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Abstract: The robust output feedback consensus problem for homogeneous networked
Negative-Imaginary (NI ) systems is investigated in this paper. By virtue of the NI systems
stability theorem, a set of reasonable yet elegant conditions are derived for guaranteeing con-
sensus under L2 disturbances and NI model uncertainty. Furthermore, the eventual convergence
sets of several special NI systems that are commonly studied in the literature are also presented.
It is shown how the results in this work embed and generalise earlier results to these classes of
systems. Numerical examples are given to illustrate the results of this paper.
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1. INTRODUCTION

Broadly speaking, Negative-Imaginary (NI ) systems are
systems with a negative imaginary frequency response.
This class of systems has received extensive attention
in recent years since it was introduced by Lanzon and
Petersen (2008) and found its most successful application
in the area of nano-positioning control where co-located
force actuation and position measurement are typical (Pe-
tersen and Lanzon (2010) and Song et al. (2012)). Simi-
larly, NI systems theory has been widely applied to the
flexible structures with highly-resonant dynamics, which
is typically challenging to tackle via classical methods,
such as passivity (Khalil (1996)) or small gain analysis
(Zhou et al. (1996)). Applications include flexible robot
manipulators (Wilson et al. (2002)), ground and aerospace
vehicles (Harigae et al. (2003)), atomic force microscopes
(Mahmood et al. (2011)) and nano-positioning systems
(Salapaka et al. (2002)), to name a few.

The topic of cooperative control has been very active
over the past decade and it was immediately evident that
decentralised control and communication networks play an
important role in the system properties, including basic
stability analysis. The output feedback consensus problem,
or more precisely, the output synchronization problem was
first studied in Chopra and Spong (2008), and a solution
for weakly minimum phase nonlinear systems with relative
degree of one was presented. Later on, a series of papers,
such as Kim et al. (2010), Wang et al. (2010) and Su
et al. (2013) extended the results to heterogeneous cases
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even with uncertainties. The output feedback consensus
problem that we consider is to have all the outputs
naturally converge to a common value (not necessarily
constant) which is entirely determined by the subsystems
themselves as well as the graph properties. This is different
from cooperative control problems where the output of
each agent is made to follow a given reference signal.

This paper is motivated by applications in which the
system goal cannot be accomplished by a single NI system
due to limitations in its capability, such as coverage or pre-
cision. This in turn requires the coordination of multiple
NI systems, which in this paper involves output feedback
consensus under model uncertainty and disturbances. In
this paper, a homogeneous network of NI systems and a
fixed communication topology are assumed. The ith NI
system is described in the s-domain by

ym×1
i = P (s)um×1

i , i = 1, · · · , n, (1)

where P (s) is the transfer function (generally MIMO),
n > 1 is the number of agents and m ≥ 1 is the
dimension of both the output and input. Then, an elegant
problem formulation, using the Laplacian matrix and
the Kronecker product, is adopted such that the output
feedback consensus problem turns out to be an internal
stability problem, which can be solved by NI systems
theory as detailed in Lanzon and Petersen (2008), Xiong
et al. (2010) and Mabrok et al. (2013). The contributions
of this paper can be summarized as: (a) it provides a novel
viewpoint, (b) it only exploits output feedback information
as opposed to the full state feedback which is common in
the literature, (c) it gives a class of consensus protocols
that can be tuned for performance and/or robustness, (d)
it characterises the convergence set, and (e) it provides a
robustness guarantee via NI systems theory.
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The remainder of this paper is organised as follows: In
Section 2, preliminary notation and definitions used in this
paper are given. The problem formulation is described in
Section 3 and then the first main result of this paper, a ro-
bust output feedback consensus protocol and convergence
proof, are presented. Section 4 explicitly characterises the
convergence set and specialises this to obtain easily inter-
pretable results for several NI systems typically considered
in the literature, such as single integrators, double integra-
tors, and second order damped systems. Simulation results
are presented in Section 5. Finally, concluding remarks are
given in Section 6.

