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Abstract: Recently, distributed controller synthesis approaches for decomposable systems, a
subclass of distributed systems with identical subsystems, where the interconnection can be
described as LFT interconnection, have been proposed. In order to make these approaches
tractable for systems containing a very large number of subsystems, constraints on the Lyapunov
matrix and the multiplier matrices are introduced that render the complexity of analysis and
controller synthesis smaller and in best case independent on the number of subsystems. Those
assumptions have to be paid for with conservatism, which is investigated in this work. It is
proven that the conservatism is not reduced if either only the Lyapunov or only the multiplier
matrices are constrained, when compared with having constraints on both simultaneously.
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1. INTRODUCTION

Distributed systems have received considerable interest
over the last years. A distributed system consists of a num-
ber of subsystems that interact with each other to reach
a common goal. Here the interaction can be either physi-
cal as in spatially distributed systems, see D’Andrea and
Dullerud (2003), or realized by information exchange as in
wireless sensor networks or multi-agent systems, (Murray,
2007). The very general framework of decomposable sys-
tems, introduced by Massioni and Verhaegen (2009), is well
suited to capture both cases even at once. It is assumed
that the subsystems are identical or have at least iden-
tical LPV-structure, which is the case in many practical
examples, e.g. formation control of a swarm of agents, or
structural control using PDE’s. Based on that framework,
approaches for distributed control have been presented
there. Distributed control approaches provide identical
controllers for each subsystem, that interact along the
same interconnection topology as the plant. One approach,
presented in Massioni and Verhaegen (2010), is based on
the full block S-procedure, a tool well-known for LPV
control, (Scherer, 2001). Starting with static state feedback
controllers, it has been extended to convex synthesis of
distributed dynamic output feedback controllers for time-
varying symmetric interconnection topologies in Hoffmann
et al. (2013) and dynamic output feedback controllers for
general time-varying topologies in Eichler et al. (2013b).

One issue with decomposable systems is that, although the
individual subsystems may be rather simple, the whole
system becomes rather complex with increasing number
of subsystems. Therefore distributed control approaches
have in common that assumptions and constraints are
introduced, such that the synthesis complexity does not
scale with the number of subsystems and is at best only

of the complexity of one single subsystem. This is crucial
for very large distributed systems, which otherwise would
be intractable. It is clear that the reduction of complexity
usually has to be paid for with conservatism. This will
be further investigated in this work. We point out which
assumptions are made, why conservatism is introduced
at this point and how to keep it small. One source
of conservatism for every LPV system is that solutions
are found on the convex hull of an uncertain parameter
set. In case of decomposable systems, the interconnection
structure is the uncertainty, thus the question arises and
is discussed in the following, for which interconnections in
addition to those of interest the found solution is valid.

1.1 Outline

In Section 2 the concept of decomposable systems is
reviewed and the considered analysis and synthesis ap-
proaches are presented. Section 3 examines the assump-
tions and simplifications in the analysis and synthesis
conditions in further detail and analyses the introduced
conservatism. This is illustrated with a numerical example
in Section 4. Section 5 concludes the work.

2. PRELIMINARIES

2.1 Decomposable Systems

A decomposable system consists of N identical subsys-
tems, which are interconnected by the pattern matrix P .
Consider the decomposable closed-loop system

T̆ :

[

ξ̇
z

]

=

[

Ă B̆p

C̆p D̆pp

] [

ξ
d

]

. (1)

with state vector ξ ∈ R
Nnξ , disturbance d ∈ R

Nnd and
performance output z ∈ R

Nnz . The state vector is com-
posed of the subsystems’ state vectors ξk, k = 1, . . . , N as
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ξ = [ξT1 , . . . , ξ
T
N ]T . The remaining signals are partitioned

accordingly. The time dependency of the signals is omit-
ted here for the sake of brevity. Such a system is called
decomposable, indicated by the notation •̆, if there exists
a common, possibly time-varying pattern matrix P , with
respect to which Ă, B̆p, C̆p and D̆pp are decomposable,

i.e. are in the set D̆p×q(P ) defined below with respective
dimensions p and q.

