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1. INTRODUCTION 

Model predictive control (MPC) involves the solution at each 
sampling instant of a finite horizon optimal control problem 
subject to the system dynamics, and state and input 
constraints. Solving in a centralized way MPC problems for 
large-scale systems may be impractical due to the topology of 
the plant and data communication and the large number of 
decision variables. Recently, several approaches for 
decentralized and parallel implementation of MPC algorithms 
have been proposed, Constantinides (2009), Scattolini (2009), 
Christofides et al. (2013), Maestre and Negenborn (2014). 

In Zhang and Li (2007), Venkat et al. (2008), Alessio et al. 
(2011), Giselsson and Rantzer (2010), Giselsson et al. (2013), 
approaches for distributed/decentralized MPC for systems 
consisting of linear interconnected subsystems have been 
developed. The approach in Giselsson and Rantzer (2010) is 
based on the dual decomposition methods (Dantzig and Wolfe 
(1961), Cohen and Miara (1990)), where large-scale 
optimization problems are handled by using Lagrange 
multipliers to relax the couplings between the sub-problems. 
In Giselsson et al. (2013), a distributed optimization algorithm 
based on accelerated gradient methods using dual 
decomposition is proposed and its performance is evaluated 
on optimization problems arising in distributed MPC. Also, 
approaches for distributed MPC for systems composed of 
several nonlinear subsystems have been proposed (e.g. 
Raimondo et al. (2007), Dunbar (2007), Heidarinejad et al. 
(2011), Grancharova and Johansen (2014)). 

There are only a few papers considering the problem of robust 
distributed MPC of polytopic uncertain systems. Thus, in 
Zhang et al. (2013), a distributed MPC algorithm for 
polytopic systems subject to actuator saturation is proposed, 
where the distributed MPC controller is designed by solving a 
linear matrix inequality (LMI) optimization problem. In Al-

Gherwi et al. (2011), an online distributed MPC algorithm 
that deals explicitly with model errors is proposed. The 
algorithm requires decomposing the entire system into 
subsystems, which are coupled through their inputs. Only 
constraints on the inputs are considered and the upper bound 
on the robust performance objective is minimized by using a 
time-varying state-feedback controller for each subsystem. 

In this paper, a suboptimal approach to distributed robust 
MPC for uncertain systems consisting of polytopic 
subsystems with coupled dynamics subject to both state and 
input constraints is proposed. The approach applies the 
dynamic dual decomposition method (Cohen and Miara 
(1990), Giselsson and Rantzer (2010)) and reformulates the 
centralized robust MPC problem into a distributed robust 
MPC problem. It is based on distributed on-line optimization 
and can be applied to large-scale polytopic systems. 

2. FORMULATION OF ROBUST MODEL PREDICTIVE 
CONTROL PROBLEM FOR POLYTOPIC SYSTEMS 

Consider a system composed by the interconnection of M  
linear uncertain subsystems described by the following 
polytopic discrete-time models: 

1

( 1) ( ) ( ) ( ) ( ) ( ) , 1,2,...,

[ ( ), ( )]

M

i i i i i ij j
j
j i

i i i

x t A t x t B t u t A x t i M

A t B t




    




 
(1) 

where ( ) in
ix t   and ( ) im

iu t   are the state and control 

input vectors, related to the i-th subsystem, ( ) i in n
iA t   and 

( ) i in m
iB t   are uncertain time-varying matrices, and 

i in n
ijA   1, 2, ... , ,j M j i   are known constant 

martices. For a polytopic uncertainty description, i  

1, 2, ... ,i M  are polytopes: 
1 1 2 2{[ , ],[ , ], ... ,[ , ]}, 1,2, ... ,i iL L

i i i i i i iCo A B A B A B i M     (2) 
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where {}Co   denotes convex hull and [ , ], 1, 2, ... ,r r
i i iA B r L  

are its vertices. 

