfolio selection problems.
Chang et al. (2000) consider heuristic methods for the
mean-variance portfolio selection problem with a cardinal-
ity constraint and integer constraints. Crama and Schyns
(2003) use simulated annealing to find the solution to
complex portfolio selection models with side constraints,
including cardinality constraint. Shaw et al. (2008) use
the Lagrangian relaxation to construct some lower bounds
for such problems. Adopting a different solution concept,
Xie et al. (2008) adopt a randomized algorithm to iden-
tify good feasible solutions to CCMV problem with some
quality guarantee. Recently, Mokhtar et al. (2014) give
a comprehensive review of the algorithms in solving the
CCMV problem.

Examining the existing literature on cardinality con-
strained portfolio selection, it is surprising that none of the
models utilizes structural information from the market in
the selection process to help choose candidate assets into
the portfolio. We believe that incorporating financial anal-
ysis with a formal optimization formulation will reduce
computational burden, empower the analytical ability of
the algorithm and produce more meaningful outcomes. To
achieve this overall goal, we will i) characterize different
risky assets by factor models using market data, ii) cluster
similar risky assets into groups in accordance with their

loading coefficients in the factor model, and iii) select rep-
resentative(s) from individual groups to form a portfolio
which satisfies the cardinality constraint and achieves a
mean-variance efficiency. Different from Gao and Li (2013)
which is an exact algorithm, we propose in this paper
a heuristic algorithm. However, the heuristics adopted in
this paper are scientific-based by invoking and integrating
factor models in finance, clustering analysis in computer
science and mixed integer programming models in opera-
tions research, thus powerful and effective in computing a
fast solution to CCMV.

We consider in this paper the following cardinality-
constrained mean-variance (CCMV) portfolio selection
problem:

(P ) min
x

σ2 = x′Qx

Subject to : 1′x = 1,

r′x ≥ r̄,
n
∑

i=1

δ(xi) = s,

x ≥ 0,

where r = (r1, · · · , rn)′ is the expected return vector of the
n risky securities, Q = {Qi,j}|ni,j=1 ∈ S

n
+ is the covariance

matrix of the n risky securities which is positive definite,
x = (x1, · · · , xn)

′ is the vector of portfolio weights, r̄ is
the preassigned return level which the investor would like
to attain, 1 is the n-dimensional all-one vector, and δ(·) is
the indicator function, i.e., δ(a) = 1 if a 6= 0 and δ(a) = 0,
otherwise. In the above CCMV portfolio selection problem,
i) the objective x′Qx is the variance of the portfolio
return which measures the investment risk under decision
x, and ii) the constraint x ≥ 0 implies that short selling
is not allowed. Solving problem (P) with r̄ varying from
its minimum level (the return level corresponding to the
minimum variance policy) to infinity yields the efficient
frontier in the mean-variance plane under the cardinality
constraint.

By introducing a sufficiently large positive number M
and an n-dimensional 0 − 1 vector, problem (P) can be
reformulated as the following quadratic mixed integer
programming problem,

(P̄ ) min
x

σ2 = x′Qx

Subject to : 1′x = 1,

r′x ≥ r̄,

0 ≤ xi ≤ ziM, i = 1, · · · , n.
n
∑

i=1

zi = s,

z = {0, 1}n,

x ≥ 0.

Although problem (P̄ ) can be solved by some commercial
softwares, such as CPLEX, and has been widely investi-
gated in the literature, the computational efficiency is still
not up to a satisfaction, especially for large scale problems.
In the financial market, it is important to observe the prin-
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ciple of timeliness. It is the goal of this paper to develop a
novel fast algorithm with a relatively high accuracy.

