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Abstract
Poor scalability arises in many vehicle platoon problems. Bidirectional strings appear to show some
promise for mitigating these problems. In some cases these solutions have the undesirable side effect
of non-scalable response to measurement errors. In this paper, we examine this problem and show how
information exchange between vehicles may eliminate scalability difficulties due to measurement errors.
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1. INTRODUCTION

In the field of coordinated systems, formation control is a
well studied control objective. In its simplest form a group
of N vehicles (e.g. platoon or string) is required to move in
one direction and follow a given reference trajectory while the
vehicles keep a prescribed distance to neighbouring vehicles.

It is usually desirable to find distributed control solutions, using
local measurements only. In this paper bidirectional distributed
control of a string is studied, see e.g. Seiler et al. [2004],
Barooah et al. [2009].

It is well known that error signals can amplify when travelling
through the string resulting in growth of the local error norm
with the position in the string. This effect is referred to as
‘string instability’, e.g. in Darbha and Hedrick [1996], Seiler
et al. [2004], ‘slinky effect’, e.g. in Zhang et al. [1999] or‘ not
scalable’, e.g. in Lestas and Vinnicombe [2007].

It was shown in Seiler et al. [2004], Barooah and Hespanha
[2005] that linear symmetric bidirectional strings with two
integrators in the open loop and constant spacing are always
string unstable. Lestas and Vinnicombe [2007] examines a
bidirectional string with constant spacing and shows that string
stability can be achieved with sufficiently large coupling with
the leader position.

In a different approach a symmetric bidirectional string was
modelled as a mass-spring-damper system in Eyre et al. [1998].
This idea was extended in Knorn et al. [2013] using the theory
of port-Hamiltonian systems (PHS). It was shown that the
analysis of stability and string stability of systems in this form is
significantly simplified. Also, sufficient conditions to guarantee
l2 string stability of such systems were derived.

However, all results discussed above assume perfect and ac-
curate measurements of all relevant and necessary states. In
this paper we will study a system with simple, constant mea-
surement offsets in the sensors measuring the distance towards
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the neighbouring vehicles. When assuming different measuring
errors for the same inter vehicle distance (due to two different
sensors used in each of the vehicles) offsets might accumulate.
The undesirable effect can be an equilibrium that grows without
bound as the string size increases. We show that this problem
can be avoided if a simple consensus algorithm is implemented.
Note that a similar problem might arise in case different steady
state distances are assumed by neighbouring vehicles. For sim-
plicity, however, we will concentrate our discussion on mea-
surement offsets in the reminder of this paper. Similar issues
regarding the effects of time varying measurement noise were
studied in Bamieh et al. [2012], Hao and Barooah [2012].

The remainder of the paper is organised as follows: The model
and the notation are discussed in Section 2. Results from Knorn
et al. [2013] on stability and scalability of vehicle platoons
are summarised in Section 3. Section 4 studies stability and
string stability in case of unknown measurement offsets. The
paper closes with three illustrative scenarios in Section 5 and
conclutions in Section 6.

2. PLATOON MODEL AND NOTATION

2.1 Notation

We consider a string of N vehicles driving behind one another.
The mass of the ith vehicle is mi and its motion can be described
by its momentum and position, pi and qi respectively, with
i = 1,2, · · · ,N. Thus,

ṗi = Fi + di, and q̇i = m−1
i pi. (1)

where Fi is the control force on the vehicle and di is the
disturbance. The control force Fi will be chosen such that
only data from a group of neighbours of the ith vehicle (both
preceding and following vehicles) are needed. Hence, no global
communication structure is necessary.

We denote the state, steady state and the disturbance column
vectors (generally denoted col) by x(t) = col(x1(t), . . . ,xN(t)),
x0 = col(x10 , . . . ,xN0 ) and d(t) = col(d1(t), . . . ,dN(t)). The
column vector of ones is denoted by 1 and ei is the ith canonical
vector of length N. Similarly we denote the diagonal matrix A ∈
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R
N×N with diagonal entries a1, . . .aN as A = diag(a1, . . .aN).

The L2 vector norm is denoted by |x|2 = |x| =
√

xTx and the

L2 and L∞ vector function norms by ‖x(·)‖2 =
√

∫ ∞
0
|x(t)|2 dt

and ‖x(·)‖∞ = supt≥0 |x(t)|, respectively. The gradient of H is
denoted by ∇H. The transpose of a matrix A is denoted AT, the
inverse of A by A−1 and the inverse of its transpose by A−T.

2.2 Control Objectives

The local control objective for each vehicle is to bring its local
error to zero via distributed control based solely on locally
available data. The local error is usually defined as a linear
combination of position errors (e.g. distances or displacements)
towards a limited group of direct predecessors and a limited
group of directly following vehicles. The controller for the
first vehicle in the string aims to follow a given trajectory q0
and also minimise the local position error towards a group of
following vehicles. In the simplest setting the reference signal is
considered to be a ramp with constant velocity v0, i.e. q0 = v0t.
Note that only a small, limited group at the beginning of the
string have direct access to the reference signal. In our setting,
there is no global communications, and therefore neither the
reference position, velocity v0, nor any data of the leading
vehicle are available to every other vehicle in the string.

The overall control objective is to achieve “string stability” or
“scalability”, that is, the norm of the local states of the complete
string are bounded, uniformly in the string size N, for nonzero
disturbances or initial conditions, Darbha and Hedrick [1996]:
Definition 1. The equilibrium x∗ of a distributed system with
N agents is l2 string stable with respect to disturbances d(t), if
given any ǫ > 0, there exists δ1(ǫ) > 0 and δ2(ǫ) > 0 such that

|x(0) − x∗| < δ1(ǫ) and ‖d(·)‖2 < δ2(ǫ) (2)

implies
‖x(t) − x∗‖∞ = sup

t≥0
|x(t) − x∗| < ǫ (3)

for all N ≥ 1.

