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Abstract: In this paper, virtual actuators are proposed as a Fault Tolerant Control (FTC) strategy for
switching Linear Parameter Varying (LPV) systems subject to actuator faults. The overall solution
relies on the addition of a virtual actuator block that keeps the stability and some desired performances
without the need of retuning the nominal controller. It is shown that the design can be performed using
polytopic techniques and Linear Matrix Inequalities (LMIs). Simulation results obtained with a four-
wheeled omnidirectional mobile robot example are used to demonstrate the effectiveness of the proposed
approach.
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1. INTRODUCTION

In the last decades, the Linear Parameter Varying (LPV)
paradigm has become a standard formalism in systems and
control, for analysis, controller synthesis and system identi-
fication (Shamma, 2012). This class of systems is important
because, by embedding the system nonlinearities in the varying
parameters, gain-scheduling control of nonlinear systems can
be performed using an extension of linear techniques. On the
other hand, the hybrid systems paradigm is strongly related
to LPV systems. Hybrid systems are dynamical systems that
involve the interaction of continuous and discrete dynamics
(Jiang et al., 2011). The study of hybrid systems is motivated
by the fundamentally hybrid nature of many modern systems.
As remarked by Shamma (2012), in the special case of dis-
crete valued parameters, LPV systems constitute a specific case
of hybrid dynamical system. When there are both continuous
valued and discrete valued varying parameters, the resulting
system is referred to as switching LPV. Recently, researchers
have considered this class of system for improving the control
system performance (Lu and Wu, 2004, Lu et al., 2006, He
et al., 2010).

The objective of a Fault Tolerant Control (FTC) system (Blanke
et al., 2006, Noura et al., 2009) is to maintain current perfor-
mances close to desirable ones and preserve stability conditions
in the presence of faults. The accommodation capability of a
control system depends on many factors such as the severity of
the fault, the robustness of the nominal system and the presence
of mechanisms that introduce redundancy in the system compo-
nents (Rodrigues et al., 2006). The existing design techniques
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mainly include the passive and the active approaches (Jiang and
Yu, 2012, Rotondo et al., 2013). The passive FTC techniques
are control laws that take into account the fault as a system
perturbation. Thus, within certain margins, the control law has
inherent fault tolerant capabilities, allowing the system to cope
with the fault presence. On the other hand, the active FTC tech-
niques compensate the faults either by selecting a precalculated
control law or by synthesizing on-line a new control strategy.
The adaptation of the control law is done by using some infor-
mation about the fault so as to satisfy the control objectives with
minimum performance degradation after the fault occurrence
(see Zhang and Jiang (2008) or Benosman (2010) for a review).
Research on hybrid system-based FTC (Yang et al., 2010) is a
challenging issue for both theoretical and practical reasons, and
has been recently investigated in a few papers, e.g. (Ji et al.,
2003, Yang et al., 2009, Du et al., 2011, Ma and Yang, 2011,
Yang et al., 2011, 2012).

The compensation for actuator faults causing severe perfor-
mance deterioration of control systems has been an important
and challenging research problem (Ma et al., 2013). One of the
proposed solutions relies on the addition of a virtual actuator
block that keeps the stability and some desired performances
without the need of retuning the nominal controller. The main
idea behind the virtual actuator method is to modify the plant
with the faulty actuator adding the virtual actuator block that
masks the fault, and allows the controller to see the same plant
as before the fault. Initially proposed in a state-space formula-
tion for LTI systems (Lunze and Steffen, 2006), this active FTC
strategy has been extended successfully to LPV (Rotondo et al.,
2014b), Takagi-Sugeno (Dziekan et al., 2011), piecewise affine
(Richter et al., 2011), Lipschitz (Khosrowjerdi and Barzegary,
2013) and Hammerstein-Weiner (Richter, 2011) systems. An
equivalent formulation in input-output form has been recently
proposed in Blesa et al. (2014).

In this paper, the virtual actuator technique is proposed as
a solution to the FTC problem for switching LPV systems
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subject to actuator faults. It is shown that the design can be
performed using polytopic techniques, in particular solving a
system of Linear Matrix Inequalities (LMIs), a problem for
which efficient solvers are available (Löfberg, 2004, Sturm,
1999). The effectiveness of the proposed approach is shown
through simulation results obtained with a four-wheeled omni-
directional mobile robot example.

