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Abstract: Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two
memoryless nonlinearities. Presently, the linear subsystem may be parametric or not, continuous- or
discrete-time. The input nonlinearity is allowed to be a memory operator of backlash type bordered by
straight lines. The output nonlinearity may be noninvertible and is only supposed to be well
approximated, within any subinterval belonging to the working interval, with a polynomial of unknown
order and parameters. An optimal strategy is presented to identify the system nonlinearities and an
identification approach is developed that provides estimates of the linear subsystem. The method
involves easily generated excitation signals. Finally, all the suggested estimators are shown consistent.
Keywords: Hammerstein-Wiener models, Backlash operator, Backlash-inverse operator, Frequency
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

1. INTRODUCTION

Hammerstein-Wiener models consist of a linear dynamic
block sandwiched by two nonlinear elements (Fig. 1).
Clearly, this model structure is a generalization of
Hammerstein and Wiener models and so it is expected to
feature a superior modelling capability. This has been
confirmed by several practical applications e.g. RF power
amplifier modelling (Taringou et al., 2010), ionospheric
dynamics (Palanthandalam-Madapusi et al., 2005), and
chemical processes (Giri and Bai, 2010). As a matter of fact,
Hammerstein-Wiener systems are more difficult to identify
than the simpler Hammerstein and Wiener models. The
complexity of the former lies in the fact that these systems
involve two internal signals not accessible to measurements,
whereas the latter only involve one. Then, it is not surprising
that only a few methods are available that deal with
Hammerstein-Wiener (HW) system identification.
Identification methods for HW systems are generally
classified into several families: iterative methods (e.g. Ni et
al., 2012; Vörös, 2004), over-parameterized methods (see
Bai, 2002; Wang et al., 2009). HW system identification is
dealt given the assumption of invertibility of the Wiener part
(e.g. Ni et al., 2013; Bai, 2002; Wang et al., 2009). More
recently, a blind approach is aiming at estimating the model
between the internal variables (Giri and Bai, 2010). Roughly,
the iterative methods can lead to unsatisfactory results
because they require a large amount of data and have local
convergence properties which necessitates that a fairly
accurate parameter estimates are available to initialize the
search process. The over-parameterized methods involve a
large number of parameters that are estimated. Despite
numerous works reported for HW systems, the frequency
identification problem is not yet fully studied.
Presently, the problem of identifying HW systems is tackled
in the presence of a backlash operators bordered by straight

lines (Fig. 2). The output nonlinearity is only supposed to be
well approximated, within any subinterval belonging to the
working interval, with a polynomial of unknown order and
parameters. The order p and the parameters of the polynomial
can vary from one subinterval to another. The memory nature
of F[.] implies that the backlash output, at a given time t, is
not uniquely determined by the input u(t) at the same time.
The major difficulty of the identification problem lies in the
fact that the linear subsystem is of structure totally unknown
and the internal signals of the system (i.e. xi , xo and w(t)) are
not accessible to measurement. In view of these difficulties, it
is not surprising that there are very few solutions available
that deal with HW systems identification containing memory
elements in the input nonlinearity (Giri et al., 2013). It is also
worthy to note that the identification method involves easily
generated excitation signals. The linear subsystem structure is
presently totally unknown, unlike most previous works,
where that subsystem is supposed to be a transfer function of
known order (e.g. Bai, 2002; Ni et al., 2012; Wang et al.,
2009; Schoukens et al., 2012). Also, these studies consider
that the invertibility of output nonlinearity is a usual
assumption. Presently, the identification problem was dealt
with in two stages. The first stage is devoted to the estimation
of a set of points belonging to the output nonlinearity and
determining the parameters of the backlash borders. Once the
input nonlinearity is identified, the linear subsystem
frequency gain is determined using a frequency identification
method involving backlash inversion (Yi Su and Stepanenko,
2000).

Fig. 1. Hammerstein-Wiener Model structure with a backlash input
nonlinearity.
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To close this section, we give an outline of the paper. Section
2 formulates the problem and derives some preliminary
results. The main results are given in Section 3 along with
some remarks and proposition concerning the scheme applies
to identify the system nonlinearities applied. The phase and
gain identification of the linear block is coped with in
Section4.

