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Abstract: Neural network with a specific restricted connectivity structure is used to identify a
model of a real-life process. Parameters of the identified model are used to design a controller
based on dynamic feedback linearization. The designed neural network based controller is verified
on mathematical model within MATLAB/Simulink environment and applied to the real-time
control of a plant. The static error is eliminated retuning input signal in the steady-state mode.
Liquid level tank system was chosen as a case study to illustrate the applicability of the proposed
approach. Experimental results have shown a good performance of the proposed technique. The
designed controller is capable of tracking the desired water level for all set points with high
degree of accuracy and without significant over/undershoot.
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1. INTRODUCTION

Present paper explores the abilities of the so-called Neural
Networks based Simplified Additive Auto Regressive eX-
ogenous models to be used to control of water tank type
systems. NN-based SANARX is a subclass of a more gen-
eral ANARX model class Kotta et al. [2006] and inherits
all the advantages of its parent class. To be more specific,
models of this type are always linearizable by dynamic
output feedback. In other words, for a model employing
SANARX structure one may always write down equations
of the linearizing feedback. The latter means that once
coefficients of the model are identified, one just needs to
substitute their values into equations describing controller.
The main idea of feedback linearization technique consists
in modifying the system structure by appropriate feed-
back, so that the input-output (i/o) equation of the closed-
loop system becomes linear. After that it is possible to
apply all the standard control methods for linear systems
to meet the required goals.

While the problem of liquid level control in a tank is not
new, it still has not lost its actuality. Level regulators are
used in industry to maintain a constant fluid pressure, or
a constant fluid supply to a process, or in waste storage
Dunn [2005]. The common examples of possible industrial
applications include chemical industry and food processing
Kern and Manness [1997] as well as different irrigation sys-
tems like dams, etc. Through the years various techniques
have been used to tackle the problem. Recent analytic
solutions employ tensor product based methods Precup
et al. [2010] and decoupling control Wang et al. [2009].
In many cases the problem is approached by means of
PI Sundaravadivu et al. [2011], PID Kern and Manness

⋆ This work was partially supported by the Estonian Science Foun-
dation Grant no. 8738.

[1997], and fractional-order PID Tepljakov et al. [2013]
controllers. Recently, methods based on computational
intelligence have started to gain popularity and are ap-
plied either solely or in combination with some classical
techniques Liang [2008]. While PID-type controllers are
still popular choice in many industrial applications, they
cannot guarantee that system will work with the same level
of accuracy in the entire operating range. Furthermore,
over/underregulation as well as changes in the environ-
ment are the common problems which one may spot in
many other applications, and have to be taken into account
during the design stage. Though pure analytic or numeric
techniques have known limitations, their combinations
with advanced methods of computational intelligence may
lead to generic solutions with a broader application range.

The present contribution may be seen in application of
the classical control technique (linearization via dynamic
output feedback) and neural networks based modeling to
control a water level in a tank system. In addition, a
method for compensating steady-state error is proposed.
In the paper we describe all design steps: starting from
collecting the i/o data of a process and finishing with
implementation and test of the synthesized controller on
a real prototype. One of the most complicated parts of
the overall design procedure was solved using feedback
linearization technique. Like any other analytic method
the linearization by dynamic output feedback provides
one with equations of a controller, whose coefficients
are taken directly from the identified model. In other
words, selecting NN-SANARX model, one merges together
numeric parts of the modeling and control synthesis.
Therefore, the research, presented in the paper, can be seen
as a preliminary step towards real industrial application.
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2. PRELIMINARIES

Hereinafter, if ξ : Z → R and k ∈ N, then ξ[k] stands for
kth-step forward time shift of ξ and is defined by ξ[k] :=
ξ(t+k). Similarly for backward shift. Note that ξ[0] := ξ(t).
Moreover, to simplify exposition of the material, in this
paper we restrict our attention to the case of single-
input single-output (SISO) systems. The nonlinear control
systems are typically represented either by the higher order
i/o difference equation

y[n] = ϕ
(

y, y[1], . . . , y[n−1], u, u[1], . . . , u[n−1]
)

, (1)

or by the state equations

x[1] = f(x, u)

y = h(x),
(2)

where x : Z → X ⊂ R
n is the state vector, u : Z → U ⊂ R

is the input signal, y : Z → Y ⊂ R is the output signal;
ϕ : Yn × Un → R, f : X ×U → X and h : X → Y are real
analytic functions.