A salient feature of our research is an integration of the
factor modeling scheme in finance with clustering anal-
ysis algorithm in computer science. Such a combination
endows us a capability in reducing significantly the search
complexity in CCMV. According to the arbitrage pricing
theory (Ross (1976)), market risk can be classified into
systematic and nonsystematic risks. It is well known that
the nonsystematic risk can be eliminated by diversifica-
tion, while the systematic risk cannot. The systematic risk
is contributed by a set of random factors which can be
viewed as the driving force of market movement. The price
movement of each individual is then primarily dictated by
the movements of the factors according to its factor loading
coefficients. Classifying different securities into different
groups according to their factor loading coefficients can
be achieved using a data mining technique called clus-
tering. The primary purpose of clustering analysis is to
generate a meaningful partition of a set of variables into
groups, according to their characteristics, such that the
intra-cluster similarity is maximized and the inter-cluster
similarity is minimized (See, e.g., Chen et al. (1996)). Clus-
ter analysis has been well developed and widely applied
for data processing in computer science and other fields
as well. For example, Craighead and Klemesrud (2007)
develop a clustering algorithm to select initial stocks in
their portfolio according to the time series data of the
stocks. Tola et al. (2008) adopt a correlation based clus-
tering algorithm iteratively to build up a stable filtered
correlation matrix. In our study, following establishment
of a factor model, securities will be grouped by a clustering
algorithm according to their factor loading coefficients.
Intuitively, securities in the same group will perform simi-
larly in a market driven by these identified factors. Then,
constructing a portfolio by representative securities from
individual groups would have a capability to mimic the
performance of the entire market. It is obvious that, in
our analysis, the selection of a factor model plays a key
role in determining the features of securities according to
different factors, which is a basis for clustering.

The paper is organized as follows. After presenting the
problem formulations in this section and motivating our
research, we will present our solution approach in the next
section with detailed description of each of its components.
In Section 3, we report the numerical results from our ex-
periments and provide some explanations of the outcomes.
We conclude the paper in Section 4.

2. NOVEL SOLUTION APPROACH

Our solution principle in dealing with CCMV is simple
yet very logical. We first extract prominent features of
all risky assets from market data. If two risky assets
possess similar features, we tend to believe that they would
perform similarly in the market. Next, we can partition all
the risky assets into s groups according to their degree of
similarity. Finally, our strategy becomes evident: We select
one representative from each group to join the portfolio.
Realizing the above solution scheme requires clear answers
to the following questions: i) What will be representative
features with which the performance of an individual risky

asset in the market can be clearly characterized? ii) How to
measure the closeness of different risky assets such that the
smaller the measure difference, the more similar market
performance between the two? iii) How to partition the
entire pool of risky assets into s groups according to their
closeness? and iv) How to identify a representative from
each group to form a portfolio such that a mean-variance
efficiency is achieved under the cardinality constraint?

2.1 Step 1: Characterizing risky assets by factor model

We discriminate humans by their heights, weights, hair
color, or all of them. In our situation, we rely on factor
models (Luenberger (1998)), which have been well estab-
lished in finance, to characterize risky assets. Under the
arbitrage pricing theory (APT), the market movement is
driven by a set of factors. As the return of a given risky
asset is basically determined by a linear combination of
these factors, the loading coefficients for various factors
dictate the performance of this specific risky asset, thus
reasonably serving as the essential features of the asset.
More specifically, we assume that the market performance
of any risky asset is governed by the following m-factor
model,

ri = ai +

m
∑

j=1

bijfj + ǫi, i = 1, 2, . . . , n, (1)

where ri is the return of security i, fj is the random return
of factor j, j = 1, 2, . . . ,m, ai is the intercept, bij is the
factor loading that measures the sensitivity of security i to
factor j, and ǫi is the “local” error term with a zero mean.
Theoretically, each error term should be independent of
any factor and the errors of other securities.

From the above factor model, we have the expressions of
the mean of ri, r̄i, and the covariance between ri and fj,
cov(ri, fj), in terms of the mean of the factors, f̄j , j = 1,
. . ., m, and the covariance matrices among factors, σfk,fj ,
i, j = 1, . . ., m,

r̄i = ai +
m
∑

j=1

bij f̄j ,

cov(ri, fj) =

m
∑

k=1

bikσfk,fj .