The following constraints are imposed on the subsystems: 

min, max, min, max,( ) , ( ) , 1,2, ... ,i i i i i iu u t u x x t x i M     (3) 

The following assumption is made: 
A1. min, max,0i ix x  , min, max,0i iu u  , 1, ... ,i M . 

Let ( )x t  and ( )u t  denote the overall state and the overall 

control input, i.e.: 

1 2
1

( ) [ ( ), ( ), ... , ( )] ,
M

n
M i

i

x t x t x t x t n n


    (4) 

1 2
1

( ) [ ( ), ( ), ... , ( )] ,
M

m
M i

i

u t u t u t u t m m


    (5) 

Another assumption will be made with respect to the rate of 
variation of parameters, mainly with respect to the prediction 
horizon as it will be shown next in the MPC design. 
A2. The uncertain pairs [ ( ), ( )]i i iA t B t  , 1, ... ,i M  have 

infrequent changes in the sense that [ ( ), ( )] consti iA t B t  , 

1, ... ,i M  for periods of time, which are not less than N  

( N    is supposed to be sufficiently large). 

Before formulating the robust MPC problem, a set i  is 

introduced, which is a finite subset of i . First, let 
vert {[ , ], 1,2, ... , }r r
i i i iA B r L    be the set of vertices of i  

and int {[ , ] int( ) , 1, 2, ... , }i iL j L j
i i i i iA B j K       be a finite 

set which includes interior points of the set i . Then, the 

finite set i i    is defined as vert int
i i i     . The reason 

for this definition of the set i  is explained in Remark 1. 

It is supposed that a full measurement 1 2[ , , ... , ]Mx x x x  of 

the overall state is available at the current time t . The robust 
regulation problem is considered where the goal is to steer the 
overall state of the system (1) to the origin. Let N  be a finite 

horizon such that N N  . By Assumption A2 it can be 
accepted that [ ( ), ( )] const [ , ]i i i iA t k B t k A B    , 

0,1, ... ,k N , 1, ... ,i M . Then, for the current x , the 

robust regulation MPC solves the optimization problem: 
Problem P1 (Centralized robust MPC): 

*
1 1

[ , ]
1, 2,...,

( ) min max ( , ,[ , ],...,[ , ])
i i i

M M
U A B

i M

V x J U x A B A B







 (6) 

subject to |t tx x  and: 

, | , [ , ] Ω , 1,..., , 1,...,i t k t i i i ix A B i M k N          (7) 

, , 1,..., , 0,1,..., 1i t k iu i M k N          (8) 

, 1| , | , , |
1,

[ , ] Ω , 1,..., , 0,1,..., 1

M

i t k t i i t k t i i t k ij j t k t
j j i

i i i

x A x B u A x

A B i M k N

    
 

  

   




     (9) 

| 1, | 2, | , |[ , , ... , ], 0,1,...,t k t t k t t k t M t k tx x x x k N       (10) 

1, 2, ,[ , , ... , ], 0,1,..., 1t k t k t k M t ku u u u k N        (11) 

with 1[ , , ... , ]t t t NU u u u   and the cost function given by: 

1 1 |
0

( , ,[ , ],...,[ , ]) ( , )
N

M M t k t t k
k

J U x A B A B l x u 


   (12) 

| , | ,
1

with ( , ) ( , )
M

t k t t k i i t k t i t k
i

l x u l x u   


   (13) 

Here, 2 2
, | , , | ,( , ) || || || ||

x ui i
i i t k t i t k i t k t W i t k Wl x u x u      is the stage 

cost for the i-th subsystem with weighting matrices 
, 0

i ix uW W  . The sets i  and i  are defined by: 

min, max,{ | }in
i i i i ix x       (14) 

min, max,{ | }im
i i i i iu u       (15) 

It follows from (14)–(15) that i  and i  are convex 

(polyhedral) sets, which include the origin in their interior 
(due to Assumption A1). It should be noted that the state 
constraints (7) guarantee the robust feasibility of the solution 
in sense that the state constraints in (3) will be satisfied for the 

worst-case uncertainty realizations in i , 1, ... ,i M . 