The system, represented by (1), is known in the literature
as a discrete-time Nonlinear AutoRegressive eXogenous
(NARX) model. This model can be used to identify a
wide class of complex processes with a high degree of
accuracy, see Leontaritis and Billings [1985]. However,
from the control point of view, models of the form (1) have
several drawbacks. The most important for the practise
is linearizability by dynamic output feedback. In general,
this property does not always hold for models with NARX
structure, see Pothin et al. [2000] for details. To overcome
this problem, so-called Additive NARX (ANARX) struc-
ture was proposed. It is a subclass of the NARX model
having separated time instances Kotta et al. [2006]

y[n] = f1

(

y[n−1], u[n−1]
)

+ · · ·+ fn(y, u). (3)

Model (3) can always be linearized using the following
dynamic output feedback

η
[1]
1 = η2 − f1(y, u)

...

η
[1]
n−2 = ηn−1 + fn−1(y, u)

η
[1]
n−1 = v − fn(y, u)

y = x1,

where v : Z → V ⊂ R is a reference signal (desired output).
In addition, ANARX model (3) can be directly represented
via state equation. The latter can be used, for example, to
design state controller Vassiljeva et al. [2010].

3. NEURAL NETWORKS BASED SIMPLIFIED
ANARX MODEL

In order to perform analysis and design of the appropri-
ate controller for the process, one is usually interested
in mathematical equations rather than in the black-box
description. In fact, one can derive the model from the
first principles, relying on the Newton equations. However,
most likely in many cases such an approach will result
in a quite complex model. Thus, one may start from the
measured data and identify relations between variables.
One of the most popular approaches consists in employing

Neural Networks (NN) formalism. Thus, the theory for
ANARX models was adopted to the case of neural net-
works in Kotta et al. [2006], Petlenkov et al. [2006]. To be
more specific, NN-ANARX model can be represented as

y =

n
∑

i=1

Ciφi

(

Wi

[

y[−i] u[−i]
]T

)

, (4)

where i stands to the sublayer, φi is an activation function,
Ci and Wi are 1 × li and li × 2 dimensional matrices of
the output and input synaptic weights, respectively. In
addition, li is the number of hidden neurons. A schematic
diagram of the neural network, representing ANARX
structure, is depicted in Fig. 1.
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Fig. 1. Neural network representing ANARX structure

Note that the application of the feedback linearization
algorithm to ANARX model leads to the finite discrete-
time linear closed-loop system described either by equation
y[n] = v or transfer function Y (z)/V (z) = 1/zn. However,
in real-life poles of the transfer function corresponding to
such a model can be too fast resulting in an undesirable
behavior of the control system (for example, significant
overshootings, high control signals, etc.). Therefore, an
algorithm based on a more general reference model can
be used instead. In this case the closed-loop system can be
described as

y + a1y
[−1] + · · ·+ any

[−n] = b1v
[−1] + · · ·+ bnv

[−n], (5)

where a1, . . . , an ∈ R and b1, . . . , bn ∈ R are parameters of
the reference model. Observe that (5) is a linear discrete-
time reference model that can be used to predefine dy-
namics of the closed-loop system. Thus, the issue with
undesirable behavior can be solved selecting appropriate
zeros and poles. As a result, the dynamic output feedback
can be written using parameters of the neural network as

η1 = a1y − b1v + C1φ1

(

W1 [y u]
T
)

(6)

and

η
[1]
1 = η2 + b2v − a2y − C2φ2

(

W2 [y u]
T
)

...

η
[1]
n−2 = ηn−1 + bn−1v − an−1y

− Cn−1φn−1

(

Wn−1 [y u]
T
)

η
[1]
n−1 = bnv − any − Cnφn

(

Wn [y u]
T
)

.

(7)

In the following proposition we will formulate the condi-
tion of equivalence between the closed-loop system and the
reference model.
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Proposition 1. Application of (6) and (7) to (4) yields (5).