The paper is structured as follows. Section 2 presents the
proposed FTC strategy using virtual actuators in the context of
switching LPV systems. The design using a single quadratic
Lyapunov function and polytopic techniques is proposed in
Section 3. The application example, a four-wheeled omni-
directional mobile robot simulator subject to actuator faults, is
described in Section 4. Simulation results are shown in Section
5. Finally, the main conclusions are summarized in Section 6.

2. FTC STRATEGY USING SWITCHING LPV VIRTUAL
ACTUATORS

Let us consider a continuous-time switching LPV system in-
cluding actuator faults as follows:

ẋ(t) = Aσ (ϑ(t))x(t)+Bσ , f (ϑ(t),ϕ(t))u(t) (1)
where x(t) ∈ Rnx and u(t) ∈ Rnu are, respectively, the state
and the input of the system, Aσ (ϑ(t)) and Bσ , f (ϑ(t),ϕ(t)) are
known matrices of appropriate sizes whose structure and de-
pendence on the vector of varying parameters ϑ(t) ∈ Θ ⊂ Rnϑ

depend on the value of the switching signal σ ∈ {1, . . . ,S} ⊂
N+, that is assumed to be known. It is also assumed that the
parameter set Θ is partitioned into a finite number of subsets
{Θi}i∈{1,...,S} by means of a family of switching surfaces. The
value of the switching signal σ determines which parameter
subset is active, and thus determines the dynamic behavior of
the system. The multiplicative actuator faults are embedded in
the matrix Bσ , f (ϑ(t),ϕ(t)), as follows:

Bσ , f (ϑ(t),ϕ(t)) = Bσ (ϑ(t))diag(ϕ1(t), . . . ,ϕnu(t)) (2)
where Bσ (ϑ(t)) denotes the faultless input matrix, and ϕi(t)
represents the effectiveness of the i-th actuator, such that the
extreme values ϕi = 0 and ϕi = 1 represent a total failure of the
i-th actuator and the healthy i-th actuator, respectively.

In this paper, the concept of virtual actuator introduced in Lunze
and Steffen (2006) is extended to switching LPV systems. The
main idea of this FTC method is to reconfigure the faulty plant
such that the nominal controller could still be used without need
of retuning it. The plant with the faulty actuators is modified
adding the virtual actuator block that masks the fault and
allows the controller to see the same plant as before the fault.
The virtual actuator can be either a static or dynamic block,
depending on the satisfaction of the following rank condition:

rank
(
Bσ , f (ϑ(t),ϕ(t))

)
= rank (Bσ (ϑ(t))) (3)

If (3) holds, e.g. in the case of multiplicative actuator faults, the
reconfiguration structure is static and can be expressed as:

u(t) = Nσ ,v (ϑ(t),ϕ(t))uc(t) (4)
where uc(t) is the controller output and:

Nσ ,v (ϑ(t),ϕ(t)) = B†
σ , f (ϑ(t),ϕ(t))Bσ (ϑ(t)) (5)

Cases where (3) is not satisfied should be described through
values of the matrix B∗

σ (ϑ(t)) such that the following condition
holds 2 :
2 Notice that the matrix B∗

σ (ϑ(t)) does not depend on ϕ(t) because the matrix
Nσv (ϑ(t),ϕ(t)) eliminates the effects of actuator partial faults.

B∗
σ (ϑ(t)) = Bσ , f (ϑ(t),ϕ(t))Nσ ,v (ϑ(t),ϕ(t)) (6)

In such cases, the reconfiguration structure is expressed by:
u(t) = Nσ ,v (ϑ(t),ϕ(t))(uc(t)−Mσ ,v (ϑ(t))xv(t)) (7)

where Mσ ,v (ϑ(t)) is the gain of the switching LPV virtual
actuator, while the virtual actuator state xv(t) is calculated as:

ẋv(t) = (Aσ (ϑ(t))+B∗
σ (ϑ(t))Mσ ,v (ϑ(t)))xv(t)

+(Bσ (ϑ(t))−B∗
σ (ϑ(t)))uc(t)

(8)

When the actuator faults appear, the switching LPV virtual
actuator reconstructs the vector u(t) from the output of the
nominal controller uc(t), taking into account the fault occur-
rence. The faulty plant and the switching LPV virtual actuator
are called the reconfigured switching LPV plant, which is con-
nected to the nominal switching LPV controller. If the recon-
figured switching LPV plant behaves like the nominal plant,
the loop consisting of the reconfigured plant and the switching
LPV controller behaves like the nominal closed-loop system.