Remark 1: 
The description of the overall system dynamics, 
corresponding to (1) is: 

( 1) ( ( ) ) ( ) ( ) ( ) , [ ( ), ( )]x t A t A x t B t u t A t B t      (16) 

where ( )A t , ( )B t , A  are block-matrices: 

1 1( ) diag{ ( ),..., ( )}, ( ) diag{ ( ),..., ( )}

,
, , 1, ... ,

0 ,

M M

ij

A t A t A t B t B t B t

A i j
A i j M

i j

 

    
  

  (17) 

and 1 2 ... M      . Further, by assuming that 

[ ( ), ( )] const [ , ]A t k B t k A B    , 0,1, ... ,k N , the 

predicted overall state is: 

 
1

| 1
0

( ) ( )
k

k j
t k t t k j

j

x A A x A A Bu


   


       (18) 

Then, the cost function (12) will be in general non-convex 
with respect to the uncertain matrix A , because the predicted 

state includes the powers of ( )A A  . Therefore, considering 

only the vertices of the sets i , 1, ... ,i M  when computing 

the worst-case cost may not be sufficient. For this reason, the 

finite uncertainty sets i , 1, ... ,i M  should include some 

interior elements in addition to the vertices. 

3. DISTRIBUTED ROBUST MPC APPROACH BY DUAL 
DECOMPOSITION 

3.1 Distributed robust MPC by dual decomposition 

Problem P1 can be decomposed by using the dynamic dual 
decomposition approach (Cohen and Miara (1990), Giselsson 
and Rantzer (2010)). The following decoupled state equations 
can be formulated: 

( 1) ( ) ( ) ( ) ( ) ( ) , 1,2, ... ,

[ ( ), ( )]
i i i i i i

i i i

x t A t x t B t u t v t i M

A t B t

    


    (19) 

with the additional constraints that (Giselsson and Rantzer 
(2010)): 

1,

( ) ( ) , 1, ... , for all
M

i ij j
j j i

v t A x t i M t
= ¹

= =å   (20) 
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Similar to (Giselsson and Rantzer (2010)), the constraints (20) 
are relaxed by introducing the corresponding Lagrange 

multipliers in
ip   (also referred to as prices) in the cost 

function (12) and the original problem P1 is reformulated as a 
dual problem in view of distributed robust MPC: 

Problem P2 (Distributed robust MPC): 

, [ , ]
1,2,...,

, | , , , , |
0 1 1

, [ , ]
1

, | , , , , | ,
1

max min max

[ ( , ) ( )]

max (min max

[ ( , ) ]

i i i

i i i i i

i

U VP A B
i M

N M M
T

i i t k t i t k i t k i t k ij j t k t
k i j

j i

M

U VP A B
i

M
T T T

i i t k t i t k i t k i t k i t k t ji j t k
j
j i

l

l x u p v A x

l x u p v x A p




    
  





     



  

 

 









, ,

0

( , , , , )

)

P
i t k i t k i i

N

k

u v P A B 





   (21) 

subject to |t tx x , constraints (7)–(8) and: 

, 1| , | , , , [ , ] Ω

1,..., , 0,1,..., 1

i t k t i i t k t i i t k i t k i i ix A x B u v A B

i M k N

       

  


 (22) 

0t Np        (23) 

Here: 

1

1, 2, ,

1 , , 1 ,

1 , , 1 ,

1, 2, ,

[ , , ... , ]

with [ , , ... , ], 0,1,...,

[ , , ... , ], [ , , ... , ]

[ , , ... , ], [ , , ... , ]

with [ , , ... , ],

t t t N

t k t k t k M t k

t t t N i i t i t i t N

t t t N i i t i t i t N

t k t k t k M t k

P p p p

p p p p k N

U u u u U u u u

V v v v V v v v

v v v v k

 

   

   

   

