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Abstract: A discrete-time adaptive nonlinear control procedure is developed based on immersion and 

invariance control, and using back-stepping for the regulation of slider-crank system. A convenient 

parametric formulation of the system dynamics is established. A novel parameter estimator design is 

presented, and the back-stepping controller is constructed considering the certainty equivalence principle. 

1. INTRODUCTION 

The slider-crank mechanism has a very wide usage in 

machine design. Some of the applications are found in 

internal combustion engines, in electrical switch gears, 

packaging and textile engineering (Lin et al. 1997, Ha et al. 

2006). It is mainly used to convert rotary motion to a 

reciprocating motion or vice versa. Several control 

techniques have been presented for the system in the 

literature by sliding mode control (Fung and Chang, 2009), 

energy control (Komaita and Furuta, 2008), generalized 

minimum variance control (Saitoh and Furuta, 2007) and 

computed torque technique (Lin et al. 1998).   

Most of the mechanisms in the engineering applications 

consist of motors, gears and nonlinear components. The 

control performance of these systems is usually dominated by 

the effects of nonlinearities and uncertainties. Therefore, the 

nonlinear adaptive design procedure for the case study 

considered in this paper may be applicable for a wider range 

of nonlinear electro-mechanical systems. 

On the other hand, to develop modelling and control 

techniques for discrete-time nonlinear systems have gained 

more importance as in the engineering practice computer-

controlled systems are preferred because of the simplicity and 

flexibility of their implementation. 

Immersion and Invariance (I&I) control is a recently 

presented new methodology in the literature proposed by 

(Astolfi et al., 2007, Astolfi et al., 2008, Karagiannis and 

Astolfi 2008) for designing nonlinear and adaptive controllers 

for nonlinear systems which relies upon the notion of system 

immersion and manifold invariance. In I&I control approach    

the behaviour that satisfies the control objective is formulated 

as a target system and the controller is constructed such that 

the plant dynamics immersed into the target dynamics.  

In (Yalcin and Astolfi 2011, 2012) a discrete-time adaptive 

controller design via state-feedback for the adaptive 

regulation of linearly parameterised discrete-time systems in 

strict-feedback form is presented. In this paper, the adaptive 

regulation of the slider-crank mechanism is considered and a 

discrete time adaptive nonlinear control procedure is 

proposed based on immersion and invariance control 

approach and using back-stepping. For the purpose, firstly, a 

parametric model for the system dynamics is obtained. The 

system dynamics are not directly linear in parameters but it is 

expressed in a form such that the intended control procedure 

can be developed utilizing it. Then, a parameter estimator is 

designed. Afterwards the back-stepping controller is 

constructed considering certainty equivalence principle. 

 

Fig. 1. Slider-crank systems 

2. DERIVATION OF SYSTEM DYNAMIC EQUATIONS 

In this section the dynamic equations for the considered 

crank-slide mechanism shown in Figure 1 are derived by the 

Euler-Lagrange technique and these equations are expressed 

in a form in the next section such that an immersion and 

invariance adaptive control algorithm can be developed and a 

back-stepping controller can be constructed. 

In Figure 1, 
1r  and 

2r  are length of the arms, 
1m , 

2m and
3m  

masses of the arms and the slider, respectively. The slider-

crank system is a 2-dof under-actuated mechanical system. 

The actuation is performed through the base joint. The 

angular motion of base joint is transformed to a linear motion 

in the slider so that the slider moves accordingly. 

Let’s write the kinetic energy function of the system,   

 
2 2 2 2
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2 2 2 2
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where 
1I  and 

2I  are the inertias of arms, 
2

 is the linear 

velocity of the second arm and 
3

 is linear velocity of  the 

mass 
3m . Besides, consider the potential energy of the 

system as 

1 2
1 2sin sin

2 2

r r
P m g m g .  (2) 

Note that the following relation is valid for the angles ,

 

,

 
1 2sin sinr r .

  

(3)

 
Therefore, 

1 2cos cosr r ,  namely 1

2

cos

cos

r

r
.  (4)

 

Now consider 2

2 1 2
cos cos

r

cx r  and 2

2 2
sin

r

cy  together 

with

 

(3), then 

2 2 2x yi j

 

(5)

 
where 

2 1

2 2 1 12 2
sin sin sin sin ,

r r

x cx r r

 

(6)

 
2 1

2 2 2 2
cos cos

r r

y cy

 

(7)

 
therefore, 

2
22 2 2 2 2 2

2 1 4

1
sin ( ) cos

2

r
r . (8)

 

Here note that, using 2 2cos 1 sin  and relations (3-4), 

the following expression for 

 

which is utilized in the sequel 

is obtained. 