Definition 1. (Massioni and Verhaegen (2009)). A matrix

M̆ is called decomposable, if there exists a matrix P (t) :
R → R

N×N , such that

M̆ ∈ D̆p×q(P ) :=
{

M̆ ∈ R
Np×Nq

∣

∣ ∃Md,M i ∈ R
p×q :

M̆ = IN⊗Md+P ⊗M i
}

.

The superscript d labels the decentralized and the super-
script i the interconnected part. The decentralized system
matrices describe how the local signals are handled, while
the interconnected ones describe the handling of the sig-
nals of the interaction.

Since (1) is decomposable, an LFT representation

T̆ :





















ξ̇

w

z






=







IN⊗A
d IN ⊗Bi IN⊗B

d

p

IN⊗Ci 0 IN⊗Dip

IN⊗C
d

p IN ⊗Dpi IN⊗D
d

pp













ξ

v

d






,

v= (P⊗InΛ
)w, ∀P ∈ P

(2)

can be found with Ci=[Ai
C
i

p]
T
,Dip=[Bi

Θ D
i

pΘ]
T
, Bi=[Inξ

0] ,
Dpi=[0 Inz ] and P being the set of all admissible topolo-
gies. Here the interconnection part is pulled out of the
system as an uncertainty channel with v, w ∈ R

nΛ and
nΛ = N(nξ + nz) here. More advanced LFT represen-
tations can be found in (Eichler et al., 2014), which are
however not considered in this work.

2.2 Analysis of Decomposable Systems

Multiplier-based analysis conditions that offer ways to
trade complexity versus conservatism for systems of the
form (2) can be derived by the full block S-procedure
(Scherer, 2001) as in (Eichler et al., 2013a). Note that
[⋆]TY Z abbreviates ZTY Z.

Theorem 2. Given a set of topologies P and a decompos-
able system T̆ with an uncertain time-varying topology
P (t) ∈ P , ∀t ≥ 0. System T̆ is stable and has an induced

L2 gain less than γ, if there existXd = Xd
T

> 0, Q = Qd
T

,

Rd = Rd
T

and Sd such that

[⋆]T
[

IN⊗Qd IN⊗ Sd

IN⊗ SdT IN⊗Rd

][

P⊗InΛ

INnΛ

]

>0, ∀P ∈ P, (3)

[⋆]T















0 Xd

Xd 0

Qd Sd

Sd
T

Rd

−γ2I 0
0 I



























I 0 0
A

d
Bi B

d

p

0 I 0
Ci 0 Dip

0 0 I

C
d

p Dpi D
d

pp













<0. (4)

Proof. A proof is given in (Eichler et al., 2013a), but
some aspects are worth pointing out for the benefit of the
following discussion on sources of conservatism. Note that
if the bounded real lemma is applied with the full block
S-procedure as in (Scherer, 2001), then stability and an

induced L2 gain less than γ of T̆ is guaranteed, if there
exist X = XT > 0 and Q = QT , R = RT and S such that

[⋆]T
[

Q S

STR

][

P⊗InΛ

INnΛ

]

>0, ∀P ∈ P (5)

[⋆]T













0 X
X 0

Q S

ST R

−γ2I 0
0 I

























I 0 0
IN ⊗A

d IN ⊗ Bi IN ⊗ B
d

p

0 I 0
IN ⊗ Ci 0 IN ⊗Dip

0 0 I

IN ⊗ C
d

p IN ⊗Dpi IN ⊗D
d

pp













<0 (6)

With the structural assumptionsX = I ⊗Xd, Q = I ⊗Qd

and S and R structured respectively, (5) and (6) are
equivalent to (3) and (4).

Extension to LPV systems is, as shown in (Hoffmann
et al., 2013; Eichler et al., 2013b), easily possible. Here
analysis is reduced to decomposable LTI systems, to focus
on the sources of conservatism by the interconnection.
Note that while (4) does not scale with the number of
subsystems N due to the structural constraints on the
Lyapunov matrix X and the multiplier matrices Q,S and
R, (3) does. In (Hoffmann et al., 2013; Eichler et al.,
2013b) methods for the reduction of complexity in (3)
are presented for different cases. The approaches for time-
varying but always symmetric or possibly non-symmetric
interconnections are discussed in Section 3.2 and 3.3 with
regard to the conservatism they introduce.