For a given factor model, all the coefficients ai and bij ,
i = 1, 2, . . . , n, j = 1, 2, . . . ,m, can be calculated by
regression. Let us consider an (m+ 1)-dimensional vector
feature space with the intercept and m factor loadings as
its coordinates. We can thus project each risky asset into
this feature space at the following point,

security(i) −→ (ai, bi1, bi2, . . . , bim),

which can be viewed as the feature vector of asset i.

Without any doubt, choice of different factors affects the
outcome of mapping various assets into the feature space.
Theoretically, any factor can be selected as long as the
characteristic based on this factor is meaningful. We can
even generate some artificial factors to fit the security data.
Most importantly, each factor should be representative,
and the loading coefficients of different risky assets to that
factor should be distinctive such that the feature vectors
can be distinguished in the further processing.
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Generally, we can consider three different kinds of factors:
i) macroeconomic factors, such as Gross National Prod-
uct(GNP), consumer price index, and unemployment rate;
ii) statistical factors, such as the Hang Seng index and the
S&P500 index; and iii) fundamental factors, such as the
firm size, dividend yield, and book-to-market ratio. In this
paper, we use the Hang Seng Composite Industrial Index
as factors in our analysis, including Hang Seng Comp.
Energy Index, Hang Seng Comp. Materials Index, Hang
Seng Comp. Industrial Goods Index, Hang Seng Comp.
Consumer Goods Index, Hang Seng Comp. Services Index,
Hang Seng Comp. Telecommunications Index, Hang Seng
Comp. Utilities Index, Hang Seng Comp. Financials Index,
Hang Seng Comp. Properties & Construction Index, Hang
Seng Comp. Information Technology Index, and Hang
Seng Comp. conglomerates index, the total 11 factors. In
general, we witness a positive correlationship of securities
in the same industry and believe that the different trends
among various industries contain a grain of truth. These
11 indexes can represent 11 different aspects of the market
while they are meaningful to consider. As a result, feature
vectors calculated by regression are sufficiently scattered
and are thus suitable to be clustered. Furthermore, these
kinds of security indexes are authorized, normalized, and
easily found.

2.2 Step 2: Grouping risky assets using clustering algorithm

After endowing each asset a feature vector, the next
question is how to group together assets with similar
feature vectors, such that the entire pool of assets is
partitioned into s groups based on their similarity. The
smaller the norm of the difference between a pair of feature
vectors, the higher degree of similarity of these two assets.
It is easy to conclude that the cluster analysis well serves
the purpose of partitioning and grouping. The purpose of
applying clustering in this research is to avoid inclusion of
multiple risky assets in the portfolio that behave similarly
in the market (i.e., multiple risky assets with similar
feature vectors).

The three most commonly used classes of clustering al-
gorithms are: partitioning clustering, density-based clus-
tering, and hierarchical clustering (see, e.g., Han et al.
(2011)). Partitioning clustering, including k-means, PAM,
and CLARANS, aims to partition n points into s clusters
so as to minimize the intra-cluster sum of squared errors.
It performs better when clusters are hyper-ellipsoidal or
globular in similar sizes. The main advantages of this
algorithm are its simplicity and high speed, which allows
its running on large data sets. However, it is sensitive
to outliers and the final clusters depend on the initial
assignments. Density-based clustering, including DBscan,
is based on the assumption that the density within genuine
clusters is uniform and much larger than the density of the
interval. Hierarchical clustering, including CURE, ROCK,
and CHAMELEON, seeks to build up successive clusters
using previously established clusters. This kind of cluster-
ing renders a clear hierarchical tree, but the computation
cost is high when a large data set is dealt with. Because
our data set is relatively small and the dimension is low
in terms of computation, we decide to adopt a relatively
simple partitioning clustering algorithm called k-means in

this research. We state the clustering procedure in our
algorithm as follows.

k-means Algorithm

begin
randomly select s observations from data set as the initial
centroids
repeat

form s clusters by assigning all observations to the closest
centroid

recompute the centroid of each cluster
until

the centroids no longer change
end

In the above partitioning clustering approach, each point
is assigned to the cluster with the closest centroid. The
initial assignment thus plays a very important role in this
algorithm. In general, the whole procedure needs to be
repeated several times, with each repetition having a new
set of initial cluster centroid positions, and the finally
chosen result should have a minimum intra-cluster sum
of squared errors. The centroid is typically calculated by
the mean of the points in each cluster. In this research, we
measure the closeness by Euclidean distance. A concern
with this algorithm is that an empty cluster may occur. If
a cluster loses all its member observations, we will create
a new cluster using the point furthest from its centroid.