2. PROBLEM STATEMENT AND PRELIMINARIES
We are considering nonlinear systems that can be described
by the Hammerstein-Wiener model (Fig. 1). The input
nonlinearity is a Backlash operator bordered by two straight
lines, having the characteristics (Sa , Pa) and (Sd , Pd) (Fig. 2),
i.e. on the lateral borders, xi(t) holds one of two forms:

( ) ( )a a

ix t S u t P  or ( ) ( )d d

ix t S u t P  (1a)

Then, the above model is analytically described by:

( ) [ ]( )ix t F u t (2a)

( ) ( ) ( )o ix t g t x t  (2b)

 ( ) ( ) ( )oy t h x t t  (2c)

where 1( ) ( ( ))g t L G s and * refers to the convolution
operation. The system input and output signals are accessible
to measurement while the internal signals xi(t), xo(t) and w(t)
are not. The equation error ξ(t) is a zero-mean stationary
sequence of independent random variables and ergodic; it
accounts for external noise. Accordingly, G(s) is a transfer
function, with impulse response g(t), representing the system
dynamics. Presently, G(s) is allowed to be nonparametric and
infinite order but is BIBO stable. Let:

/ ) ) /( (d a d a d d

M M
U S S u P P S  (3a)

/ ) ) /( (a d a d a a

m m
U S S u P P S  (3b)

denoting respectively the maximum and minimum inputs
applied on the descendant and ascendant borders respectively
(Fig. 2), for a given working interval [ ]m Mu u . Obviously, if
the signal u(t) spans monotonically, in both senses, a
sufficiently wide working interval then, the working point
will span a closed backlash cycle, passing from one border to
the other along two connecting horizontal paths (Fig. 3a).
Accordingly, the working interval [ ]m Mu u is required to be
sufficiently wide so that both borders can be actually attended

by the backlash working point ( ), ( )( )iu t x t whenever u(t)
spans this interval monotonically in both senses. In case the
working interval is not sufficiently large, the resulting steady-
state internal signal xi(t) will be constant i.e. the backlash
working point ( ), ( )( )iu t x t will move along a horizontal
segment (Fig. 3b). Then, the system output y(t) becomes
constant (up to noise) after a transient period. This
observation can be based upon in practice to discard non-
suitable choices of [ ]m Mu u . On the other hand, the output
nonlinearity is assumed to be approximated, within any
subinterval belonging to the working interval, with a
polynomial of unknown order and parameters. The output

nonlinearity is not globally invertible but satisfied 1 (0) 0h  .
Except for the above assumptions h(.) is arbitrary; in
particular, the order p and the parameters of h(.) can vary
from one subinterval to another. The identification problem
consists in determining accurate estimates of the nonlinear
operator parameters (Sa,Pa,Sd,Pd), a set of points belonging to
the output nonlinearity, and the linear frequency gain G(jωk)
with ωk (k=1…m).

3. IDENTIFICATION OF SYSTEM NONLINEARITIES

In this section, an identification method is proposed to get
estimates of the backlash borders and a set of points
belonging to the output nonlinearity. The number of points N
is arbitrary chosen. First, we note that the considered
identification problem does not have a unique solution: if
(F[u] , ( ),G s h(xo)) represents a solution then, any model of the
form (F[u]/k1,G(s)/k2,h(k1k2 xo)) is also a solution (where k1 and
k2 are any nonzero real). To solve this problem, it is
suggested the following choice of the scaling factor:

1

ak S and 2 (0)k G (4)

Then, the system to be identified is described by:

( ) ( ) / (0)G s G s G (5a)

[ ] [ ] / aF u F u S ; ( ) ( (0) )ah x h S G x (5b)

It is readily seen that: (0) 1G  . Then, let:

/ 1a a aS S S  ; /a a aP P S (6a)

/d d aS S S ; /d d aP P S (6b)

designate respectively the parameters of ascendant and
descendant borders of the modified Backlash, that will be
identified. First, let 0 0( ), ( )( )iu t x t be the initial backlash

working point. To determine the estimations of h (.), we

u
Mumu

ix

Fig. 3a. Example of backlash
limit cycle.

Fig. 3b. The limit cycle reduces
to a horizontal segment.