The switching LPV system (1) is controlled by a switching LPV
state-feedback control law:

uc(t) = Kσ (ϑ(t))x(t) (9)
where Kσ (ϑ(t)) is the controller gain. Under faulty conditions,
the controller (9) is slightly modified, as follows:

uc(t) = Kσ (ϑ(t))(x(t)+ xv(t)) (10)

In the following, it is shown that thanks to the introduction of
the virtual actuator block, the augmented system can be brought
to a block-triangular form.
Theorem 1. Consider the augmented system made up by the
faulty system (1), the virtual actuator (7)-(8) and the control
law (10) 3 :(

ẋ
ẋv

)
=

(
Aσ +B∗

σ Kσ B∗
σ (Kσ −Mσ ,v)

(Bσ −B∗
σ )Kσ Aσ +B∗

σ Mσ ,v +(Bσ −B∗
σ )Kσ

)(
x
xv

)
(11)

Then, there exists a similarity transformation such that the state
matrix of the augmented system in the new state variables is
block-triangular, as follows:

Aaug (ϑ(t)) =
(

Aσ +Bσ Kσ 0
(Bσ −B∗

σ )Kσ Aσ +B∗
σ Mσ ,v

)
(12)

Proof: The proof is straightforward, and comes from introduc-
ing the new state variable x1(t) , x(t)+ xv(t) and considering
the state ( x1(t) xv(t) )

T .

Looking at (12), it can be seen that the state x1(t) is affected by
Kσ (ϑ(t)) through the matrix Aσ (ϑ(t))+Bσ (ϑ(t))Kσ (ϑ(t)),
while the state xv(t) is affected by Mσ ,v (ϑ(t)) through the
matrix Aσ (ϑ(t))+B∗

σ (ϑ(t))Mσ ,v (ϑ(t)). Hence, the switching
LPV controller and the switching LPV virtual actuator can be
designed independently.

3. DESIGN USING LINEAR MATRIX INEQUALITIES

The design problem to be solved consists in finding a matrix
Kσ (ϑ(t)) such that:

ẋ(t) = (Aσ (ϑ(t))+Bσ (ϑ(t))Kσ (ϑ(t)))x(t) (13)

3 The dependence of the matrices Aσ , Bσ , B∗
σ , Kσ and Mσ ,v on the varying

parameter vector ϑ(t) has been omitted for lack of space.
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is stable with poles in some desired region of the complex
plane 4 .

In this paper, both stability and pole clustering are analyzed
within the quadratic Lyapunov framework, where the specifi-
cations are assured by the use of a single quadratic Lyapunov
function. Despite the introduction of conservativeness with re-
spect to other existing approaches, where the Lyapunov func-
tion is allowed to be parameter-varying, the quadratic approach
has undeniable advantages in terms of computational complex-
ity.

The switching LPV system (13) is quadratically stable if there
exists XS = XT

S > 0 such that (He et al., 2010):

(Aσ (ϑ)+Bσ (ϑ)Kσ (ϑ))XS +XS
(
AT

σ (ϑ)+KT
σ (ϑ)BT

σ (ϑ)
)
< 0 (14)

∀σ ∈ {1, . . . ,S} and ∀ϑ ∈ Θ. On the other hand, given a subset
D of the complex plane, defined by:

D =
{

z ∈ C : α + zβ + z̄β T < 0
}

(15)

with α =αT ∈Rm×m and β ∈Rm×m, the switching LPV system
(13) has its poles in D if there exists XD = XT

D > 0 such that:

[αklXD +βkl (Aσ (ϑ)+Bσ (ϑ)Kσ (ϑ))XD

+βlkXD

(
AT

σ (ϑ)+KT
σ (ϑ)BT

σ (ϑ)
)]

k,l∈[1,m]
< 0 (16)

∀σ ∈ {1, . . . ,S} and ∀ϑ ∈ Θ, where αkl and βkl denote the
generic entry of α and β , respectively. The main difficulty with
using (14) and (16) is that they impose an infinite number of
constraints. In order to reduce this number to finite, a polytopic
approximation of (13) is considered, as follows:

Aσ (ϑ(t)) =



N1

∑
i=1

γ(1)i (ϑ(t))A(1)
i , γ(1)i (ϑ)≥ 0,

N1

∑
i=1

γ(1)i (ϑ) = 1 i f σ = 1

...
Ns

∑
i=1

γ(s)i (ϑ(t))A(s)
i , γ(s)i (ϑ)≥ 0,

Ns

∑
i=1

γ(s)i (ϑ) = 1 i f σ = s

...
NS

∑
i=1

γ(S)i (ϑ(t))A(S)
i , γ(S)i (ϑ)≥ 0,

NS

∑
i=1

γ(S)i (ϑ) = 1 i f σ = S

(17)

Bσ (ϑ(t)) =



W1

∑
w=1

δ (1)
w (ϑ(t))B(1)

w , δ (1)
w (ϑ)≥ 0,

W1

∑
w=1

δ (1)
w (ϑ) = 1 i f σ = 1

...
Ws

∑
w=1

δ (s)
w (ϑ(t))B(s)

w , δ (s)
w (ϑ)≥ 0,

Ws

∑
w=1

δ (s)
w (ϑ) = 1 i f σ = s

...
WS

∑
w=1

δ (S)
w (ϑ(t))B(S)

w , δ (S)
w (ϑ)≥ 0,

WS

∑
w=1

δ (S)
w (ϑ) = 1 i f σ = S

(18)

Kσ (ϑ(t)) =



N1

∑
i=1

γ(1)i (ϑ(t))K(1)
i , i f σ = 1

...
Ns

∑
i=1

γ(s)i (ϑ(t))K(s)
i , i f σ = s

...
NS

∑
i=1

γ(S)i (ϑ(t))K(S)
i , i f σ = S

(19)

4 Following Ghersin and Sanchez-Peña (2002), and with a little abuse of
language, the poles of an LPV system are defined as the set of all the poles
of the LTI systems obtained by freezing ϑ(t) to all its possible values ϑ ∈ Θ.

The matrix Kσ (ϑ(t)), with vertex gains (19) assures that the
switching LPV system (13) with state and input matrix as in
(17) and (18), respectively, is quadratically stable and has its
poles in D if there exist X = XT > 0 and Γ(s)

i , i = 1, . . . ,Ns,
s = 1, . . . ,S such that:(

A(s)
i X +B(s)

w Γ(s)
i

)
+
(

A(s)
i X +B(s)

w Γ(s)
i

)T
< 0 (20)

[
αklX +βkl

(
A(s)

i X +B(s)
w Γ(s)

i

)
+βlk

(
A(s)

i X +B(s)
w Γ(s)

i

)T
]

< 0
k,l∈[1,m]

(21)

with i = 1, . . . ,Ns, w = 1, . . . ,Ws and s = 1, . . . ,S. Then, the
vertex gains can be easily obtained as:

K(s)
i = Γ(s)

i X−1 (22)

The proposed design conditions using LMIs can be applied
both to the case of controller design and to the case of virtual
actuator design, by making the changes Bσ (ϑ(t))→ B∗

σ (ϑ(t))
and Kσ (ϑ(t))→ Mσ ,v (ϑ(t)).