2.3 Step 3: Identifying representative(s) from individual
groups and forming the optimal portfolio

After we group risky assets using cluster analysis, the
remaining task is to select representatives from individual
groups to form the best portfolio (in terms of its mean
and variance) that satisfies the cardinality constraint. To
provide our algorithm more flexibility, we consider options
with that i) k, the total number of groups generated
from clustering analysis, may not be equal to s, the given
cardinality, and ii) the number of representative(s) from
an individual group could be different from one.

The n available securities as a whole form the market.
What we do here in this research is to decompose the
entire market into k clusters, within each of which all
constituents possess similar features. Theoretically, a joint
presence of representatives from all such “homogeneous”
groups can somehow replicate the whole market, thus
eliminating “performance redundancy” when involving all
risky assets in the portfolio. Even though constituents
in each cluster are “indistinct” in concept, we still seek
to find the one with the best performance (jointly with
other representatives) when evaluation the entire portfolio.
Therefore, we consider adding the clustering result as
pre-grouping constraints to problem (P̄ ), with a primary
purpose of reducing the size of the combinatorial choices.

Let the entire pool of risky assets be partitioned into k
groups by clustering algorithm with Ii being the index set
of cluster i, i = 1, · · · , k, such that

Ii ∩ Ij = ∅, for i 6= j,

∪i=1,··· ,k Ii = {1, 2, · · · , n}.
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We now consider the following revised version of problem
(P̄ ) by incorporating grouping constraints,

(P̂ ) min
x

σ2 = x′Qx,

Subject to: 1′x = 1,

r′x ≥ r̄,

0 ≤ xi ≤ ziM, i = 1, · · · , n.

αj ≤
∑

i∈Ij

zi ≤ βj , j = 1, · · · , k,

n
∑

i=1

zi = s,

z = {0, 1}n,

x ≥ 0,

where all αj and βj , j = 1, · · · , k, are nonnegative integers.

In the above problem formulation (P̂ ), while the portfolio
has to satisfy the cardinality constraint, the number of
representative assets selected from cluster j can vary from
αj to βj , j = 1, · · · , k.

Compared to the original problem formulation (P̄ ), in
which a combinatorial number,

(

n
s

)

= n!
s!(n−s)! , of choices

can be considered as candidates to satisfy the cardinality
constraint, the revised problem formulation (P̂ ) only has
∏k

j=1(βj −αj +1) choices, a number much much less than
(

n

s

)

. This dimension reduction facilitates significantly the
computational process for large-scale portfolio selection
problems.

Varying the value of r̄ yields the mean-variance efficient
frontier under cardinality constraint and grouping con-
straints from clustering. Generally speaking, the efficient

frontier of (P̂ ) gets closer to that of (P̄ ) when increasing
β − α or k/s, or both. However, we need to consider the
trade-off between the solution accuracy and computational
time.

3. NUMERICAL RESULTS FROM
COMPUTATIONAL EXPERIMENTS

We present in this section computational experiments us-
ing data of 679 stocks between Jan. 3, 2000 and Dec. 28,
2009 from the Hong Kong market. The computer we use
to conduct the experiments is an Inter(R) Core(TM) 2
Quad CPU Q9400 @ 2.66GHz, 2.87GB of RAM. We carry
out the clustering algorithm using Matlab, and compare
our computational performance with CPLEX 12.2, a com-
mercial optimization software, both in terms of running
time and accuracy. For CPLEX 12.2 implementation, after
several tries, we found that M = 10 is large enough for
calculation.