1

2 2 2

2 1

s
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r co

r r  
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2 2 2

2 1

2 2 2

2 1

s

sin
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Thus

 

2

2

 

can be written as,

 
2

2 2 2 2 2 22

2 1

3 2 2 2 2

2 2 2 2 21 1 2

1 2

2

2 2 2 21 2

1 2

1
sin ( ) cos

2 4
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4

[sin (1 cos ) cos ]
4

r
r
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r

c c

r r
r
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(10)

 

where

  
2 2 2

2 1 sinc r r  

as in (Ha et al. 2006). 

Finally, since 
3 1 2cos coscx x r r  and 

3 0cy , then

 

3 1 2

1 1

1

1

sin sin

sin sin

sin (1 cos )

x r r

r r

r
r

c

 

(11)

 

and when (9) is considered, 

2 2 2 2

3 1

3 2
2 2 2 21

1

4 2
2 21

2

sin ( )

2
sin sin cos

sin cos .

x r

r
r

c

r
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(12)

 

Moreover, the potential energy of the system can be rewritten 

as, 

1 2 1

1 2 1 2sin sin ( ) sin
2 2 2

r r r
P m g m g m m g . (13)

 

Thus, the Lagrangian for the system is obtained as follows, 

2 2 2

2 1

1 2 2

2

2 2 2 21 2

2 1 2

1 1

3 1 1 2

s1 1

2 2

1
[sin (1 cos ) cos ]

2 4

1
sin (1 cos ) ( ) sin .

2 2

r co
L K P I I

c

r r
m r

c c

r r
m r m m g
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 (14)

 

Hence, considering the inertias as 
2

1 1 1

1

1
I m r  and

2

2 2 2

2

1
I m r  to capture the various arm-joint structures and 

uncertainties, and 
3sgn( ) sgn( )v v vF x f x x m gx  the 

Lagrange Equations of the system is obtained as given below,

 

2 2

1 1 2

2

3 1 2

3

5 3 10

( ( )cos ( )sin )

[(2 sin cos 2 ( ) 2 ( ))sin cos

sin sin ( )] cos v

d L L
k P P

dt

k P P

k P k F  

(15)

 

Here, is the torque applied to base joint, 
vF

 

is the viscous 

friction, 
v

 is the viscous friction coefficient, 
1

, 
2

 are 

positive scalars and 

2

1 2 3( ) sin ,P k k
 

2 4 5( ) cos ,P k k

  

(16) 

2 2 2

3 6 1 4 7

2 2 2

8 9

( ) cos ( cos ) cos (2cos

sin ) cos cos (cos sin ),

P k c r k k

k k
 

1

11sgn( ) sgn( )sin (1 cos )v v

r
F x f x k x

c
, 

with 
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Note that, the equations (15)-(17) can be written in the form 

of  

( ) ( , ) ( )A B C

  

(18) 

where 

2 2

1 1 2( ) ( ) cos ( )sinA k P P ,

 
2

3 1 2

3 1

5 3 11

( , ) (2 sin cos 2 ( ) 2 ( ))sin cos

sin sin ( ) sgn( )sin (1 cos ),

B k P P

r
k P k x

c

10( ) cosC k . 

Finally, considering (18) for 
1x ,

 
2x , the dynamic 

equations of the system can be written as, 

1 2

1 2 1

2 2 1

1 1 1

( , ) ( )
.

( ) ( )

x x

B x x C x
x x x v

A x x A x  

(19) 

where
1( )A x v . 

3. CONTROLLER DESIGN 

In this section, a discrete-time adaptive nonlinear control 

procedure is developed. The nonlinear system (23) can be 

considered as a time varying linear system. If all the 

parameters are known, an adaptive linear controller can be 

designed. In this case ( ),A   ( , )B  and ( )C  can be 

calculated at each sample and the linear controller to be 

designed can be accordingly adapted. If there is uncertainties 

in the parameters of the system, a nonlinear adaptive 

controller is needed or preferred to design, since it may not 

be possible to directly calculate the values of A, B and C 

polynomials.   

Here, it is assumed that 
1r and 

2r  are known and 
1 2 3, ,m m m , 

1I  and 
2I  (namely 

1
 and 

2
)  are unknowns and a 

discrete-time adaptive nonlinear controller based on 

immersion and invariance control approach is designed.  