Fig. 2. Backlash bordered by straight lines.
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apply a set of constant inputs Uj (j=1…N), with:

0 1( ) ...m N Mu t u U U u    (7)

To make sure that all points , [ ]( )j jU F U belong to the

ascendant straight, it is sufficient to ensure that 1 1, [ ]( )U F U

belongs to this border. If 1 1, [ ]( )U F U moves along a

horizontal segment (i.e. 1 0[ ] ( )iF U x t ), the system output
y(t) remains constant (up to noise). This observation can be
based upon in practice to discard non-suitable choices of U1.
Accordingly, apply the piecewise constant signal, for all

[( 1) )r rt j MT jMT  :

( ) ju t U for 1...j N (8)

where the Uj satisfy (7), rT should be comparable to the
system rise time, and M>1. Under these conditions, all points

, [ ]( )j jU F U belong to the ascendant straight. Then, the
internal signal xi(t) of the considered model (5a-b) is also
piecewise constant signal, and is defined as follows, for all

[( 1) )r rt j MT jMT  :

[ ]j a

i j jX F U U P   for 1...j N (9)

As the linear subsystem is asymptotically stable with unit
static gain (i.e. (0) 1G  ), it follows that, on each interval
[( 1) )r rj MT jMT ( 1...j N ), the steady-state of the internal

signal xo(t) is constant i.e ( ) j

o o
t

x t X


 , with:

(0)
def

j j a

o i jX G X U P   for 1...j N (10)

Subsequently, notice that the steady state of w(t) is constant,
noted jW , and can simply be expressed as follows:

( )
def

a

j jW h U P  for 1...j N (11)

Finally, report that the steady state undisturbed output jW
can simply be estimated using the fact that

( ) ( ) ( )y t w t t  and ( )t is zero-mean. Specifically, jW
can be recovered by averaging y(t) on a sufficiently large
interval. Let the nonlinearity h*(.) be defined as follows:

* ( ) ( )
def

ah x h x P  (12)

Hence, a number of points of the nonlinearity h*(.) can thus
be accurately estimated.
Remark 1. a) The non-linearity (.)h is a more or less spread

version (Giri et al., 2013), according the value of (0)aS G , of

h(.) and satisfying 1 (0) 0h   (Fig. 4a).
b) The non-linearity h*(.) is a more or less spread version of
h(.) and horizontally shifted of aP (Fig. 4b). 

Consequently, knowing that h(.) is assumed to be
approximated, within any subinterval belonging to the

working interval, with a polynomial and 1 (0) 0h  , the

parameter aP can be recovered (Fig. 4b). Then, the

nonlinearity (.)h can be determined by using:
*( ) ( )ah x h x P  (13)

It now remains to determine the parameters of the descendant
straight dS and dP . To this end, one goes ahead realizing
the descendant experiment series. Specifically, the system is
successively excited with constant inputs with decreasing
amplitudes 1 2 1N NU U U

 
   . Following a similar

argument as previously, it can be proved that the system
asymptotic behavior is described by the following equations:

( )d d

jj
W h S U P  ; 1 1j N   (14)

The set of couples  ,j jU W all belonging to ( )d dh S Px  .

Recall that the estimate of (.)h was carried out in the
ascendant experimental stage, and getting benefit of the fact
that the output nonlinearity is locally invertible, due to their
polynomial nature. Then, dS and dP can be recovered by

choosing two constant inputs Up and Uq 1 1, ...,{ }NU U


 in the

invertibility zone of (.)h .

These ideas are formalized in the estimator of Table 1.

Table 1. Nonlinearities Identification (NI)
1. (Initialization experiment) Apply the following signal:

0
( )

0
M

m

u for t
u t

u for t
 

 


(15)

2. (Data acquisition) Apply the piecewise constant signal
analytically defined as follows for all  ( 1) r rt j MT jMT  ,

1...j N :

( ) ju t U ; with 1 ... N MU U u   and 1U U (16)

Record the resulting output )(ty for  0 rt NMT .

Fig. 4a. Example of function
with spread versions.

Fig. 4b. Comparison between the
nonlinearities h*(.) and (.)h .
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3. (Filtered output estimation) Compute the (undisturbed
output) mean value on each interval  ( 1) r rj MT jMT :

( 1)

1ˆ ( ) ( )
( 1)

r

r r

jMT

j j MT T

r

W M y t dt
M T  




 for 1...j N (17)

Then, an exact estimation *

,
ˆ ( ).M Nh of h*(.) is obtained using

the set of couples  ˆ, ( )j jU W M (estimates of N points all
belonging to the curve of h*(.)).
4. Determine the ascendant straight parameters of the
backlash operator:

ˆ 1aS  and   1
*

, ,
ˆ ˆ (0)a

M N M NP h


  (18)

An exact estimation ,
ˆ ( ).M Nh of (.)h can be determined

using:
*

, , ,
ˆ ˆˆ( ) ( )a

M N M N M Nh h Px x  (19)

5. Apply the piecewise constant signal, analytically defined
as follows, for all  ( 1)r rt j MT j MT  , 1...2 1j N N   :

( ) ju t U with N i N iU U
 
 for 1 1i N   (20)

Applying (17), compute the corresponding filtered output
ˆ ( )jW M for 1...2 1j N N   .