We use the notation “n − s − r̄” to denote a specific
problem with a problem size n, cardinality size s, and
pre-given return level r̄. The three levels of pre-given
return, “high”, “mid”, and “low”, indicate that we set r̄ as
min(r)+ 4

5 (max(r)−min(r)), min(r)+ 1
2 (max(r)−min(r)),

and min(r) + 1
5 (max(r) − min(r)), respectively. We also

set an upper limit of 3600 CPU seconds for calculation;
that is, we terminate the calculation if an algorithm does
not find an optimal solution within 3600 CPU seconds
and record the incumbent as an approximate solution.

Table 1. Experiment results using CPLEX

“200-10-mid” “200-10-low”

Prob CPU Node OptV CPU Node OptV

1 27.22 23262 0.001683 3600 2728991 0.000279

2 93.64 76290 0.001237 7.99 5232 0.000195

3 3600 3089187 0.000550 57.11 51587 0.000152

4 310.82 264206 0.000500 15.77 12457 0.000215

5 108.25 81068 0.000122 2.41 1862 0.000114

6 1589.55 1294729 0.000888 47.42 44686 0.000153

7 77.13 62093 0.000918 42.80 41813 0.000143

8 542.64 434630 0.000667 2.11 1429 0.000154

9 155.71 130758 0.000971 50.36 43017 0.000236

10 110.14 97073 0.001645 71.44 59603 0.000265

Avg 661.52 555330 - 389.74 299068 -

Table 2. Experiment 1 for “200-10-mid” using
our new algorithm with k = 10, α = 1 and

β = 1

k = 10, s = 10, α = 1 and β = 1

Prob CPU1 CPU2 Node Ratio Acc OptV

1 0.24 4.11 3554 0.1510 1.1294 0.001901

2 0.28 18.05 32015 0.1927 1.2395 0.001534

3 0.26 60.36 474076 0.0168 1.1550 0.000635

4 0.27 13.38 16826 0.0430 1.2873 0.000643

5 0.27 24.17 23709 0.2233 1.8777 0.000230

6 0.26 25.80 36079 0.0162 1.3366 0.001186

7 0.23 14.42 112850 0.1870 1.1431 0.001050

8 0.27 46.44 75867 0.0856 1.1606 0.000774

9 0.24 23.49 37260 0.1508 1.0960 0.001064

10 0.26 4.88 8111 0.0443 1.0469 0.001722

Avg 0.26 23.51 82035 0.1111 1.2472 -

Table 3. Experiment 2 for “200-10-mid” using
our new algorithm with k = 20, α = 0 and

β = 1

k = 20, s = 10, α = 0 and β = 1

Prob CPU1 CPU2 Node Ratio Acc OptV

1 0.37 4.83 3314 0.1774 1.0666 0.001795

2 0.33 12.44 9567 0.1328 1.0568 0.001308

3 0.32 49.95 23806 0.0139 1.0419 0.000573

4 0.37 9.33 6457 0.0300 1.0933 0.000546

5 0.36 11.20 7239 0.1035 1.2695 0.000155

6 0.35 171.80 128662 0.1081 1.1013 0.000977

7 0.37 14.22 9606 0.1844 1.0586 0.000972

8 0.38 5.98 4112 0.0110 1.0395 0.000693

9 0.34 18.16 14250 0.1166 1.0598 0.001029

10 0.40 12.41 10262 0.1126 1.0412 0.001713

Avg 0.36 31.03 21728 0.0990 1.0828 -

For each specific problem, we generate 10 cases in our
computational experiments and take the average as the
outcome. Due to the page limit, we only report in this
paper the results for problems with n equal to 200 and r̄
being set at “mid” and “low”. In the tables below, the
column ‘CPU’ refers to the execution time of CPU in
seconds, the column ‘Node’ records the number of nodes
visited in the enumerating tree, and the column ‘OptV’
gives the objective value attained by the algorithm.