2.3 Controller Synthesis for Decomposable Systems

Controller synthesis for decomposable systems is proposed
in (Massioni and Verhaegen, 2010; Hoffmann et al., 2013;
Eichler et al., 2013b) for state feedback and constant inter-
connection topologies by convex, for output feedback and
symmetric time-varying topologies by convex and more
general time-varying topologies by non-convex conditions.
Here the convex case of state feedback is considered, in
order to focus on the conservatism and to avoid the dis-
cussion of suboptimal solutions for non-convex conditions.

Assume a decomposable open-loop system and a decom-
posable controller are given as

Ğ :

[

ẋ
z

]

=

[

Ă B̆p B̆u

C̆p D̆pp D̆pu

]





x
d
u



 , K̆ : u = K̆x (7)

with the same interconnection topology P , i.e. all subsys-
tem are controlled by identical controllers, interconnected
by the same topology as the plant. The resulting closed
loop is decomposable if Bi

u=0 and Di
pu=0. Stability and

performance bounds can be proven by Theorem 2, which is
not linear in the controller, Lyapunov and multiplier ma-
trices. Using the duals of (3) and (4) and the variable trans-

formation M̆ = IN ⊗ Y dK̆ = IN ⊗ (Y dKd)+P ⊗ (Y dK i)
with Y d = (Xd)−1 leads to convex synthesis conditions,
see (Massioni and Verhaegen, 2010).

3. SOURCES OF CONSERVATISM

3.1 Conservatism due to Constraints on Lyapunov and
Multiplier Matrices

In the proof of Theorem 2 the Lyapunov matrix as well
as the multiplier are structurally constrained. Here the
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introduced conservatism is considered. Given is a decom-
posable system T̆ , and γc,c is the upper performance bound
calculated by applying Theorem 2.

Lemma 3. Assume γc,f is the upper performance bound of

T̆ , if in conditions (5) and (6) only the Lyapunov matrix
is constrained to X = I ⊗Xd, but Q,T, S ∈ R

NnΛ×NnΛ

are full. Then γc,c = γc,f.

Proof. Condition (6) with the constraints on Lyapunov
and multiplier matrices can be expanded and permuted to

I⊗
[

XdAd+AdTX XdBd

i XdBd

p

⋆ 0 0

⋆ ⋆ 0

]

+I⊗
[

CT
iR

dCi CT
iS

dT CT
iR

dDip

⋆ Qd SdDip

⋆ ⋆ DT
ipR

dDip

]

+I⊗
[

Cd

p

T
Cd

p Cd

p

T
Dd

pi Cd

p

T
Dd

pp

⋆ Dd

pi

T
Dd

pi Dd

pi

T
Dd

pp

⋆ ⋆ Dd

pp

T
Dd

pp − γ2
c,cI

]

= I⊗V < 0

(8)

which is equivalent to (4). To achieve optimal performance,
the optimization task to solve is to minimize γc,c subject
to (8) and (3). For γ = γc,c we attain the boundary, where
the maximal eigenvalue of V is zero. If the multiplier is
not constrained but a full block with Rij ∈ R

nΛ×nΛ , the
second term of (8) has the form














CT
iR11Ci CT

iS11
T CT

iR11Dip CT
iR1NCi CT

iS1N
T CT

iR1NDip

⋆ Q11 S11Dip · · · ⋆ Q1N S1NDip

⋆ ⋆ DT
ipR11Dip ⋆ ⋆ DT

ipR1NDip
.
.
.

. . .
.
.
.

CT
iRN1Ci CT

iSN1
T CT

iRN1Dip CT
iRNNCi CT

iSNN
T CT

iRNNDip

⋆ QN1 SN1Dip · · · ⋆ QNN SNNDip

⋆ ⋆ DT
ipRN1Dip ⋆ ⋆ DT

ipRNNDip















.