2. PRELIMINARIES

2.1 Notation

Rm×n and Cm×n denote the family of m × n real and
complex matrices, respectively. In is the n × n identity
matrix. 1n and 1n×n are the n×1 vector and n×n matrix
with all elements being 1, respectively. Given M ∈ Rn×n,
M > (<)0 means M is positive (negative) definite and
M ≥ (≤)0 means M is positive (negative) semi-definite.
λ̄(M) denotes the largest eigenvalue of M and N (M)
denotes the null space of M . MT and M∗ are the transpose
and the complex conjugate transpose of M . In addition,
given s ∈ C, Re[s] is the real part of s. Given a1, a2 ∈ C,

diag(a1, a2) =

[
a1 0
0 a2

]
. Finally, given z ∈ Rn×1, ave(z) is

the average operation of all elements of z. OLHP is short
for open left half plane.

2.2 Graph Theory

A graph can be mathematically expressed by G = (V, E)
where V = {v1, v2, . . . , vn} is a nonempty finite set of n
nodes and an edge set E ⊆ V × V is used to model
the communications links among agents. The adjacency
matrix A = [aij ] ∈ Rn×n, where aii = 0 and ∀i, i 6= j,
aij = 1 if (vi, vj) ∈ E and 0 otherwise. In an undirected
graph, aij = aji. The in-degree of node i is defined as
di =

∑
j aij and D = diag{d1, d2, · · · , dn} ∈ Rn×n is the

in-degree matrix. Then, the Laplacian matrix of graph G
is given by

Ln = D −A. (2)

A sequence of successive edges of E in the form of
{(vi, vk), (vk, vl), . . . , (vm, vj)} is defined as a directed path
from node i to node j. An undirected path in an undirected
graph is defined analogously. An undirected graph is said
to be connected if there is a path from node i to node j
for all the distinct nodes vi, vj ∈ V. It is well-known Ren
and Beard (2008) that Ln has one unique zero eigenvalue
associated with the eigenvector 1n and all the other eigen-
values are positive and real, when the graph is undirected
and connected, or in other words,

Ln ≥ 0,det(Ln) = 0,N (Ln) = span{1n}. (3)

2.3 Negative-Imaginary Systems

Before proceeding to the main result, let us first recall the
definitions of NI and SNI systems:

Definition 1. (Mabrok et al. (2013)) A square transfer
function matrix P (s) is NI if the following conditions are
satisfied:

(1) P (s) has no pole in Re[s] > 0;
(2) ∀ω > 0 such that jω is not a pole of P (s), j(P (jω)−

P (jω)∗) ≥ 0;
(3) If s = jω0 where ω0 > 0 is a pole of P (s), then it is

a simple pole and the residue matrix K = lim
s→jω0

(s−

jω0)jP (s) is Hermitian and positive semi-definite;
(4) If s = 0 is a pole of P (s), then lim

s→0
skP (s) = 0 ∀k ≥ 3

and P2 = lim
s→0

s2P (s) is Hermitian and positive semi-

definite.

It can be observed that Definition 1 for NI systems
captures the definitions in Lanzon and Petersen (2008) and
Xiong et al. (2010). Examples of NI systems can be found
in Mabrok et al. (2013), and these include single-integrator
system, double-integrator system, undamped and damped
flexible structure, to name a few typically considered in
consensus literature.

Definition 2. A square transfer function matrix Ps(s) is
SNI if the following conditions are satisfied:

(1) Ps(s) has no pole in Re[s] ≥ 0;
(2) ∀ω > 0, j(Ps(jω)− Ps(jω)∗) > 0.

3. MAIN RESULT

In this section, the problem of output feedback consensus
over networked NI systems is considered. Networked ho-
mogeneous NI agents are defined in the s-domain to have
the form (1). Since ui and yi are vectors and P (s) is a
MIMO transfer function, the Laplacian matrix describing
the network interconnection is modified via a Kronecker
product to Ln ⊗ Im and the total networked plant under
consideration is depicted in Fig. 1:

Fig. 1. System setup

with

ỹnm×1 = P̄ (s)unm×1

= (Ln ⊗ Im)(In ⊗ P (s))unm×1

= (Ln ⊗ P (s))unm×1

(4)

where P̄ (s) is the augmented transfer function, Ln is the
Laplacian matrix of the communication topology among

the multiple NI agents, ynm×1 =
[
yT1 , · · · ,yTn

]T
and

unm×1 =
[
uT1 , · · · ,uTn

]T
. It can be seen that the output

ynm×1 reaches consensus when ỹnm×1 → 0 by noticing
that the null space of a Laplacian matrix Ln ⊗ Im for
an undirected and connected graph (a directed graph
is inapplicable since Lemma 6 further requires positive
semi-definiteness of Ln ⊗ Im) has dimension 1 and is
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characterised by 1n ⊗ e, ∀e ∈ Rm×1. This formulation
actually makes the output consensus problem reduce to an
internal stability problem which is usually easier to tackle
under the hypothesis of this paper:

Hypothesis 3. G is undirected and connected.