Proof. Apply the dynamic output feedback (6) and (7)
to NN-ANARX model (4)

C1φ1

(

W1

[

y[−1] u[−1]
]T

)

+ a1y
[−1] − b1v

[−1] =

= bnv
[−n] − any

[−n] − Cnφn

(

Wn

[

y[−n] u[−n]
]T

)

+ · · ·+

b2v
[−2] − a2y

[−2] − C2φ2

(

W2

[

y[−2] u[−2]
]T

)

(8)

and regroup terms as
n
∑

i=1

Ciφi

(

Wi

[

y[−i] u[−i]
]T

)

+ a1y
[−1] + · · ·

· · ·+ any
[−n] = b1v

[−1] + b2v
[−2] + · · ·+ bnv

[−n]. (9)

Now, one can easily see that the sum in the left-hand side
of (9) is exactly the right-hand side of (4). Therefore, (9)
can be rewritten as

y+ a1y
[−1] + · · ·+ any

[−n] = b1v
[−1] + · · ·+ bnv

[−n]. (10)

It remains to stress that (10) describes both closed-loop
and reference model. �

Remark 1. The control technique presented in Petlenkov
[2007] is a special case of (6)-(7) for b1 = . . . = bn−1 =
a1 = . . . = an = 0 and bn = 1.

In order to simplify the calculation of the control signal in
(6), we assume like in Petlenkov [2007] that φ1 is a linear
function, resulting in a simplified structure of the neural
network known as an NN-based Simplified ANARX (NN-
SANARX) model. The latter yields

u = T−1
2 (η1 − (T1 + a1)y + b1v), (11)

where T1 and T2 are the first and second elements of the
vector C1W1, respectively. Note that T2 cannot be equal
to zero. The overall structure of the corresponding control
system is represented in Fig. 2.

Feedback
linearization
algorithm

Real-life
process

NN-SANARX
model

Parameters

C1, . . . , Cn,W1, . . . ,Wn

v u y

ŷ

Fig. 2. Control system

From Fig. 2, one can see that the application of the
feedback linearization algorithm (6)-(7) to NN-SANARX
model and process yields two different equations

ŷ+ a1y
[−1] + · · ·+ any

[−n] = b1v
[−1] + · · ·+ bnv

[−n], (12)

and

y + a1y
[−1] + · · ·+ any

[−n] =

b1v
[−1] + · · ·+ bnv

[−n] + ε, (13)

respectively. Subtracting (12) from (13), we get y = ŷ+ ε,
where ε is an error caused by imperfectness of an NN-
based model describing the process. Since we are interested
in analysis of a steady-state error ess after the transient
process is complete, equation y = ŷ + ess is analyzed

instead. Obviously, the value of the error will depend
not only on the identified model, but on the accuracy of
calculations as well. In real-life applications one cannot
expect absolute accuracy due to various problems like
rounding, limited memory size, etc. In any case one is
interested in making error as small as possible in the limit
as time goes to infinity, i.e. ess → min as t → ∞. Now,
we need to understand how to detect in real-time that
the output of the process has reached steady-state. In
case of linear systems the answer can be found very easily
from the limit theorems. However, for nonlinear systems
this approach is not applicable. This is the reason why
we decided to use an alternative approach schematically
depicted in Fig. 3.

y

ttj tj+s0

Fig. 3. Steady-state detection: slope based approach

The main idea of this approach consists in the analysis
of a slope of a line fitting a certain amount of data. To
be more precise, we are given with a set of data samples
{yj, . . . , yj+s} obtained from measurements. First, we need
to derive equation of the best-fitting line p(t) = αt+ β to
the given set of points. Coefficients α and β can be found
using, for instance, least squares fitting procedure. We are
interested only in the coefficient α that defines the slope
(between the line p(t) and time axis Ot) of the line that
can be calculated as γ = arctan(α) · 180/π. We analyze
only the last s data samples of incoming measurements.
Thus, index j is not fixed and increases with time. This
yields the sequence of angles as Γ = {γj}

∞

j=1. In fact, this
sequence is bounded either by the simulation or by the
working time; however a priori the time is unknown. Note
that Γ has to converge to zero as the transient process is
complete and the steady-state is reached.

Remark 2. If the computational capabilities are the case
in the application, then one may use a simplified version of
the approach proposed above. Namely, instead of finding
equation for the line p(t), it is possible to use numerical
differentiation to calculate the slope as α = (ti+s−ti)/h for
h ≪ 1. However, this approach is less robust to rounding
errors that may appear in the output signal.

Once the steady-state is detected, we can set ess := v − y
and use this value in our algorithm to calibrate the input
signal by adding ess to the last equation in (7). This is
possible due to the specific structure of the controller. One
may easily check that application of (6) and (7) to the
process yields (13) with |ε − ess| → 0. It is important to
mention that if the improved version of the algorithm will
not be able to detect the stead-state, then the algorithm
automatically reduces to the classical version, i.e. to the
version without calibration of the input signal with ess
equals to zero.
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4. MULTI-TANK SYSTEM: MATHEMATICAL
MODEL

The model of a Multi-Tank system is borrowed from the
manual, provided by INTECO Sp. z o. o [2013], and
depicted in Fig. 4.