(9)

It is clear that for (8) with the second term as in (9),
at least γc,f = γc,c can be reached, by setting Rij = 0
for i 6= j, Rii = Rjj for i, j = 1, . . . , N and Q and
S respectively. The question is whether it is possible to
achieve γc,f < γc,c: in order for (8) with (9) to be negative
definite, all leading principal minors have to be negative
definite. Consider only the first nξ + nΛ + nz diagonal
block, which is equal to (4). Thus the optimal solution
considering this first block only is γc,c, and the maximum
eigenvalue of that first block is zero. In (Horn and Johnson,
2012) it is shown that given a symmetric matrix F and

F̂ =

[

F y
yT f

]

then λ1 ≤ λ̂1

with λ1 being the largest eigenvalue of F and λ̂1 that of
F̂ . Thus if we consider the first nξ + nΛ + nz + 1 block,
its maximum eigenvalue would be larger than zero taking
the same solution as for the first nξ + nΛ + nz block
and setting the off diagonal elements unequal to zero. To
recover negative definiteness, γc,f would have to increase.
This can be done iteratively for each missing line and
column. Thus γc,f ≥ γc,c, which concludes the proof.

Lemma 4. Assume γf,c is the upper performance bound

of T̆ , if in conditions (5) and (6) only the multiplier
matrices are constrained to Q = I ⊗Qd, R = I ⊗Rd and
S = I ⊗ Sd, but X ∈ R

Nnξ×Nnξ are full. Then γc,c = γf,c.

Proof. The proof follows the line of Lemma 3.

Lemma 5. Assume γf,f is the upper performance bound of

T̆ , if in conditions (5) and (6) neither Lyapunov matrix
nor multiplier matrices are constrained, but Q,T, S ∈
R

NnΛ×NnΛ and X ∈ R
Nnξ×Nnξ are full. Then γc,c ≥ γf,f.

Proof. If neither Lyapunov nor multiplier matrices are
constrained, the non diagonal structure of the uncertainty
due to the interconnection in (5) can be captured by
the full multiplier and compensated by the full Lyapunov
matrix in (6). Thus γc,c ≥ γf,f.

3.2 Conservatism for Symmetric Interconnections

If (4) has been solved such that (3) is fulfilled for all
P ∈ P , the corresponding solution is also valid for all
P ∈ Pc, where Pc is the convex hull of P . If all P ∈ P are
symmetric, the solution is also valid for a larger region;
this case will be discussed in the following. In (Massioni
and Verhaegen, 2010; Hoffmann et al., 2013), the following
has been shown.

Lemma 6. Given is a set of interconnection patternP with
P = PT for all P ∈ P , then (3) is equivalent to

[⋆]T
[

Qd Sd

SdT Rd

]

[

λminInΛ

InΛ

]

>0 and [⋆]T
[

Qd Sd

SdT Rd

]

[

λmaxInΛ

InΛ

]

>0 (10)

where λmin is the minimal eigenvalue of all P ∈ P and
λmax the maximal one.

Thus the respective solution is also valid for all symmetric
interaction topologies with its eigenvalues in [λmin, λmax].
In the following it will be examined for what kind of inter-
connection topologies this is the case. Here we will have a
closer look at the eigenvalues of the adjacency and normal-
ized adjacency matrix, which are well-established matrix
representations of graphs. An interconnection topology is
represented by a graph G = (N , E) with the node set
N = {v1, . . . , vN}, which represents the subsystems, and
the edge set E ⊆ N × N describing the interconnection
topology. If there is an edge {ij} ∈ E then subsystem i re-
ceives information from subsystem j and, since undirected
graphs are considered that lead to symmetric interconnec-
tion topologies, vice versa. The adjacency matrix A and
the normalized Ā are defined as

A = [aij ] =

{

1 if i 6= j and {ij} ∈ E
0 otherwise

(11)

Ā = diag

(

1√
d1

, . . . ,
1√
dN

)

Adiag

(

1√
d1

, . . . ,
1√
dN

)