The following lemmas are needed for this paper:

Lemma 4. [Zhou et al. (1996)] Let λj and γk, j = 1, · · · , n,
k = 1, · · · ,m, be eigenvalues of matrices Λn×n and Γm×m
respectively, the eigenvalues of Λ⊗ Γ are λjγk.

Lemma 5. Given Λ ∈ Rn×n and Γ ∈ Rm×m, then

N (Λ⊗ Γ) ={a⊗ b : b ∈ Rm×1,a ∈ N (Λ)}
∪ {c⊗ d : c ∈ Rn×1,d ∈ N (Γ)}.

Proof. The proof simply follows from the definition of
null space and properties of the Kronecker product. 2

With the above knowledge, we can derive the following
lemma which will be used to derive the main results of
this paper.

Lemma 6. P̄ (s) is NI if and only if P (s) is NI.

Proof. It will be provided in a journal version. 2

Lemma 6 has shown that the networked system P̄ (s) is NI
if and only if P (s) is NI. Thus, the output ỹnm×1 → 0 if
internal stability is achieved for P̄ (s) with some controller.
From Lanzon and Petersen (2008), Xiong et al. (2010) and
Mabrok et al. (2013), the following internal stability results
are summarized:

Lemma 7. Given a NI transfer function P (s) and an
SNI function Ps(s), the positive feedback interconnection
[P (s), Ps(s)] is internally stable if and only if any of the
following conditions is satisfied:

(1) λ̄(P (0)Ps(0)) < 1 when P (s) has no pole(s) at the
origin, P (∞)Ps(∞) = 0 and Ps(∞) ≥ 0;

(2) JTPs(0)J < 0 when P (s) has pole(s) at the origin and
is strictly proper, P2 6= 0, P1 = 0,N (P2) ⊆ N (PT0 ),
where P2 = lim

s→0
s2P (s) = JJT with J having full

column rank, P1 = lim
s→0

s(P (s) − P2

s2 ) and P0 =

lim
s→0

(P (s)− P2

s2 −
P1

s );

(3) FT1 Ps(0)F1 < 0 when P (s) has pole(s) at the origin
and is strictly proper, P2 = lim

s→0
s2P (s) = 0, P1 =

lim
s→0

s(P (s)− P2

s2 ) 6= 0, N (PT1 ) ⊆ N (PT0 ), where P1 =[
F̃1 F̃2

] [S2 0
0 0

] [
V T1
V T2

]
= F1V

T
1 and P0 = lim

s→0
(P (s) −

P2

s2 −
P1

s ).

Now, we are ready to state the first main result of this
paper:

Theorem 8. Given a graph G which satisfies Hypothesis
3 and models the communication links for networked
homogeneous NI systems P (s) with any SNI control law
Ps(s), the robust output feedback consensus is achieved
via the protocol

U cs = P̄s(s)ỹ
nm×1 = Ccs(s)y

nm×1

= (In ⊗ Ps(s))(Ln ⊗ Im)ynm×1

= (Ln ⊗ Ps(s))ynm×1

(5)

Fig. 2. Closed-loop system with SNI controller

shown in Fig. 2, or in a distributed manner, for each agent
i by

ui = Ps(s)

n∑
j=1

aij(yi − yj), (6)

under L2 disturbance if and only if P (s) and Ps(s) satisfy
the conditions listed in Lemma 7 except that

λ̄(P (0)Ps(0)) <
1

λ̄(Ln)
(7)

replaces λ̄(P (0)Ps(0)) < 1 in case (1).

Proof. It will be provided in a journal version. 2

Claim 9. It can be seen that the condition in inequality (7)
is stricter than that in the inequality of case 1 of Lemma
7 due to the network interconnection. If originally Ps(0)
was such that 0 < λ̄(P (0)Ps(0)) < 1, the controller Ps(0)
needs to be tuned for smaller eigenvalues in order to satisfy
inequality (7). On the other hand, if λ̄(P (0)Ps(0)) < 0,
there is no need to tune further.