Fig. 4. Model of the Multi-Tank system

Since we are interested in control of the water level in the
first tank, the differential equations, describing dynamics
of the system, can be derived, assuming the laminar
outflow rate of an ideal fluid from a tank, by means of
mass balance as

ẋ1 =
1

aw
(u− c1x

α1

1 )

y = x1.
(14)

In (14) u is the inflow to the upper tank, x1 is the fluid
level in the tank, w is the width, a is the length, c1 is
the resistance of the output orifice, and α1 is the flow
coefficient. The numerical values for the parameters will
be provided further in Section 5. The plant is designed to
operate with an external PC-based digital controller. The
computer communicates with the level sensor, valve and
pump by a dedicated i/o board and the power interface.
The i/o board is controlled by the real-time software which
operates in Simulink using MATLAB Real-Time Windows
Target environment.

5. LIQUID LEVEL CONTROL OF WATER TANK
SYSTEM: PRACTICAL RESULTS

All the experiments, described in this section, were per-
formed on the equipment available in the laboratory at the
Department of Computer Control, Tallinn University of
Technology, see ALab [2014] for more details. The physical
parameters of the plant have the following numerical val-
ues w = 0.035m, a = 0.25m, α1 = 0.4628, and the maximal
inflow provided by the pump is 1.0284 · 10−4m3/s. In ad-
dition, the resistance of the output orifice of the first tank
was determined experimentally c1 = 2.0687 · 10−4m2/s,
using MATLAB routine provided with the installation
package. Next, we describe the identification procedure
based on the neural networks approach.

The identification data was collected from the real plant
with sampling time 0.5s. The input signal was normal-
ized into the unit interval [0, 1] to simplify the training
procedure of a neural network. The collected i/o data was
used to train NN-SANARX structure by means of gradient
descent with adaptive learning rate backpropagation algo-
rithm. The network shown in Fig. 1 was trained with two
sublayers, corresponding to the second order (n = 2) of the
model, and 3 neurons on each sublayer, i.e. l1 = l2 = 3.
The pure linear activation function was chosen on the first
and output sublayers as well as hyperbolic tangent sigmoid
activation function (tansig) on the second sublayer, reflect-
ing nonlinearities of the process. The identified model has
the following structure

ŷ = T1y
[−1] + T2u

[−1]+

+ C2tansig
(

W2

[

y[−2] u[−2]
]T

)

. (15)

Next, using (7), (11) and parameters of the identified
model (15), we get dynamics of the controller as follows

u = T−1
2 (η1 − T1y)

η
[1]
1 = v − C2tansig

(

W2 [y u]
T
)

.
(16)

Note that we have intentionally chosen the parameters
of the reference model to be b1 = a1 = a2 = 0 and
bn = 1, since the transient process has relatively slow
nature. The reference signal v was chosen as a piecewise
constant function described in Table 1.

Table 1. Set points

Value [m] Time interval [s]

0.20 0 ≤ t < 180

0.05 180 ≤ t < 270

0.10 270 ≤ t < 360

0.15 360 ≤ t < 450

The quality of the control algorithm is depicted in Fig. 5.
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Fig. 5. Comparison of control systems with and without
input signal correction

It can be seen from Fig. 5 that the control system is ca-
pable of tracking the reference signal v and react correctly
to the changes in a set point. In addition, the algorithm
based on the analysis of the slope of the fitting line was
able to recognize that the steady-state is reached by the
system as shown in Fig. 6.
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Fig. 6. Detection of a steady-state via slope analysis

The lower and upper thresholds were found to be 0.01 and
0.077 grad, respectively. Small values of the angles are due
to the unequal scaling of the time and angle axes. In fact,
one may not care about it, since this does not affect the
algorithm. Really, bringing axes to a common denominator
is the same as multiplication of one of the axes by some
positive constant. The latter that does not change the
steady-state detection time. The timely detection allowed
to eliminate the static error from the loop calibrating input
signal. Finally, it is important to stress that the control
system works with the same accuracy on the whole region
of set points.