(12)

with di being the cardinality of {vj | {ij} ∈ E}. If the
corresponding graph is connected, then the non-negative
A is an irreducible matrix with eigenvalues λ1 > . . . ≥ λN ,
where λ1 is positive. Different approximations exist: due
to the Perron-Frobenius theorem mini(di) ≤ λ1 and λ1 ≤
max{ij}∈E

√

didj with equality for regular or bipartite
graphs, see (Berman and Zhang, 2001). For bipartite
graphs λN = −λ1 otherwise |λN | < λ1. If any entry
in A increases/decreases (e.g. a link is added or deleted)
then λ1 increases/decreases as well. Nothing can be said
about λN . For the normalized adjacency with eigenvalues
λ̄1 > . . . ≥ λ̄N we have λ̄1 = 1 with the corresponding
eigenvector x = [

√
d1 . . .

√
dN ]T . For bipartite graphs

λ̂N = −1 otherwise |λ̂N | < λ̂1.

3.3 Conservatism using a Second-Stage Multiplier

If not all P ∈ P are symmetric, (10) can not be applied. To
reduce complexity in this case, in (Eichler et al., 2013a) the
application of the full block S-procedure on the multiplier
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condition has been proposed. Assume the interconnection
topology can be represented as

P (υ(t)) = P0 + υ1(t)P1 + . . .+ υm(t)Pm

= P0 + P21Υ(t)P21 = Υ(t)⋆

[

0 P12

P21 P0

]

(13)

with Υ(t) = diag(υ1Ir1 , . . . , υmIrm) ∈ R
nυ×nυ , υi ∈ [−1, 1]

and υ(t) = [υ1, . . . , υm]T with m being the number of
connections that my change independently in time. Then
(3) is equivalent to

[⋆]T







QpSp

ST
p Rp

IN⊗Qd IN⊗ Sd

IN⊗ SdT IN⊗Rd













0 P12⊗InΛ

InυnΛ
0

P21⊗InΛ
P0⊗InΛ

0 INnΛ






>0, (14)

[⋆]T
[

Qp Sp

ST
p Rp

]

[

Υ(υ)⊗ I
I

]

<0, ∀υ∈υ (15)

where υ denotes the compact set of all admissible υ(t).
Note that using (14) and (15) instead of (3) does not
introduce any further conservatism, but hardly reduces
complexity or in some case even increases it as discussed
in (Eichler et al., 2013a). By the constraints given in the
following, the complexity is reduced, but conservatism is
introduced. Assume that the new multiplier matrices in
(15) are restricted to Qp = Inυ

⊗Qd
p with Qd

p ∈ R
nΛ×nΛ

and Sp, Rp accordingly, then (15) is equivalent to

[⋆]T

[

Qd
p Sd

p

Sd
p

T
Rd

p

]

[

υi I
I

]

<0 ∀υi∈ [−1, 1]. (16)

In (Meinsma et al., 1997) it has been proven that for
one diagonal uncertainty block with one real scalar uncer-
tainty, as we have in (16), no conservatism is introduced
if D-G scalings are used instead of full block multipliers.
Therefore using (14) and (16) with full Rd

p, S
d
p and Qd

p

leads to the same solution as using (14) with D-G scalings

Rd
p = −Qd

p and Sd
p = −Sd

p

T
. Condition (16) is due to

the D-G scalings always being fulfilled and need not be
considered. This is referred to as constrained 2 stage full
block S-procedure (FPSP2 (constr.)) to distinguish it from
the single stage full block S-procedure (FBSP1) using (3).
The FBSP2 (constr.) leads to an enormous reduction in
the number of variables and the size of the LMI to solve,
determined from the diagonal concatenation of all single
LMIs, as can be seen from Table 1 (Eichler et al., 2013b).
For the reduction of complexity we pay by conservatism,
which is introduced by the structural restriction on the
new multiplier matrices compared to FBSP1.

Lemma 7. Given are the interconnections

P
1,2(υ) = P0 + υ1P1 + υ2P2 +

∑m
k=3 υkPk,

P
1+2(υ) = P0 + υl(P1 + P2) +

∑m

k=3 υkPk

with υ1,2,l,k ∈ [−1, 1]. Assume that γ1,2 is the performance
achieved for P1,2 by the FBSP2 (constr.), then it possible
to achieve γ1+2, the performance of P1+2 by the FBSP2
(constr.), such that γ1+2 ≤ γ1,2 holds.