   


 

 

 

 0,1,..., N

   (24) 

The inner decoupled optimization problems in problem P2 
represent Quadratic Programming (QP) sub-problems. Each 
QP sub-problem is presented as follows: 

Problem P3i (i-th QP sub-problem): 

*
, ,

, [ , ]
0

( , ) min max ( , , , , )
i i i i i

N
P

i i i i t k i t k i i
U V A B

k

V P x l u v P A B 
 

    (25) 

subject to , |i t t ix x  and: 

, | , [ , ] Ω , 1,...,i t k t i i i ix A B k N       (26) 

, , 0,1,..., 1i t k iu k N       (27) 

, 1| , | , , , [ , ] Ω

0,1,..., 1

i t k t i i t k t i i t k i t k i i ix A x B u v A B

k N

       

 


 (28) 

Let * * * *
, , 1 ,[ , ,..., ]i i t i t i t NU u u u   and * * * *

, , 1 ,[ , ,..., ]i i t i t i t NV v v v   be 

the optimal solution of P3i, and * * * *
, | , 1| , |[ , ,..., ]i i t t i t t i t N tX x x x   

denote the worst-case state trajectory corresponding to the 

optimal trajectories *
iU  and *

iV , i.e.: 
* * * * * *
, 1| , | , , , 0,1,..., 1i t k t i i t k t i i t k i t kx A x B u v k N          (29) 

where: 

* * * *
, ,

[ , ]
0

[ , ] arg max ( , , , , )
i i i

N
P

i i i i t k i t k i i
A B

k

A B l u v P A B 
 

   (30) 

The decomposition of the optimization problem P1 is given 
by the following proposition: 

Proposition 1: 
Suppose that 1 2[ , , ... , ]Mx x x x  is a feasible point for 

problem P1. Then: 

* *

1

( ) max ( , )
M

i i
P

i

V x V P x


     (31) 

where maximization is subject to 0t Np   . 

Proof: 
The cost function 1 1( , ,[ , ],...,[ , ])M MJ U x A B A B  (cf. (12)-(13)) 

is convex with respect to U  since the stage cost functions 

, | ,( , )i i t k t i t kl x u  , 1, 2, ... ,i M  are convex with respect to the 

optimization variables , , 1 ,[ , , ... , ]i i t i t i t NU u u u  , 

1, 2, ... ,i M . Therefore, the worst-case cost function: 

1 1
[ , ]

1,2,...,

max ( , ,[ , ],...,[ , ])
i i i

M M
A B

i M

J U x A B A B





 (32) 

is a convex function too. Also, the Slater’s condition always 
holds for a feasible convex QP (Boyd and Vandenberghe 
(2004)). Then, from the duality theory (Boyd and 
Vandenberghe (2004)) it follows that there is no duality gap 
between the dual problem P2 and the problem P1. The 
requirement 0t Np    follows from the fact that there are only 

N  equality constraints of the type (20). Therefore, (31) holds. 
The maximum in (31) is attained when all elements of the 

gradient of *

1

( , )
M

i i
i

V P x

  with respect to P  is zero, i.e. 

* *
, , |

1,

0
M

i t k ij j t k t
j j i

v A x 
 

  , 1,...,i M , 0,1,..., 1k N   (here 

*
, |j t k tx  , 0,1,..., 1k N   are the elements of the worst-case 

state trajectory as defined in (29)–(30)).            