Table 1 presents the computational results for problems
“200-10-mid” and “200-10-low” by CPLEX. Tables 2,
3, 4 and 5 report the computational results by using
our proposed algorithm, more specifically, by using the
industry index as factors for the factor model and using
the “k-means” clustering algorithm for grouping. When
applying our method, we try different sets of parameter
setting for k, α, and β, and we report only two such
settings in this paper due to the page limit. In Tables 2,
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Table 4. Experiment 1 for “200-10-low” using
our new algorithm with k = 10, α = 1 and

β = 1

k = 10, s = 10, α = 1 and β = 1

Prob CPU1 CPU2 Node Ratio Acc OptV

1 0.24 71.44 85902 0.0198 1.4158 0.000396

2 0.28 3.75 2687 0.4696 1.4946 0.000291

3 0.26 99.16 141904 1.7363 1.4337 0.000218

4 0.27 4.14 2610 0.2626 1.3396 0.000288

5 0.27 0.91 142 0.3768 1.7750 0.000202

6 0.26 6.09 4917 0.1285 1.1845 0.000182

7 0.23 6.72 5536 0.1570 1.2466 0.000178

8 0.27 1.44 1224 0.6818 1.4114 0.000218

9 0.24 5.00 4767 0.0993 1.1757 0.000278

10 0.26 23.80 28135 0.3331 1.4002 0.000372

Avg 0.26 22.24 27782 0.4265 1.3877 -

Table 5. Experiment 2 for “200-10-low” using
our algorithm with k = 20, α = 0 and β = 1

k = 20, s = 10, α = 0 and β = 1

Prob CPU1 CPU2 Node Ratio Acc OptV

1 0.37 82.92 79258 0.0230 1.1166 0.000312

2 0.33 0.99 324 0.1234 1.3515 0.000263

3 0.32 12.17 8189 0.2131 1.3991 0.000213

4 0.37 2.16 1203 0.1367 1.2308 0.000265

5 0.36 1.08 444 0.4479 1.4959 0.000170

6 0.35 0.64 190 0.0135 1.2546 0.000192

7 0.37 9.75 6322 0.2278 1.5522 0.000222

8 0.38 1.08 317 0.5111 1.3336 0.000206

9 0.34 12.11 3352 0.2405 1.2088 0.000285

10 0.40 33.49 7576 0.4687 1.1583 0.000307

Avg 0.36 15.64 10718 0.2406 1.3102 -

3, 4 and 5, the column ‘CPU1’ refers to the CPU time of
carrying out clustering in Matlab, and ‘CPU2’ refers to
the CPU time of solving (P̂ ) using CPLEX. The column
‘Ratio’ compares the CPU time of our method and CPLEX
which is measured by the ratio of ‘CPU2’/‘CPU’, where
‘CPU’ is the corresponding time for problem (P̄ ) presented
in Table 1. The smaller the number, the more time saving
of our algorithm over CPLEX. We also give the accurate
rate of the objective value of our methods in column ‘Acc’,

which is measured by the ratio our‘OptV ′

CPLEX‘OptV ′
. The closer

to one from above, the better the quality of our algorithm.
Generally speaking, our method always has the advantage
over CPLEX in CPU time, while paying a price of solution
quality. We can see from our numerical experiments that
the solution of (P̂ ) is increasingly closer to (P̄ ) with an
increase of α−β and k/s; however, the CPU time increases
as well as a trade-off.

4. CONCLUSIONS

Financial decisions should be based on structural informa-
tion from the market, thus being benefitted from utilizing
financial insights. We have provided a complete answer
to the list of four questions raised in the beginning of
Section 2 by invoking solution concepts from factor model,
clustering analysis and integer programming. Using the
factor model approach, a fundamental market decompo-
sition scheme, we extract essential features in character-
izing individual risky assets. With the help of cluster-
ing algorithm in grouping risky assets, we attach to the
mixed integer programming formulation of CCMV prob-
lem a family of pre-grouping constraints, thus reducing
significantly the computational complexity of the primal
problem. Although our preliminary numerical experiments
display promising performance of our newly developed al-
gorithm, when compared with CPLEX, the most powerful
powerful commercial software package in solving mixed

integer programming, more systematic tests are needed
for more systematic comparison, thus reaching recommen-
dation to improve and to refine our algorithm.
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