4. APPLICATION EXAMPLE

The application example used in this paper is a four wheeled
omnidirectional robot in simulation. Its dynamic model, includ-
ing actuator faults, is given by the following set of differential
equations (Oliveira et al., 2009):

ẋ = vx (23)

v̇x =
(
A11c2

θ +A22s2
θ
)

vx +[(A11 −A22)sθ cθ −ω]vy
+K11cθ sign(vxcθ + vysθ )−B21sθ (ϕ0u0 + f0)
−K22sθ sign(−vxsθ + vycθ )+B12cθ (ϕ1u1 + f1)
−B23sθ (ϕ2u2 + f2)+B14cθ (ϕ3u3 + f3)

(24)

ẏ = vy (25)

v̇y = [(A11 −A22)sθ cθ +ω]vx +
(
A11s2

θ +A22c2
θ
)

vy
+K11sθ sign(vxcθ + vysθ )+B21cθ (ϕ0u0 + f0)
+K22cθ sign(−vxsθ + vycθ )+B12sθ (ϕ1u1 + f1)
+B23cθ (ϕ2u2 + f2)+B14sθ (ϕ3u3 + f3)

(26)

θ̇ = ω (27)

ω̇ = A33ω +B31 (ϕ0u0 + f0)+B32 (ϕ1u1 + f1)
+K33sign(ω)+B33 (ϕ2u2 + f2)+B34 (ϕ3u3 + f3)

(28)

where (x,y) is the robot position, θ is the angle with respect
to the defined front of robot (sθ , sinθ and cθ , cosθ ), vx, vy
and ω are the corresponding linear/angular velocities, and u0,
u1, u2 and u3 the motor voltage applied to the wheel 1, 2, 3
and 4, respectively. The additive actuator fault in the i-th motor
is denoted by fi, while ϕi denotes the multiplicative fault. The
values used for the coefficients Aii, Bi j, Kii are listed in Table 1.

Table 1. Values of the coefficients Aii, Bi j, Kii

Coefficient Value Coefficient Value
A11 -3.3605 B31 3.6079
A22 -3.4368 B32 3.6079
A33 -5.7363 B33 3.6079
B12 -0.3950 B34 3.6079
B14 0.3950 K11 -0.8008
B21 0.3950 K22 -0.9486
B23 -0.3950 K33 -6.0746
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By introducing the following reference model:
ẋr = vr

x (29)
v̇r

x =
(
A11c2

θ +A22s2
θ
)

vr
x +[(A11 −A22)sθ cθ −ω]vr

y
+K11cθ sign(vxcθ + vysθ )−B21sθ

(
ϕ̂0ur

0 + f̂0
)

−K22sθ sign(−vxsθ + vycθ )+B12cθ
(
ϕ̂1ur

1 + f̂1
)

−B23sθ
(
ϕ̂2ur

2 + f̂2
)
+B14

(
ϕ̂3ur

3 + f̂3
) (30)

ẋy = vr
y (31)

ẏr = [(A11 −A22)sθ cθ +ω]vr
x +

(
A11s2

θ +A22c2
θ
)

vr
y

+K11sθ sign(vxcθ + vysθ )+B21cθ
(
ϕ̂0ur

0 + f̂0
)

+K22cθ sign(−vxsθ + vycθ )+B12sθ
(
ϕ̂1ur

1 + f̂1
)

+B23cθ
(
ϕ̂2ur

2 + f̂2
)
+B14sθ

(
ϕ̂3ur

3 + f̂3
) (32)

θ̇r = ωr (33)
ω̇r = A33ωr +B31

(
ϕ̂0ur

0 + f̂0
)
+B32

(
ϕ̂1ur

1 + f̂1
)

+K33sign(ω)+B33
(
ϕ̂2ur

2 + f̂2
)
+B34

(
ϕ̂3ur

3 + f̂3
) (34)

where (xr,yr) is the reference vehicle position, θr is its angle,
vr

x, vr
y and ωr are the corresponding linear/angular velocities and

ur
0, ur

1, ur
2, ur

3 are the reference inputs (feedforward actions),
then, if the tracking errors e1 , xr −x, e2 , vr

x −vx, e3 , yr −y,
e4 , vr

y − vy, e5 , θr − θ , e6 , ωr − ω and the new inputs
∆ui , ur

i −ui, i = 0,1,2,3, are defined, under the assumption of
perfect fault estimation (ϕ̂i = ϕi and f̂i = fi ∀i = 0,1,2,3), the
error model for the faulty four wheeled omnidirectional mobile
robot can be obtained from (23)-(34) and be brought to a quasi-
LPV representation, as follows:

ė1
ė2
ė3
ė4
ė5
ė6

=


0 1 0 0 0 0
0 ϑ1 0 ϑ2 0 0
0 0 0 1 0 0
0 ϑ3 0 A11 +A22 −ϑ1 0 0
0 0 0 0 0 1
0 0 0 0 0 A33




e1
e2
e3
e4
e5
e6



+


0 0 0 0

−B21ϑ4 B12ϑ5 −B23ϑ4 B14ϑ5
0 0 0 0

B21ϑ5 B12ϑ4 B23ϑ5 B14ϑ4
0 0 0 0

B31 B32 B33 B34


 ϕ0 0 0 0

0 ϕ1 0 0
0 0 ϕ2 0
0 0 0 ϕ3


 ∆u0

∆u1
∆u2
∆u3


(35)

where the vector of varying parameters is:

ϑ(t) =


ϑ1(t)
ϑ2(t)
ϑ3(t)
ϑ4(t)
ϑ5(t)

=


A11 cos2 θ +A22 sin2 θ

(A11 −A22)sinθ cosθ −ω
(A11 −A22)sinθ cosθ +ω

sinθ
cosθ


As shown in Rotondo et al. (2014a), in order to find a polytopic
controller for (35), it is useful to split the subset of the varying
parameter space generated by ϑ4 and ϑ5 in more regions, such
that (35) becomes a switching LPV system. In particular, in
this work, the quadrants have been considered as regions, with
θ = kπ/2, k ∈ Z being the switching condition, such that:

σ =


1 i f cosθ ≥ 0 AND sinθ ≥ 0
2 i f cosθ ≥ 0 AND sinθ < 0
3 i f cosθ < 0 AND sinθ < 0
4 i f cosθ < 0 AND sinθ ≥ 0

To make the robot tracking a desired trajectory, proper values of
ur

0, ur
1, ur

2 and ur
3 should be fed to the reference model, such that

its state equals the one corresponding to the desired trajectory,
chosen to be circular, as follows:

xr(t) = ρ cos(θr(t)) (36)

yr(t) = ρ sin(θr(t)) (37)
θr(t) = 2πt/T (38)

where ρ is the circle radius and T is the desired revolution
period around the circle center.

Adapting the reference input calculation made in Rotondo et al.
(2014a) to the faulty case, the following is obtained: ur

0(t)
ur

1(t)
ur

2(t)
ur

3(t)

= A†
re f (t)Bre f (t) (39)

where † denotes the pseudo-inverse and:

Are f (t) =

−B21sθ ϕ̂0 B12cθ ϕ̂1 −B23sθ ϕ̂2 B14cθ ϕ̂3
B21cθ ϕ̂0 B12sθ ϕ̂1 B23cθ ϕ̂2 B14sθ ϕ̂3
B31ϕ̂0 B32ϕ̂1 B33ϕ̂2 B34ϕ̂3

 (40)

Bre f (t) = ( βre f 1(t) βre f 2(t) βre f 3(t) )
T (41)

βre f 1(t) = ρ
2π
T

(
sin

2πt
T

ϑ1(t)− cos
2πt
T

(
ϑ2(t)+

2π
T

))
−K11ϑ5(t)sign(vxϑ5(t)+ vyϑ4(t))
−K22ϑ4(t)sign(vyϑ5(t)− vxϑ4(t))
+B21sθ f̂0 −B12cθ f̂1 +B23sθ f̂2 −B14cθ f̂3

βre f 2(t) = ρ
2π
T

(
sin

2πt
T

(
ϑ3(t)−

2π
T

)
− cos

2πt
T

ϑ1(t)
)

−K11ϑ4(t)sign(vxϑ5(t)+ vyϑ4(t))
−K22ϑ5(t)sign(vyϑ5(t)− vxϑ4(t))
−B21cθ f̂0 −B12sθ f̂1 −B23cθ f̂2 −B14sθ f̂3

βre f 3(t) =−A33
2π
T

−K33sign(ω(t))