According to Proposition 1, the computation of *
iU  and *

iV  

for given prices P  can be done in a decentralized way, but 
finding the optimal prices requires coordination. The prices 
P  are found by applying the accelerated proximal gradient 
method to solve the dual problem to a convex primal 
optimization problem (Giselsson et al. (2013) and the 
references therein). Given a price prediction sequence 

[ , ... , ]r r r
t t NP p p   for the r-th iteration, the corresponding 

sequences * * *
, ,[ , ... , ]r r r

i i t i t NU u u  , * * *
, ,[ , ... , ]r r r

i i t i t NV v v   and 
* * *

, | , |[ , ... , ]r r r
i i t t i t N tX x x   are computed locally by solving 

problem P3i and (29)–(30). Then, the prices can be updated 
distributedly with the following iteration for the i-th 
subsystem: 

1
, , , ,

1
, ,

1
, ,

1
( ) , 0,1,..., 1

2
1

( , ) | , 0,1,..., 1

with 0

ri

r r r r
i t k i t k i t k i t k

r r
i t k i t k P P Q

r r
i t N i t N

r
q p p p k N

r

p q S P x k N
L

p p


   


  


 


    



    

 

   (33) 

where 1 2[ , , ... , ]r r r r
MQ Q Q Q , , ,[ , ... , ]r r r

i i t i t NQ q q  , 

1, 2, ... ,i M  (with , , 0r r
i t N i t Nq p   ), and ( , )S P x  is the 

dual function (cf. (21)): 
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, [ , ]
1,2,...,

, | , , , , |
0 1 1

( , ) min max

[ ( , ) ( )]

i i iU V A B
i M

N M M
T

i i t k t i t k i t k i t k ij j t k t
k i j

j i

S P x

l x u p v A x




    
  





  



   (34) 

The gradient of the dual function ( , )S P x  with respect to the 

prices iP  at rP Q  is: 

* *
, , |

1

( , ) | ri

M

P i t k ij j t k tP Q
j
j i

S P x v A x 



   , 0,1,..., 1k N    (35) 

From (35), it can be seen that in order to compute the gradient 
( , ) | riP P Q

S P x


  in (33) it is necessary to have the worst-case 

state trajectories * * * *
, | , 1| , |[ , ,..., ]j j t t j t t j t N tX x x x  , 1, ... ,j M , 

j i  of the interconnected subsystems, which on their hand 

depend on the values iP  of prices. 

In (33), L  is the Lipschitz constant to the gradient function 
( , )P S P x . In section 3.2, an off-line algorithm to obtain an 

estimate of L  is provided. 

3.2 A suboptimal approach to distributed robust MPC based 
on on-line optimization 

An estimate L̂  of the Lipschitz constant L  to the dual 
function gradient ( , )P S P x  is determined with the following 

off-line algorithm. 

Algorithm 1 (Off-line estimation of the Lipschitz 
constant): 
1. Given min, max,,i ix x , min, max,,i iP P , 1, 2, ... ,i M , numbers 

xN  and PN . 

2. for 1, ... , xj N  do 

3. Generate a random initial state 1[ , ... , ]j j j
Mx x x  of the 

overall system, where min, max,[ , ]j
i i ix x x , 1, ... ,i M . 

4. for 1, ... , Pl N  do 

5. Generate a random price sequence 1[ , ... , ]l l l
MP P P , 

where min, max,[ , ]l
i i iP P P , 1, ... ,i M . 

6. Compute the gradient elements 
,

( , ) | j liP x x P P
S P x

 
  , 

1, 2, ... ,i M  according to (35). For this purpose, 

the QP sub-problems P3i, 1, 2, ... ,i M  are solved 

for initial state j
i ix x   and price sequence lP P , 

and the worst-case state trajectories 
* * * *

, | , 1| , |[ , , ... , ]r r r r
j j t t j t t j t N tX x x x  , 1, ... ,j M  are 

determined. 
7. end 
8. end 
9. Let: 

, ,

1, 2, ... , 1, 2, ... ,
1,2, ... ,

|| ( , ) | ( , ) | ||
ˆ max max

|| ||

j l j k

x P
P

P Px x P P x x P P
l kj N l N

k N
l k

S P x S P x
L

P P
   

 




 




The following suboptimal algorithm to distributed robust 
MPC of uncertain polytopic systems is proposed. 