Proof. The LFT representation of Pi,j(υ) is

P
i,j(υ) = diag(υ1Ir1 , υ2Ir2 , υ3Ir3 , . . . , υmIrm)⋆

[

0 P
1,2

12

P
1,2

21
P0

]

with P 1,2
12 = [ PT

121
PT

122
PT

123
· · · PT

12m ]
T
,

P 1,2
21 = [ P211

P212
P213

· · · P21m ] ,

Table 1. Complexity of multiplier conditions

Size of LMIs No. of decision Var.

FBSP1 nΛN2m 2n2
Λ
+nΛ

FBSP2
(constr.)

nΛ(N+nυ) 3n2
Λ
+ nΛ

FBSP2
(DG)

nΛ(N+nυ) 2n2
Λ+nΛ+

m
∑

i=1

(nΛri)
2 with

m
∑

i=1

ri=nυ

Table 2. Uncertain link sets

No. link set No. link set No. link set

1 {P1+P2+P3+P4} 6 {P1+P2+P4, P3} 11 {P4, P1+P3, P2}

2 {P1+P3+P4, P2} 7 {P1+P4, P2+P3} 12 {P2+P4, P3, P1}

3 {P2+P3+P4, P1} 8 {P1+P4, P3, P2} 13 {P4, P2+P3, P1}

4 {P3+P4, P1+P2} 9 {P2+P4, P1+P3} 14 {P4, P3, P1+P2}

5 {P3+P4, P1, P2} 10 {P4, P1+P2+P3} 15 {P4, P3, P1, P2}

1 2

3

45

6

P0

P1

P2

P3

P4

Fig. 1. Graph topologies

and P211P121 = P1 and P212P122 = P2, resulting in the
performance γ1,2. The LFT representation of Pi+j(υ) is

P
i,j(υ) = diag(υ1Irl , υ3Ir3 , . . . , υmIrm)⋆

[

0 P
1+2
12

P
1+2
21

P0

]

with P 1+2
12 =[PT

12l
PT

123
· · · PT

12m ]
T
, P 1+2

21 =[P21l
P213

· · · P21m ],

and P21lP12l = Pi +Pj . A possible choice of the LFT rep-
resentation, is P12l = [PT

12i P
T
12j ]

T and P21l = [P121i P21j ]
and thus leads to γ1+2 = γ1,2. Other LFT representations
may yield to better performance.

Note that if rank(Pi + Pj) < rank(Pi) + rank(Pj) the
LFT representation with P12l = [PT

12i P
T
12j ]

T and P21l =
[P121i P21j ] has not the smallest possible size. Due to
Lemma 7 it can be expected, that FBSP2 (constr.) in-
troduces less conservatism if nυ/m is small.

An alternative approach is to use D-G scalings already for
Qp, Sp and Qp. This is labeled FBSP2 (DG). With the
FBSP2 (DG) the size of LMIs to be solved is the same as
for the FBSP2 (constr.), since then (15) is always fulfilled
and does not need to be checked. On the other hand, the
number of variables increases, as shown in Table 1. It is
bounded below by 2n2

Λ+nΛ+nυn
2
Λ, which is achieved if all

ri = 1 andm = nυ, and thus increases at best linearly with
nυ. The upper bound is given by 2n2

Λ+nΛ+(nΛnυ)
2, which

increases quadratically with nυ. This worst case occurs if
m = 1 and r1 = nυ. It can be expected that with FBSP2
(DG) the conservatism compared to FBSP2 (constr.) is
reduced, but problems may occur for large nυ.