4. CONVERGENCE SET

In the previous section, Theorem 8 has provided a general
robust output feedback consensus protocol that guarantees
the convergence of the NI systems’ outputs yi. However,
the convergence set is still unspecified. This section inves-
tigates the steady state nominal values of yss under the
proposed output feedback consensus protocol. In order to
specify the exact convergence set, the disturbance in the
input and output channel will not be considered in this
section.

Given a minimal realization of the ith NI plant P (s),{
ẋp×1
i = Ap×pxp×1

i +Bp×mum×1
i

ym×1
i = Cm×pxp×1

i +Dm×mum×1
i

, i = 1, · · · , n,

(8)
and a minimal realization of the ith SNI controller Ps(s),{

˙̄xq×1
i = Āq×qx̄q×1

i + B̄q×mūm×1
i

ȳm×1
i = C̄m×qx̄q×1

i + D̄m×mūm×1
i

, i = 1, · · · , n,

(9)
where p and q are the dimensions of the states of the NI
plant and the SNI controller, respectively. The closed-loop
system of Fig. 2 is given as
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[
˙̄x
ẋ

]
=

[
In ⊗ Ā+ Ln ⊗ B̄DC̄ Ln ⊗ B̄C

In ⊗BC̄ In ⊗A+ Ln ⊗BD̄C

] [
x̄
x

]
, Ψn(p+q)×n(p+q)

[
x̄
x

]
.

(10)

The eigenvalues of Ψ are of importance since they will
determine the equilibria. In particular, in this paper, the
eigenvalues on the imaginary axis of Ψ will determine the
steady-state behaviour. The following lemma is given to
characterise the eigenvalues of Ψ.

Lemma 10. Let λiL be the ith eigenvalue of Ln associated
with eigenvector viL. The eigenvalues of Ψ are given by the
eigenvalues of the following matrices:

ψi =

[
Ā+ λiLB̄DC̄ λiLB̄C

BC̄ A+ λiLBD̄C

]
, i = 1, · · · , n. (11)

Furthermore, let

[
vi1
vi2

]
be an eigenvector of ψi. Then, the

corresponding eigenvector of Ψ is

[
viL ⊗ vi1
viL ⊗ vi2

]
.

Proof. It will be provided in a journal version. 2

It is known that there is only one zero eigenvalue, λiL = 0,
when the graph G satisfies Hypothesis 3. In this case, ψi

becomes

[
Ā 0
BC̄ A

]
which has eigenvalues λA and λĀ asso-

ciated with eigenvectors

[
0
vA

]
and

[
vĀ

(λĀIn −A)−1BC̄vĀ

]
respectively, where λA and λĀ are the eigenvalues of A and
Ā, vA and vĀ are the corresponding eigenvectors of A and
Ā, respectively. This also shows that λA and λĀ, with the

vectors

[
0

1⊗ vA

]
and

[
1⊗ vĀ

1⊗ (λĀIn −A)−1BC̄vĀ

]
, are also

the eigenvalues and eigenvectors of Ψ. It is worth noting
that the invertibility of A − λĀIn follows since an SNI
controller can always be chosen such that λĀ 6= λA.

In the case of λiL > 0 and det(A) 6= 0, it can be shown
in a similar manner as Theorem 5 of Lanzon and Petersen
(2008) that

ψi =

[
Ā+ λiLB̄DC̄ λiLB̄C

BC̄ A+ λiLBD̄C

]
=

[
Ā 0
BC̄ A

]
+ λiL

[
B̄
BD̄

] [
DC̄ C

]
= ΦT

(12)

where Φ =

[
ĀȲ 0
0 AY

]
and

T =

[
Ȳ −1 − λiLC̄∗DC̄ −λiLC̄∗C

−C∗C̄ Y −1 − λiLC∗D̄C

]
.

ψi is Hurwitz if λ̄(P (0)Ps(0)) < 1
λi
L

holds, which coincides

with the condition in Theorem 8 when λiL = λ̄(Ln).