Algorithm 2 (Distributed robust MPC by on-line 
optimization): 

1. Given an estimate L̂  of the Lipschitz constant to the 
gradient ( , )PS P x , number R  of iterations, and arbitrary 

guesses 0
iP , 1, 2, ... ,i M  for the price sequences. Let 0t  . 

2. Let the state at time t  be 1( ) [ , ... , ]Mx t x x x  . 

3. for 0,1, ... , 1r R   do 

4. For i-th subsystem, 1, 2, ... ,i M , communicate the 

price sequences , ,[ , ... , ]r r r
j j t j t NP p p  , 1, ... ,j M , 

j i  of the interconnected subsystems. 

5. Compute the sequences * * *
, ,[ , ... , ]r r r

i i t i t NU u u   and 
* * *

, ,[ , ... , ]r r r
i i t i t NV v v   corresponding to the price sequence 

[ , ... , ]r r r
t t NP p p   by solving distributedly the QP sub-

problems P3i, 1, 2, ... ,i M . Compute the worst-case 

state trajectories * * * *
, | , 1| , |[ , , ... , ]r r r r

i i t t i t t i t N tX x x x  , 

1, 2, ... ,i M  from (29)–(30). 

6. For i-th subsystem, 1, 2, ... ,i M , communicate the 

worst-case state trajectories * * *
, | , |[ , ... , ]r r r

j j t t j t N tX x x  , 

1, ... ,j M , j i  of the interconnected subsystems. 

7. Compute distributedly the updates 
1 1 1

, ,[ , ... , ]r r r
i i t i t NP p p  

 , 1, 2, ... ,i M  of the price 

sequences by applying (33) with ˆL L  and using (35). 
8. end 

9. Let 0 R
i iP P , 1, 2, ... ,i M . 

10. Apply to the overall system the control inputs 
* 1
,( ) R

i i tu t u  , 1, 2, ... ,i M . 

11. Let 1t t   and go to step 2. 

3.3 Remarks on the robust stability and performance 

Let * * *
, ,[ , ... , ]r r r

i i t i t NU u u  , 1, 2, ... ,i M  be the solutions to 

the problems P3i, 1, 2, ... ,i M , corresponding to the price 

prediction sequence [ , ... , ]r r r
t t NP p p   for the r-th iteration 

and * * * *
1[ , ... , ]r r r r

t t t NU u u u   be the overall control input 

sequence. According to the receding horizon strategy, the 

MPC law is *
MPC ( ) r

tu t u . Then the state evolution of the 

uncertain closed-loop system is described by: 

MPC( 1) ( ( ) ) ( ) ( ) ( ) , [ ( ), ( )]x t A t A x t B t u t A t B t       (36) 

with A  defined in (17). Given the initial state (0)x x  of the 

system (36), we define the following infinite horizon worst-
case cost for the feedback law MPC ( )u t : 

MPC MPC
[ ( ), ( )]

0

( ) max ( ( ), ( ))
A t B t

t

V x l x t u t




 

   (37) 

where ( , )l  
 
is defined by (13). Also, let: 

[ ( ), ( )]
0

( ) min max ( ( ), ( ))
u A t B t

t

V x l x t u t




 

   (38) 

where the evolution of the state is obtained according to (16). 
Based on the results of the relaxed dynamic programming 
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approach (Grüne and Rantzer (2008)), it can be claimed that if 
for a given performance parameter (0, 1)   the optimal 

value of the worst-case cost (as defined in (6)) decreases in 
the following way: 

* *
MPC( ( )) ( ( 1)) ( ( ), ( ))

[ ( ), ( )]

V x t V x t l x t u t

A t B t

  

 
       (39) 

for every 0t  , then the closed-loop system (36) will be 
robustly asymptotically stable with worst-case performance 
that satisfies: 

MPC ( ) ( )V x V x     (40) 

For the purpose of the robust MPC design, it can be assumed 
that the uncertain pair [ ( ), ( )]A t B t  does not change at time 

1t   and it can be required for the inequality (39) to hold only 
for a finite set of uncertain pairs, i.e. for 

1 2[ ( ), ( )] ... MA t B t          . Then in Algorithm 2, 

instead of performing the steps 4 to 7 for the preliminary 
specified number of iterations, a modified version of the 
stopping criterion in Giselsson and Rantzer (2010) can be 
incorporated so as to ensure the satisfaction of (39) with the 
mentioned assumptions. 