6. Select two constant inputs Up and Uq 1 2 1, ...,{ }N NU U
 

 in

the invertibility zone of (.)h . Calculate the estimates of dS

and dP :

   1 1

, ,

,

ˆ ˆˆ ˆ( ) ( )ˆ M N q M N pd

M N

q p

h W M h W M
S

U U

 



(21a)

   1 1

, ,

,

ˆ ˆˆ ˆ( ) ( )ˆ M N q p M N p qd

M N

p q

h W M U h W M U
P

U U

 



(21b)

Change the values of jU ( 1...2 1j N N   ) in (20) if
necessary.

Proposition 1. Consider the identification problem statement

of Section 2. Let ˆ (.)Nh and *ˆ (.)Nh designate the estimates of

(.)h and * (.)h , respectively, as M   . Then, one has:

1) The estimate *ˆ (.)Nh converge in probability to * (.)h (as

M  ) i.e.: * *ˆlim (.) (.)N
N

h h


 (w.p.1).

2) The estimate ˆ (.)Nh converge in probability to (.)h (as

M   ) i.e.: ˆlim (.) (.)N
N

h h


 (w.p.1).

3) Let ,
ˆ [.]M NF denotes the estimate of [.]F using the NI

estimator (Table 1). Then, ,
ˆ [.]M NF converge in probability to

[.]F (as ( , )M N   ). 

Proof. It has already been noticed that, after the initialization
experiment (step 1 of the NI procedure) and applying the
input signal (16) for  0 rt NMT , with U1< … <UN and

make 1 0( )U u t large, the backlash working point moves on
the ascendant straight. One has, in the steady-state, from (9)-
(11) and the asymptotic stability of linear subsystem that, for

 0 rt NMT , the set of points  ,j jU W ( 1...j N )

occupying N positions on the trajectory of nonlinearity h*(.).
On the other hand, using the fact that the noise ( )t in (2c) is
zero-mean:

( 1)

1ˆlim ( ) lim ( )
( 1)

r

r r

jMT

j j MT T
M M

r

W M y t dt
M T  

 





( 1)

1
          lim ( )

( 1)
r

r r

jMT

j MT T
M

r

w t dt
M T  





 for 1j N  (22)

Specifically, one has for 1j N  :

*ˆlim ( ) ( ) ( )a

j j j
M

W M h U P h U


   (23)

Then, we can conclude that:

   *ˆlim , ( ) , ( )j j j jM
U W M U h U


 for 1j N  (24)

Therefore, the set of points  ˆ, ( )j jU W M ( 1j N  ),

obtained from the data collected on the time interval
 0 rNMT , converge (in probability) to trajectory of * (.)h as

M   . Furthermore, note that all input values jU satisfy

the condition [ ]a

m MjU U u ( 1 )j N  . Finally, it is readily

seen that *ˆ (.)Nh converge in probability to * (.)h , as N  ,
which proves the first part of Proposition.

One gets from (18) that:   1
*

, ,
ˆˆ (0) a

M N M Nh P


  . It follows

from Part 1 that:

   1 1
* *ˆlim (0) (0) a

N
N

h h P
 


   (25)

Then, one has w.p.1:

  1
*

,
( , )

ˆlim (0)a a

M N
M N

P h P



   (26)

Accordingly, it is readily obtained from Part 1, (19) and (26)

that ˆ (.)Nh converge in probability to (.)h (as M   ).
This proves the second part of proposition.

Finally, knowing that ˆ aS is exactly equal to unity, by using
(21a-b) and (26), the direct results of second part complete
the proof of the proposition. 
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4. LINEAR SUBSYSTEM IDENTIFICATION
In this section, a frequency identification method is proposed
to obtain estimates of the complex gain at  , whatever the
frequencies 0  .
a) Backlash-inverse operators.
Recall that a backlash-inverse operator is also a memory
element characterized by a couple of functions ),( da ff ,
called its borders, and is denoted ),( da ffBI . When
submitted to an input signal )(tu , it generates an output
signal ( )z t defined as follows:

( ( )) ( ) 0
( )

( ( )) ( ) 0
a

d

f u t if u t
z t

f u t if u t


  




(27)

This definition entails no condition on the couple ),( da ff
except for the obvious property:

 )()( xfxf ad , for all x . (28)

Fig. 5 shows an example of backlash-inverse operator
bordered by straight lines, where the ascendant and
descendant borders have the slopes (S a)-1 and (Sd)-1

respectively.

b) Compound operators.
In the rest of this section, ),( da ffX and ),( da ffY denotes
any (backlash or backlash-inverse) operator and h any
function. Then, one defines the composition ),( da ffXh  as
follows:
   ])[,(][),( uffXhuffXh dada  (29)

where u is any signal whose values, ( ) ( 0)u t t  , belong to
the domain of definition of the function pair ),( da ff .
Similarly, one defines the composition

),(),( dada ffXhhY  as follows:

   ])[,(),(][),(),( ufhXfhYuffXhhY dadadada  (30)

It is readily seen that (30) describes the series system
composed of the two operators (Fig. 6).

Proposition 2 (Compositions involving memory operators).
Let ),( da ffB denotes a backlash operator, with ),( da ff its
borders. Then, one has:
1) For any function RR :h :

),(),( ddaada fhfhBffBh  

2) Suppose da ff , are similarly monotonic on some domain

RfD . then, one has on )()( 11
fdfa DfDf   :

IffBIffX dada  ),(),( 11 , if da ff , are increasing

IffBIffX adda  ),(),( 11 , if da ff , are decreasing

for  BIBX , with I being the identity operator. That is, for

any signal )(tu such that )()()( 11
fdfa DfDftu   , one

has:

  )()]([),(),( 11 tutuffBIffB dada  , for all 0t

Proof (Outline). Part 1 is easily checked using the definitions
of Backlash operators, (27) and (29).
Owing to Part 2, it is well known that the property

IffBIffB dada  ),(),( 11 holds in the case of similarly
monotonic straight-line borders i.e. affine functions da ff , .
The proof can be found in many places, e.g. (Tao and
Kokotovic, 1996), and does easily extend to the case of any
similarly monotonic borders. Now, let us prove that one also
has 1 1( , ) ( , )a d a dBI f f BI f f I   . Consider any signal such

that )()()( 11
fdfa DfDftu   and let:

1 1( ) ( , )[ ]( )a dz t BI f f u t  , ( ) ( , )[ ]( )i a dx t BI f f z t (31)

By definition (see (27)), one has:
1

1

( ( )) ( ) 0
( )

( ( )) ( ) 0
a

d

f u t if u t
z t

f u t if u t





 
 






(32a)

( ( )) ( ) 0
( )

( ( )) ( ) 0
a

i
d

f z t if z t
x t

f z t if z t


  




(32b)

As ),( da ff are increasing on fD , so are ),( 11 
da ff on

)()( 11
fdfa DfDf   . Now, suppose that 0)( tu . It

immediately follows from (32a) that 1( ) ( ( ))az t f u t and
( ) 0z t  which, together with (32b), implies that
( ) ( ( )) ( )i ax t f z t u t  .

A similar result can be established when 0)( tu . This

proves that IffBIffBI dada  ),(),( 11 wherever ),( da ff
are monotonically increasing. The case of locally monotonic
decreasing functions is dealt with similarly.

Fig. 5. Example of backlash-inverse operator
bordered by straight lines.

z
),( da hhY),( da ffX

u

Fig. 6. Compound memory operators

xi

z

mu

u

Mu

aP
dP

ah 1( )aS 

dh1( )dS 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

479



c) Identification of the linear element
At this point, the input and output nonlinearities, [.]F and

(.)h , are known and the aim is to determine the transfer
function )or()( zsrrG  of the linear subsystem.

In this respect, recall that (.)af and (.)df are straight lines,
which implies that the Backlash borders are asymptotically
monotonic. At this stage (.)af and (.)df (the parameters

aS , aP , dS , and dP ) are known and so one of such scalars
can be explicitly determined. Then, Proposition 2 ensures that

[.]F is invertible and its right-inverse, denoted [.]1F is

equal either to ),( 11 
da ffBI or ),( 11 

ad ffBI , depending on
the monotony sense of (.)af and (.)df (the sign of slopes

aS and dS , respectively). Then, one key idea is to neutralize
the effect of [.]F by placing its inverse (Fig. 5) as pre-
compensator (Fig. 7) and excite the augmented system with
input signals ( )u t that only take values in the domain where

IFF 1 . Specifically, one has: ( ) ( ),
i

x t u t t  .