Therefore, let’s rewrite system dynamics (19) in the 

following form, 

1 2

2 1 2

2

2 1 2

ˆ ( , )
,

ˆ ( , )

BC

A

x x

x x
x v

x x

 (20) 

with  

1 2 3 4 5
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T
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where 
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4
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A
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and, 

2
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2
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c
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Note that, 

1
1

1
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2
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2
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2
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ˆ
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11 3 1
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The discrete-time dynamics of the system is required to be 

able to perform a discrete-time design procedure. Forward 

Euler approximation to derivatives is used to obtain discrete-

time dynamics of the system as given below, 

1 1 2

2 1 2

2 2

2 1 2

ˆ ( , )
.

ˆ ( , )

BC

A

x x Tx

x x
x x T Tv

x x

  (24) 

The following notation, 

1 1x x , 2 1
2

x x
x

T
, 

yields 
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2 22 1 2

2 2 1

2 1 2

ˆ ( , )
2 ,

ˆ ( , )

BC

A

x x

x x
x T x x T v

x x

 (25) 

and when 2

2 12u x x T v , 2

2 2
ˆ

BC BCT  and 

2 2
ˆ

A A
 are considered, the expression for the discrete-

time dynamics are obtained in the following form, 

1 2

2 1 2

2

2 1 2

( , )
.

( , )

BC

A

x x

x x
x u

x x

 (26) 

In the sequel, an indirect adaptive controller construction is 

derived using immersion and invariance control approach. 

For the estimation of the parameters, following estimation 

error is considered. 

2 1 2 1
ˆ ( , ) ( )Az x x x x ,  (27) 

where 0 1  and is such that 1 2 1 2( ( ) ( , )) 1Ax x x x , 

namely 1

1 2 1 2( ( ) ( , ))AI x x x x  exists.  Note that, 

 1

1 2 1 2
ˆ( ( ) ( , )) ( )AI x x x x z ,  (28) 

and for 1

1 2 1 2( ( ) ( , ))AI x x x x , it is rewritten as 

ˆ( )z . 

hence parameter estimations are obtained as 

ˆ
est

.  (29) 

 Also note that, 

2 1 2 1
ˆ ( , ) ( )Az x x x x .    (30) 

Therefore, 
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A
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is obtained. Let’s select the update law as 

2 2 1 2

1

2 1 2 2 1 2

1

2 1 2 1

2

ˆ( , )ˆ ˆ ( )
ˆ ˆ( , ) ( , )

ˆ ˆ( , ) ( ) ( 1) .

A

BC A

A

x x x
x

x x u x x

x
x x x

x

  (31) 

Then the estimation error dynamics becomes 

2 2 1 2

1

2 1 2 2 1 2

1

1 2 1 2

2

( , )
( )

( , ) ( , )

( ) ( , ) ( 1) .

A

BC A

A

x x x
z z x z

x x u x x

x
x x x z z

x

 (32) 

Using the following notation 

2 2 1 2

2 1 2 2 1 2

( , )

( , ) ( , )

A

BC A

x x x

x x u x x
,  (33) 

1

2 1 2

2

( , )A

x
x x

x
,  (34) 

(34) can be rewritten as, 

1 1( ( ) ( ) ( 1) )z I x x z .  (35) 

Let’s select,  

1

1 1 2( ) ( )T Tx I M M K K M   (36)  

and  

1 2

1 2 1 2

0.5 0.5
0 1 , 0 ,

1 ( ) 1

0 , 1, ,

           (37) 

where 

2 1 2( , )AM x x x ,    (38) 

1 1 2( )T

pK M M K I K ,
1(0) 0K ,   (39) 

2 ( ) ( )T T

p pK M I M I .  (40) 

Note that, 

1

1( ) ( ) Tx R M  and 1

1( ) Tx R M  

where 

1 2

TR I M M K K  , (41) 

1 2L I K K ,   (42) 
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hence, 

1 1

1 1

( ( )

( 1) ) .

T

T

z I R M L R

R M L R z
   (43) 

Proposition: Consider the system (43) in which  and  

satisfy (37). The zero equilibrium of the system is 

asymptotically stable, namely lim ( ) 0k z k .   

Proof: Consider the candidate Lyapunov function 
TV z z  

and, 

[ ]

T T

T T

V z z z z

z I z
 (44) 

where  

1 1 1 1( )

( 1) .