−B31 f̂0 −B32 f̂1 −B33 f̂2 −B34 f̂3

5. SIMULATION RESULTS

The overall polytopic approximation (17)-(18) of the four
wheeled omnidirectional mobile robot quasi-LPV model (35)
has been obtained by considering:

ϑ1 ∈
[
ϑ 1,ϑ 1

]
= [min(A11,A22) ,max(A11,A22)]

ϑ2 ∈
[
ϑ 2,ϑ 2

]
= [min((A11 −A22)sθ cθ )−ω,max((A11 −A22)sθ cθ )−ω]

ϑ3 ∈
[
ϑ 3,ϑ 3

]
= [min((A11 −A22)sθ cθ )+ω,max((A11 −A22)sθ cθ )+ω]

with:

ω =−ω =

(
B31umax

0 +B32umax
1 +B33umax

2 +B34umax
3 +K33

)
A33

where umax
i = 12V , i = 0, . . . ,3 denotes the maximum input

voltage that can be applied to the ith motor, that is assumed
to be limited by symmetric constant saturation limits, ui ∈
[−umax

i ,umax
i ].

The controller and the four virtual actuators (one for each
wheel) have been designed using (20) and (21), to assure
stability 5 and pole clustering in:

D = {z ∈ C : Re(z)<−0.1}

The results shown in this paper refer to a simulation which lasts
30s, where the four wheeled mobile robot is driven from the
initial state:

(x(0),vx(0),y(0),vy(0),θ(0),ω(0))T = 06×1

5 In the case of quasi-LPV systems obtained from a nonlinear system, the
closed loop system could be unstable for some operating conditions despite the
feasibility of the design conditions. A rigorous analysis of the stability should
also take into account the region of attraction estimates as in Bruzelius et al.
(2003).
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to the desired trajectory, defined as in (36)-(38) with ρ = 2
and T = 20s. The desired trajectory has been generated by the
reference model (29)-(34) using the reference inputs calculated
as (39)-(41), starting from the initial reference state:(

xr(0),vr
x(0),yr(0),vr

y(0),θr(0),ωr(0)
)T

= (ρ ,0,0,2πρ/T,0,2π/T )T

The fault scenario considered in this paper is a total loss of the
first wheel motor starting from time t = 15s:

ϕ0(t) =
{

1 i f t < 15s
0 i f t ≥ 15s (42)

It is assumed that, in the simulation where the proposed FTC
is applied (referred to as with FTC), the virtual actuator is
activated at time t = 20s.

Fig. 1 shows the tracking of the desired circular trajectory in
the (x − y) plane. It can be seen that, if no faults occur, the
robot trajectory (blue line) reaches asymptotically the reference
(black line). On the other hand, under fault occurrence, the
robot trajectory deviates from the desired one in the case
without FTC (green line). The activation of the proposed FTC
strategy allows to recover the asymptotic stability of the error
system (red line). Thanks to the introduction of the virtual
actuator block, all the tracking errors go to zero, as depicted
in Fig. 2. Finally, the effect of the proposed FTC strategy on the
control inputs is shown in Fig. 3.
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Fig. 1. Tracking of the desired circular trajectory.

6. CONCLUSIONS

This paper has proposed an FTC strategy using switching LPV
virtual actuators for switching LPV systems. This FTC method
adapts the faulty plant to the nominal switching LPV controller
instead of adapting the switching LPV controller to the faulty
plant. In this way, the faulty plant together with the switching
LPV virtual actuator block allows the switching LPV controller
to see the same plant as before the fault. The addition of the
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Fig. 2. Tracking errors.
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Fig. 3. Control inputs.

virtual actuator block keeps the stability and some desired
performances under fault occurrence.

The overall loop consists of the nominal switching LPV con-
troller and the switching LPV virtual actuators. Both are de-
signed using polytopic techniques, solving a system of LMIs,
so as to achieve stability and pole clustering in a desired region.
Both specifications have been analyzed within the quadratic
Lyapunov framework, through the use of a single quadratic
Lyapunov function.

The potential and performances of the proposed approach have
been demonstrated in an illustrative application to a four-
wheeled omni-directional mobile robot simulator subject to
actuator faults.
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