Then, the resulting system turns out to be a Wiener model.
Roughly, the system identification can be dealt using several
methods. One simple solution consists of getting benefit of
the fact that the output nonlinearity (.)h is locally invertible,
due to their polynomial nature. Then, there exist an interval
such that (.)h is invertible. Let  a b  R be any interval

such that (.)h is invertible on  a b and let its inverse on

 a b be denoted (.)1h . Then, our second key idea is to
choose the input signal ( )u t so that the observed output

signal ( )w t is enforced to stay all the time in interval  a b .

This can be achieved by letting the working interval [ ]m Mu u
be sufficiently large, whatever the nature of ( )u t . In such an
operation mode, the effect of  the output nonlinearity can be
cancelled by placing the element (.)1h as post-compensator
(Fig. 7). Doing so, the augmented system, including both the
pre- and post-compensator, boils down to a linear system
with transfer function )(rG . The fact that the input signal

( )u t is of arbitrary nature entails the possibility of choosing
it to be persistently exciting making the problem of
identifying )(rG a trivial issue.

Fig. 7. The system to be identified augmented with pre- and
post-compensator

5. SIMULATION

Due to space limitation, simulation results have been omitted.
They will be presented at the conference.

6. CONCLUSIONS

We have developed a new two-stage identification method to
deal with Hammerstein-Wiener systems in presence of
backlash input nonlinearities and memoryless output
nonlinearities. The originality of the present study lies in the
fact that the linear subsystem is of structure totally unknown.
On the other hand, the output nonlinearity may be
noninvertible and is only supposed to be well approximated,
within any subinterval belonging to the working interval,
with a polynomial of unknown order and parameters.
Another feature of the method is the fact that the exciting
signals are easily generated and the estimation algorithms can
be simply implemented.

REFERENCES
Taringou, F., Hammi, O., Srinivasan, B., Malhame, R., and Ghannouchi,

F.M. (2010). Behaviour modelling of wideband RF transmitters using
Hammerstein-Wiener models. IET Circuits Devices & Systems, 4(4),
282-290.

Palanthandalam-Madapusi, H.J., Ridley, A.J., and Bernstein, D.S. (2005).
Identification and prediction of ionospheric dynamics using a
Hammerstein-Wiener model with radial basis functions. In
Proceedings of the American Control Conference, 5052-5057.

Giri, F. and Bai, E.W. (2010). Block-oriented Nonlinear System
Identification. Springer, 1 edition.

Giri, F., Brouri, A., Ikhouane, F., Chaoui, F.Z., Radouane, A. (2013).
Identification of Hammerstein-Wiener Systems Including Backlash
Input Nonlinearities. In 11th IFAC International Workshop on
Adaptation and Learning in Control and Signal Processing, 360-365.
France.

Ni, B., Gilson, M., and Garnier, H. (2013). Refined instrumental variable
method for Hammerstein-Wiener continuous-time model identification.
IET Control Theory and Applications, 7 (9), 1276-1286.

Vörös, J. (2004). An iterative method for Hammerstein-Wiener systems
parameter identification. Journal of Electrical Engineering, 55(11-12),
328-331.

Bai, E.W. (2002). A Blind Approach to the Hammerstein-Wiener Model
Identification. Automatica, 38 (6), 967-979.

Wang, J., Chen, T., and Wang, L. (2009). A blind approach to identification
of Hammerstein-Wiener systems corrupted by nonlinear-process noise.
In Proceedings of the 7th Asian Control Conference, 1340-1345, Hong
Kong, China.

Schoukens, M., Bai, E.W., and Rolain, Y. (2012). Identification of
Hammerstein-Wiener Systems. In Proc. 16th IFAC Symp. Syst.
Identification, 274-279. Brussels, Belgium.

Giri, F., Rochdi, Y., Radouane, A., Brouri, A., Chaoui, F.Z. (2013).
Frequency Identification of nonparametric Wiener systems containing
backlash nonlinearities. Automatica, 49, 124-137.

Tao G., P. Kokotovic. Adaptive Control of Systems with Actuator and
Sensor Nonlinearities. John Wiley And Sons Ltd, US, 1996.

Yi Su, Y.T.C. and Stepanenko, Y. (2000). Adaptive Control of a class of
nonlinear Systems preceded by an unknown backlash-like hysteresis. In
IEEE Conference on Decision and Control, 1459-1464. Australia.

Pre-
compensator

z
F

xi
G(r)

y
F-1 h h-1u

Identified system
Post-

compensat
or

wxo

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

480