4. NUMERICAL RESULTS

To investigate the conservatism introduced by the different
constraints in order to simplify dealing with time-varying
topologies, state feedback controller design for the system
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[

ẋ
zz

]

=









IN⊗

[

0.1−0.2 0.7
−0.9−0.6−0.4
−0.9 0.6−0.5

]

+P⊗

[

0.1 0.1−0.1
−0.3−0.1−0.1
−0.2−0.1 0

]

· · ·

IN ⊗

[

0.9 0.2 0.3
0 0 0

]

+ P ⊗

[

0.5 0.3 0.5
0 0 0

]

· · ·

· · · IN⊗

[

0.1
0.1
0.1

]

IN⊗

[

0.7
0

0.5

]

· · · 0 IN ⊗

[

0
1

]









[

x
wz

u

]

(17)

used in (Massioni and Verhaegen, 2010; Eichler et al.,
2013a) is performed for 15 different topology set, within
which the interconnection can switch arbitrarily. The
different topology sets all consist of an identical nominal
topology P0, shown in Fig. 1 (used in e.g. (Massioni and
Verhaegen, 2010; Eichler et al., 2013a,b)) but different link
sets may be switched on additionally. The components of
the link sets, which are summarized in Table 4, consist of
one up to four single links P1, P2, P3 and P4, shown in
Fig. 1. Links which are added in the link sets can only
switch on and off together. Thus the uncertain topologies
no.1 and no.2 can e.g. be described as

P
1(υ) = P0 + υ1(P1+P2+P3+P4) and

P
2(υ) = P0 + υ1(P1+P3+P4) + υ2P2 with υ1, υ2 ∈ {0, 1}

respectively. Here P0, . . . , P4 are described by the corre-
sponding adjacency matrices.

4.1 Conservatism Results due to Constraints on Lyapunov
and Multiplier Matrices

In Section 3.1 the conservatism is discussed, that is in-
troduced by the structural constraints on the Lyapunov
and multiplier matrices in order to prevent the nominal
condition (4) from scaling with the number of subsys-
tems. In Fig. 2 the calculation times and the performance
bounds for the 15 different interconnection topology sets
are shown. The solid green curves show the results for the
case where neither the Lyapunov matrix nor the multiplier
matrices are constrained. Here the nominal condition (6)
of size N(nξ + nΛ + nd) = 54 has to be solved with the
multiplier condition (5). The red dashed dotted lines show
the results for the constrained Lyapunov and multiplier
matrices as given in Theorem 2, where the nominal con-
dition (4) is of size nξ + nΛ + nd = 9 and the multiplier
condition (3) has to be solved, labeled as FBSP1. As stated
in Lemma 5 the performance bounds for the constrained
case are larger; in average they increase by a factor of
1.5 compared to the unconstrained case. The results for
the constrained multiplier but unconstrained Lyapunov
matrix and vice versa are not shown, since as stated in
Lemma 3 and 4 they achieve exactly (up to a numerical
accuracy of 10−8) the same performance bounds as when
both are constrained. Looking at the calculation time,
the calculation time for the unconstrained synthesis is on
average 29.6 times longer than with constraints. Note that
here a rather small distributed system with 6 subsystems
each with 3 states has been considered. For larger systems
the unconstrained solution will at some point become in-
tractable. With only the multiplier unconstrained the time
is in average 19.6 times longer than with both matrices
constrained and with only the Lyapunov matrix uncon-
strained it is 3 times longer.

4.2 Symmetric Interconnection Topologies with Identical
Eigenvalue Set

In Section 3.2 it was pointed out that according to Lemma
6, if (4) has been solved with the multiplier condition
(10) for λmin and λmax leading to a performance bound
γ, the system is stable with that performance bound for
arbitrary switchings between symmetric interconnection
topologies within that eigenvalue region. It is clear that
if the eigenvalue region and thus the uncertainty region
gets smaller, at least as small performance bounds are
achieved. Thus the question arises, whether it would not
be best to have P = 0 and thus no interconnection. But if
the interconnection appears in the fictitious performance
channels, a change in the interconnection topology changes
the defined performance goal. If for example something
like consensus is demanded, at least an interconnection
topology representing a connected graph is required.