5.1 Comparison with existing approaches

Next, we provide a brief comparison of the proposed above
technique with widely used approaches such as:

• Anti-Windup PID control.
• Relay. This is a usual ON-OFF regulator.
• Analytic. This approach is based on the so-called
exact state feedback linearization technique.

In addition, we discuss the strong and weak points of each
technique. The simulation results are depicted in Fig. 7.
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Fig. 7. Comparison results: outputs

It can be seen that all control methods are capable of
tracking the reference signal. In addition, we present in
Fig. 8 the performance of the control signal for each
particular approach.
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Fig. 8. Comparison results: control signals

To evaluate the quality of each control algorithmwe rely on
several statistical tools. The results are presented in Table
2. One may see that NN provides satisfactory results due
to the fact that the output of the system has quite small
oscillations compared to other techniques.

Table 2. Statistical measure of performance in
steady-state

Method AW PID Relay Analytic NN

MSE 3.15 · 10−5 2.47 · 10−5 2.6 · 10−6 4.73 · 10−6

SSE 0.2681 0.2103 0.0221 0.0402
∑

|v − y| 26.5788 34.2955 10.3010 11.0672

The evaluation of each method is summarized in Table 3.

Table 3. Overview of the control methods

Criteria AW PID Relay Analytic NN

complexity medium low high medium

versatility medium high low high

robustness high medium medium high

model – – required –

quality of u medium low medium medium

Hence, it follows that:

• Anti-Windup PID : (−) strongly depends on the work-
ing point and the quality of the corresponding linear
model; (+) naturally eliminates steady-state error.

• Relay: (−) poor and not effective performance of the
control signal (heavily exploits an actuator); (+) the
simplest among other considered techniques.

• Analytic: (−) requires mathematical model of the
process, yielding dependence on the quality of the
identified parameters like α1 and c1; (+) in the
presence of small measurement noise provides the
most efficient control performance.

• NN : (−) relies on the heuristic identification tech-
niques; (+) works in the whole range of set points
with the same accuracy.

6. DISCUSSION AND FUTURE WORK

It is well known that the majority of model based control
techniques suffer from a common drawback. Namely, the
quality of the overall control system significantly depends
on the accuracy of the derived model. In this paper, classi-
cal dynamic output feedback linearization algorithm with
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NN-based SANARX model and static error compensation
technique was applied to control the liquid level in the
real tank system. The controller is designed incorporating
a reference model, which makes possible to predefine the
desired dynamics of the designed control system. The
choice of NN-SANARX model class has allowed to merge
numeric parts of system modeling and control synthesis
that reduced computational complexity and in turn simpli-
fied implementation. Real-time application was performed
in MATLAB/Simulink without using any specific toolbox
functions, indicating that the proposed algorithm is imple-
mentation friendly. The proposed static error compensa-
tion technique allows to automatically tune the controller
in the whole range of set points.

The paper presents all steps required to design the con-
troller starting from collecting the i/o data of a process and
finishing with implementation and test of the synthesized
controller on the prototype of the real plant. It can be
seen that the approach guarantees accurate tracking with
small over/underregulation and stable performance for the
entire range of the set points. We want to emphasize
that the proposed input signal calibration technique is not
sensitive to short-time disturbances. Finally, discrete-time
integrator can not be effectively used to compensate the
static error because of fluctuating liquid level in real tank
system. The proposed technique provides more effective
solution for tuning the system in a steady-state.

Next, we discuss several limitations appearing within the
proposed approach. First, it is always necessary to assume
at least the second order of the identified model due to
the controller structure (6)-(7). In fact, this is a natural
assumption that has to be made in majority of the ap-
plications. Second, from (11) it follows that one has to
take care of T2 6= 0. Finally, it is necessary to define 2
thresholds to tune the steady-state detection algorithm for
elimination of a static error. Our experiments have clearly
shown that it can be done for each particular system
after reaching the first steady-state and switching to the
next set point. The thresholds can be detected using the
slope based approach proposed in the paper. The current
version of the algorithm is insensitive to small deviations
in the set point or disturbances that do not exceed the
threshold. This is done to make it more robust. However,
it can be improved, for example, by decreasing the level
of noise in measurements. To conclude, all experiments
discussed in the paper were performed on the real plant
with fluctuating water level.

The idea from Petlenkov [2007] can be used to simultane-
ous control of liquid level in several interconnected tanks.
Moreover, the results of Belikov et al. [2013] allows us to
rely on statistical methods in searching for a good NN
model.
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