T TI R M L R R M L R
     (45) 

In (44), 1 1( ( ) ) 1TR M L R , 1 1( ) 1TR M L R . Let 

1 1( ) TI R M L R , 
1 1ˆ TI R M L R  and rewrite (43) as 

ˆ( ) ( )I I I  

consider  and  satisfy (37), then 

1 1 2 20.5 0.5 ˆ( ) ( )
1 ( ) 1

I I I I  

where
1 1, 0  are such that  , 0 . Thus ( ) 1 and 

this makes 0V . Therefore lim ( ) 0k z k .□  

Remark: In the estimation of the parameters the “look-ahead” 

values of the state variable 
ix is required. These values are 

calculated utilizing the system equations (26) with parameter 

values obtained in the previous estimations. □ 

The back-stepping construction of the controller is performed 

in the sequel. 

Consider system equations (26) and denote *

1 1 1x̂ x x , 

then, 

*

1 2 1x̂ x x
 

and assume 2x  as virtual input, note that *

2 2 2x̂ x x  and 

select * *

2 1x x ,  thus 

1 2
ˆ ˆx x

 

and note that 

*2 1 2

2 1

2 1 2

( , )
ˆ

( , )

BC

A

x x
x x u

x x
 

Taking the control signal u  as  

*2 1 2

1

2 1 2

( , )

( , )

BC est

A est

x x
u x

x x
  

yields 

2 1 2 2 1 2

2

2 1 2 2 1 2

( , ) ( , )
ˆ

( , ) ( , )

BC BC est

A A est

x x x x
x

x x x x
. 

This can be rewritten as, 

2 1 2 2 1 2 2 1 2 2 1 2

2

2 1 2 2 1 2

( , ) ( , ) ( , ) ( , )
ˆ

( , ) ( , )

BC A est BC est A

A A est

x x x x x x x x
x

x x x x
, 

2 1 2 2 1 2

2

2 1 2 2 1 2

2 1 2 2 1 2

2 1 2 2 1 2

( , )( ) ( , )
ˆ

( , ) ( , )

( , ) ( , )( )
,

( , ) ( , )

BC est A est

A A est

BC est A est

A A est

x x z x x
x

x x x x

x x x x z

x x x x  

2 1 2 2 1 2 2 1 2 2 1 2

2

2 1 2 2 1 2

( , ) ( , ) ( , ) ( , )
ˆ

( , ) ( , )

BC est A BC A est

A A est

x x x x z x x z x x
x

x x x x
, 

hence, the closed loop system dynamics are obtained as, 

 

Note that, when 0z ,  these dynamics become, 

1 2

2

ˆ ˆ

ˆ 0.

x x

x
 

Thus, considering the Proposition, it can be claimed that if 

the update law (33) together with (36) is used, the control 

objective is achieved. Note that, 

0( ) ( ) |est zA A z  ( ) .A  

4. SIMULATION RESULTS 

In this paper basically the regulation problem is considered 

therefore the simulation results for *

1 0x  are presented in 

the sequel. In the simulations, system parameters are taken as 
29.81 mg kg s , 

1 0.3mr , 
2 1mr , 

1 0.45m kg , 

2 1.5 ,m kg   
3 0.5m kg, 

1 3 , 
2 3  which yields 

[ , , 0.5, 00.225 .75,11 5].5 .9  and T 0.01  is used to 

obtain discrete-time dynamics. Estimator parameters are 

selected as 
1 0.9 , 

2 0.5 , 0.1  and 0.3 . The 

simulations are run with the initial conditions [3,0.5]x  

and 10 10ˆ(0) [ , ,10,10,10] . Figure 2 illustrates the time 

histories of the parameter estimation errors 

1 2 3 4 5z [ , , , , ]z z z z z  which converge to zero, while 

Figure 3, Figure4 and Figure 5  illustrate the time history of 

the state angular position of first joint
1x , angular velocity of 

first joint 
2x  and the edge position x  for  both the adaptive 

control case and the known parameter control case (Dashed-

dot lines corresponds to adaptive control, solid lines 

corresponds to known parameter control). Note that, the edge 

position is calculated using the relation 
1 1cosx r x c . 

  

1 2

2 1 2 2 1 2 2 1 2 2 1 2

2

2 1 2 2 1 2

ˆ ˆ

( , ) ( , ) ( , ) ( , )
ˆ .

( , ) ( , )

BC est A A est BC

A A est

x x

x x x x z x x x x z
x

x x x x
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Fig. 2. Time history of the parameter estimation error z . 

 

  
Fig. 3. Time history of the variable 

1x  (angular position) 

     
Fig. 4. Time history of the variable 

2x  (angular velocity) 

   
    

Fig. 5. Time history of the edge position x . 
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