In the case of λiL > 0 and det(A) = 0, it can be verified in
a similar manner as Mabrok et al. (2013) that

ψi =

[
Ā λiLB̄C
BC̄ A+ λiLBD̄C

]
(13)

due to D = 0. ψi is also Hurwitz when the conditions (2)
and (3) in Lemma 7 hold. Detailed proof is omitted due
to page limitations.

One direct observation about the above analysis is that the
number of eigenvalues on the imaginary axis of Ψ is equal
to the number of eigenvalues on the imaginary axis of A
and all of the other eigenvalues lie in the OLHP since Ā
is always Hurtwiz (Xiong et al. (2010)). Thus, the steady
state of the closed-loop system (10) is in general dependent
on the eigenvalues on the imaginary axis of A as shown in
the following theorem:

Theorem 11. Given the closed-loop system in (10), the
steady state can be expressed in the general form[

x̄(t)
x(t)

]
t→∞−−−−→

[
wj , · · · , wg

k

]
eJ

′t

 v
T
j
...

vgk
T

[x̄(0)
x(0)

]
, (14)

where J ′ is the Jordan block associated with n0 eigenvalues
of Ψ on the imaginary axis, wj and vj are the left and
right eigenvector of Ψ associated with eigenvalues on the
imaginary axis given by

wj =

[
0

1⊗ vrA

]
(15)

and

vj =

1⊗ (
1

n
(λAIq − Ā)−1C̄TBTvlA)

1⊗ 1

n
vlA

 (16)

respectively for j = 1, · · · , n0 − (na − ng), where na
and ng denote the algebraic and geometric multiplicity
respectively. vrA,v

l
A are the right and left eigenvectors

of A associated with eigenvalues on the imaginary axis.
Moreover, in the case that na > ng, w

g
k and vgk are the

generalized left and right eigenvectors given by

wg
k =

[
0

1⊗ vrgA

]
(17)

and

vgk =

1⊗ (
1

n
(λAIq − Ā)−1C̄TBTv

lg
A )

1⊗ 1

n
v
lg
A

 , (18)

where k = 0, · · · , na − ng, v
rg
A and v

lg
A are the general-

ized eigenvectors of A associated with eigenvalues on the
imaginary axis.

Proof. It will be provided in a journal version. 2

Next, convergence sets of several special cases of NI
systems are given in detail:

Corollary 12. In the case that the NI plant is a single-
integrator, such as ẋi = ui, yi = xi, the convergence set
of (10) is yss = −C̄Ā−T · ave(x̄(0)) + ave(x(0)).

Proof. It is straightforward by finding the eigenvectors
and applying Theorem 11. 2

Corollary 13. In the case that the NI plant is a double-
integrator, such as ξ̇i = ζi, ζ̇i = ui, yi = ξi, the
convergence set of (10) is yss = −C̄Ā−T · ave(x̄(0))t +
ave(ξ(0)) + ave(ζ(0))t.

Proof. It is straightforward by finding the eigenvectors
and applying Theorem 11. 2

Corollary 14. In the case that the NI plant is a stable
flexible structure, the convergence set of (10) is yss = 0.
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Proof. This is straightforward and thus omitted. 2

5. ILLUSTRATIVE EXAMPLES

In this section, several numerical examples of typical NI
systems are given to illustrate the main results of this
paper. A scenario of 3 NI systems is considered and the
communication graph G is simply given as in Fig. 3.

Fig. 3. Communication topology G

Thus, the Laplacian matrix of G is derived according to

the definition in Section 2 as L3 =

[
1 −1 0
−1 2 −1
0 −1 1

]
.

5.1 Multiple Single-Integrator Systems

Suppose that the NI systems have identical single-
integrator dynamics as given in Corollary 12 with the
initial conditions being x(0) = [1; 2; 3]. The SNI controller
is designed as indicated in Theorem 8 to be Ā = −2, B̄ =
1, C̄ = 1, D̄ = −1, with the initial condition being x̄(0) =
[0.1; 0.2; 0.3]. Without considering disturbances firstly, it
can be verified as Corollary 12 that yss = −C̄Ā−T ·
ave(x̄(0)) + ave(x(0)) = 1

2 ∗ 0.2 + 2 = 2.1, which is exactly
shown at the top of Fig. 4. If the disturbances are inserted,
the output consensus is also achieved as shown at the
bottom of Fig. 4 with disturbance level of 10−3. Sensitivity
of the loop to disturbances will depend on the choice of the
SNI controller Ps(s) which can be chosen to adjust.