4. EXAMPLE 

Consider the following system composed of two 
interconnected polytopic subsystems 1S  and 2S : 

1 1 1 1 1 1 12 2 1 1

2 2 2 2 2 2 21 1 2 2

: ( 1) ( ) ( ) ( ) ( ) , ( )
: ( 1) ( ) ( ) ( ) ( ) , ( )

S x t A t x t B u t A x t A t
S x t A t x t B u t A x t A t

    
    

 (41) 

where: 

1
1 1

2
2 2

1 2 12 21

( ) 0.09
( ) , ( ) [0.43, 0.83]

0.17 0.79

( ) 0.09
( ) , ( ) [0.53, 0.93]

0.17 0.69

0.06 0.07 0 0
, ;

0.01 0.01 0 0.1

t
A t t

t
A t t

B B A A







 
  
 

 
  
 

     
        
     

 (42) 

Here, 1  and 2  are uncertain parameters. The sets 1  and 

2  have two vertices corresponding to 1 0.43  , 1 0.83   

and 2 0.53  , 2 0.93  , respectively. The finite sets 1  

and 2  are defined as: 

1 1 1 1 1

2 2 2 2 2

{[ ( ), ], {0.43, 0.53, 0.63, 0.73, 0.83}}

{[ ( ), ], {0.53, 0.63, 0.73, 0.83, 0.93}}

A B

A B

 
 

  
  


  (43) 

The following state and input constraints are imposed on the 
system (41): 

0.1
( ) , 2 ( ) 2 , 1,2

0.1 i ix t u t i
 

      
 (44) 

The prediction horizon is 5N   and the weighting matrices 
are 

ixW I , 0.01
iuW  , 1, 2i  . The centralized robust MPC 

problem (problem P1) is represented as a distributed robust 
MPC problem (problem P2) by applying the dual 
decomposition approach. The estimate of the Lipschitz 
constant to the dual function gradient, obtained with 

Algorithm 1, is ˆ 2.117L  . Then, Algorithm 2 with number of 
iterations 10R   is used to generate the two control inputs for 

an initial state of the overall system (0) [2 2 2 2]x  . The 

simulations are performed for the variations of the uncertain 
parameters, shown in Fig. 1. The computed trajectories of the 

control inputs 1 2,u u  and the states 1 2
1 1,x x  and 1 2

2 2,x x , 

associated to the subsystems 1S  (i.e. 1 2
1 1 1[ , ]x x x ) and 2S  

(i.e. 1 2
2 2 2[ , ]x x x ) are depicted in Fig. 2 to Fig. 4. They are 

compared with the trajectories corresponding to the 
centralized robust MPC. The results show that the suboptimal 
trajectories obtained with the distributed robust MPC keep 
both the state and input constraints and differ only slightly 
from the centralized MPC trajectories. 
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Fig. 1. The variation of parameters 1 2,  . 
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Fig. 2. The control inputs 1 2,u u . 
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Fig. 3. The states 1 2

2 2,x x  of subsystem 1S . 
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Fig. 4. The states 1 2

2 2,x x  of subsystem 2S . 

5. CONCLUSIONS 

In this paper, a suboptimal approach to distributed robust 
MPC for uncertain systems consisting of polytopic 
constrained subsystems is proposed and its performance is 
illustrated with a numerical example. A further extension of 
the approach would include incorporation of a stopping 
criterion that will ensure the robust stability and performance 
of the closed-loop system, as well as consideration of the 
network-induced constraints (cf. Hespanha et al. (2007), 
Zhang et al. (2013)), associated to a networked control system 
structure. 
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