Consider the symmetric interconnection graph P0 in Fig. 1.
The corresponding adjacency matrix has an eigenvalue
region of λ ∈ [−2.236, 2.236] and achieves a performance
of γ = 0.2779. According to Section 3.2, for any symmetric
graphs, if links are added, those results are not valid,
since the maximum eigenvalue increases. Since the graph
is bipartite (λmin = −λmax, the two node sets are shown in
different colors), for any graph where edges are deleted (as
long as the graph stays connected) the same performance
bounds are valid. The normalized adjacency matrix has
eigenvalues λ ∈ [−1, 1] and thus every graph presented by
the normalized adjacency matrix would lead to at least the
same performance of γ = 0.1878.

4.3 Conservatism Incurred by FBSP2

To analyze the conservatism introduced by using FBSP2
as discussed in Section 3.3, system (17) with the graph sets
in table 4 is considered. In Fig. 2(a) and (b) the resulting
calculation times and the performance bounds of FBSP1
are compared to FBSP2 (constr.) in black dashed and to
FBSP2 (DG) in blue dotted. In Fig. 2(a) the rank of the
components of the corresponding link sets is shown. Each
component in a link set is represented by a bar of different
color where its length is determined by its rank. Thus the
number of different colors in one bar is m and the total
length nυ. The calculation time for the FBSP2 (constr.) is
–as expected– reasonably constant for all topologies, since
the number of unknowns is constant at 80 and the size of
the LMIs changes linearly with nυ, which is either 3 or 4,
resulting in 45 or 50 LMIs to be solved. Using the FBSP2
(DG) the same number of LMIs have to be solved, while
the number of unknowns is between 145 and 325. This
seems to have almost no effect for those small systems.
(For more subsystems, e.g. N ≥ 10, the calculation time
already doubles.) Using the FBSP1 the number of LMIs
to solve depends exponentially on the cardinality of the
link set m. For m = 1, 2 the number of LMIs for FBSP1
(with only 55 unknowns) is with 30 and 60, respectively,
smaller than or in the region of FBSP2 (constr.) and thus
the calculation time is similar to FBSP (constr.). But for
the graphs 5,8,11,12,13 and 14 with m = 3 and graph
15 with m = 4 the calculation time rises exponentially
with 2m. As expected the performance bound γ for FBSP2
(constr.) is, due to the constraints larger than for FBSP1,
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Fig. 2. (a) Calculation time, (b) performance bounds and
(c) ranks of the different graph sets in Table 4

but increases in average only by a factor of 1.06. For
graphs 5 and 15, where nυ/m = 1, as expected a very
small deviation is achieved. With Lemma 7 it is clear that
for the interconnection topology sets 10, 13 and thus 7
not the best possible performance is achieved, since it
should be at least as good as set 15, when applying its
LFT representations. Since here the LFT representation
of minimal size is used, which is 3 for 7,10 an 13 and 4 for
15, it is obvious that this is not always the best choice.

It seems that with FBSP2 (DG) for the considered topolo-
gies no conservatism is introduced compared to FBSP1.
In general this has only been shown (see Meinsma et al.
(1997)) for one scalar uncertainty blocks as we have in
graph 1, but not for more, as in the other graphs. It can
be expected, that due to the structure imposed on the first
multiplier and the (in general sparse) LFT matrices P0,
P12 and P21 in (14), some parts of the second multiplier
have no influence.

5. CONCLUSION

This work points out and analyzes different sources of
conservatism in analysis and controller synthesis for de-

composable systems as proposed in Massioni and Verhae-
gen (2010); Hoffmann et al. (2013); Eichler et al. (2013a).
There restrictions are applied to the Lyapunov matrix and
the multiplier matrices to solve a nominal condition of
the size of a single subsystem. This work proves that the
conservatism can not be reduced, if only one of both is
constrained, while no constraints on both leads to very
long calculation times already for small networks. For
symmetric topologies an interesting conclusion is drawn,
that the same results are not only valid for the convex
hull of all considered switching symmetric topologies, but
for all symmetric topologies with their eigenvalues in the
convex hull of the eigenvalues of all considered switch-
ing symmetric topologies. For non-symmetric switching
topologies, with the 2nd stage FBSP an approach to reduce
the complexity of the multiplier condition is analyzed with
regard to conservatism. Explicit cases, where more and
where less conservatism is introduced compared to the 1st
stage FBSP, are discussed.
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