One may notice that when the initial condition of the
controller x̄(0) is set to 0 (a reasonable choice as the
controller is set by the designer), the convergence set
reduces to yss = ave(x(0)) which in turn implies that
the results for the average consensus protocol in Ren and
Beard (2008) is a special case of the proposed result.
Alternatively, the desired final convergence point can be
chosen by properly initialising the SNI controller, which
can be seen as a more general result.

5.2 Multiple Double-Integrator Systems

Suppose that the NI systems have identical double-
integrator dynamics as given in Corollary 13 with the ini-
tial conditions being ξ(0) = [1; 2; 3], ζ(0) = [0.1; 0.2; 0.3].
The same SNI controller can be adopted as in the previous
subsection. Without considering disturbances at first, it
can be verified as the Corollary 13 that yss = ξi(∞) =
−C̄Ā−T · ave(x̄(0)) + ave(ξ(0)) + ave(ζ(0))t = 1

2 ∗ 0.2 +

2 + 0.2t = 2.1 + 0.2t and ζi(∞) = −C̄Ā−T · ave(x̄(0)) +
ave(ζ(0)) = 1

2 ∗ 0.2 + 0.2 = 0.3, which is exactly as
shown at the top of Fig. 5. If disturbances are inserted,
output consensus is also achieved as shown at the bottom
of Fig. 5 with a disturbance level of 10−3. Again, note that
the choice of the dynamics of the SNI controller can be

Fig. 4. Robust output feedback consensus for networked
single-integrator systems

made to minimise the effects of unmodelled dynamics and
disturbances.

Fig. 5. Robust output feedback consensus for networked
double-integrator systems

Similar to Subsection 5.1, one can set the initial condition
of the controller to be x̄(0) = 0 to obtain the convergence
set as yss = ξss = ave(ξ(0)) + ave(ζ(0))t and ζss =
ave(ζ(0)). The same conclusion can hence be drawn as
in Subsection 5.1.

5.3 Multiple Undamped Flexible Structures

Suppose that the NI systems are undamped flexible struc-
tures as shown in Fig. 2 of Xiong et al. (2010) with the
parameters of m1 = 1, m2 = 0.5, k1 = k2 = k = 1.
The initial conditions are given as x(0) = [1; 2; 3; 4; 5; 6]
and ẋ(0) = [0.1; 0.2; 0.3; 0.4; 0.5; 0.6]. The SNI controller
can be designed as indicated in Theorem 8 to be Ā =
−4I2, B̄ = I2, C̄ = I2, D̄ = 02 since λ̄(P (0)) = 1 and thus
λ̄(P (0)Ps(0)) = 1

4 <
1

λ̄(Ln)
= 1

3 with the initial condition

being [0; 0; 0; 0; 0; 0]. With or without disturbances, the
output consensus is achieved as shown in Fig. 6.

5.4 Multiple Damped Flexible Structures

Suppose that the NI systems are damped flexible struc-
tures as shown in Fig.2 of Lanzon and Petersen (2008),
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Fig. 6. Robust output feedback consensus for networked
undamped flexible structures

where the parameters are exactly the same as Subsection
5.3 and additional damping coefficients are all 0.1. The
same SNI controller can be adopted as in the previous
subsection for simplicity. With or without disturbances,
output consensus is achieved as shown in Fig. 7. Note
that the outputs of the NI systems will reach consensus
while the outputs will be damped to zero, which illustrates
Corollary 14.

Fig. 7. Robust output feedback consensus for networked
damped flexible structures

6. CONCLUSION REMARKS

NI systems include a wide range of LTI systems. As a
consequence, the output feedback (as opposed to full state
feedback) consensus problem of this class of systems is of
interest. The advantage of using NI systems theory for
solving the consensus problem is four-fold: (a) it only uses
output feedback information as opposed to full-state feed-
back information; (b) it provides robustness guarantees;
(c) it allows tuning of a whole class of SNI control laws;
and (d) it bypasses traditional searches for Lyapunov Can-
didate functions. Moreover, a class of general output feed-
back consensus protocols (since a large class of SNI control
laws is allowed) is available for the cooperative control of
networked NI systems. The characterised convergence set

also makes it possible to initialise the controller to achieve
the desired final consensus target.
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