Note that in the literature implicitly or explicitly different def-
initions for string stability are known. For instance it is shown
in Seiler et al. [2004], Barooah and Hespanha [2005] that a
bidirectional vehicle string with nearest neighbour communica-
tion only and tight spacing policy cannot be string stable. The
definition used there is that the L2 norm of x(t) − x∗ is bounded
independently of N. In contrast, the L∞ norm is used in this
work.

2.3 The Uncontrolled System

In this section we briefly review how the uncontrolled vehicle
string (described by (1)) can be written as a port-Hamiltonian
system, see e.g. Ortega and Romero [2012]. This will facilitate
the design of control algorithms and the proof of stability and
string stability later.

Since the explicit control objective is to obtain zero position
errors / displacements between the vehicles (and therefore an
implicit control objective is for each vehicle to drive with
velocity v0), we choose the local displacements ∆i = qi−1 − qi
and the momenta pi = mivi as the system states. Note that
∆1 = q0−q1 where the position q0 is the product of the constant
velocity reference v0 and time. Using (1) this yields

∆̇i = q̇i−1 − q̇i = m−1
i−1 pi−1 − m−1

i pi. (4)

Thus, with (1) and (4) the system dynamics can be written as
[

ṗ
∆̇

]

=

[

0 S T

−S 0

]

∇H(p,∆) +

[

F
0

]

+

[

d
e1v0

]

, (5)

where ∆,p ∈ RN are the displacement and momentum vectors,
i.e. ∆ = col(∆1, . . . ,∆N), p = col(p1, . . . ,pN), the control force
vector is F = col(F1, . . . ,FN), the function H is given by
H(p,∆) = 1

2 pTM−1 p, the matrix M ∈ RN×N is the constant and
positive definite inertia matrix M = diag(m1, . . . ,mN) and the
matrix S has the bidiagonal form

S =























































1 0 · · · · · · 0

−1 1
. . .

..

.

0 −1
. . .
. . .
..
.

..

.
. . .
. . . 1 0

0 · · · 0 −1 1























































. (6)

3. CONTROLLER DESIGN FOR VEHICLE STRINGS
USING PORT-HAMILTONIAN SYSTEM THEORY

We now give a brief review of key results (see for example
Knorn et al. [2013]) using Port-Hamiltonian theory for vehicle
platoon results. This is an essential precursor to our later results
on the effects of measurement errors in such systems.

3.1 Local Control

The local control is motivated by results from mechanical
engineering. When the control actions between the vehicles is
chosen such that they can be understood as virtual springs and
dampers between the vehicles the overall system can be written
as a port-Hamiltonian system.

The control forces consist of the “spring force” Fs
i , that de-

pends linearly on the position errors ∆i, the “damper force”
Fr

i , that depends linearly on the velocity errors between two
neighbouring vehicles, and the “drag force” Fd

i describing a
virtual friction of vehicle i towards the ground:

Fi =Fs
i − Fs

i+1 − Fd
i + Fr

i − Fr
i+1

=c−1
i ∆i − c−1

i+1∆i+1 − bim
−1
i pi

+Ri(m−1
i−1 pi−1 − m−1

i pi) − Ri+1(m−1
i pi − m−1

i+1 pi+1)
∀i = 1, · · · ,N − 1, (7)

FN =Fs
N + Fr

N − Fd
N

=c−1
N ∆N + RN(m−1

N−1 pN−1 − m−1
N pN) − bNm−1

N pN (8)

such that we can write

F = − (B + R)M−1 p + e1R1v0 + S TC−1∆ (9)

with the constant matrices,

R =























































R1 + R2 −R2 0 · · · 0

−R2 R2 + R3 −R3
. . .

...

0 −R3
. . .

. . . 0
...

. . .
. . . RN−1 + RN −RN

0 · · · 0 −RN RN























































, (10)

B = diag(b1, . . . ,bN) and C = diag(c1, . . . ,cN), where the entries
of matrices B, R and C are design parameters of the controller
and 0 < Ri,bi,ci < ∞ for all i.

It has been shown in [Knorn et al., 2013, Lemma 1] that given
d = 0 the equilibrium (M1v0,CS −TB1v0) of system (5) in closed
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loop with the controller (7)-(8) is asymptotically stable. (The
proof can be found in Appendix A at the end of this paper.)
However, this implies that the displacements ∆, for vehicles
towards the front of the string, grow with the string size N since

S −T =







































1 1 . . . 1

0 1
. . .
...

...
. . .
. . . 1

0 . . . 0 1







































(11)

and hence ∆∗i = ci
∑N

k=i bkv0. Thus, the system converges to a
undesirable equilibrium ∆∗ , 0 if any bi > 0. This problem
could be avoided by choosing bi = 0, however, in doing
so, l2 string stability with respect to disturbances cannot be
guaranteed. In the next subsection suitable integral action will
be added to the local control to ensure l2 string stability with
respect to disturbances of the desired equilibrium.

3.2 Integral Action

To avoid undesirable growth of the equilibrium states, integral
action is added to the local control algorithm. Thus, the com-
plete control is described by

F = − (B + R)M−1 p + e1R1v0 + S TC−1∆ + FIA (12)

FIA =MKS TC−1∆ − (B + R)Kz3 (13)

ż3 = − S TC−1∆. (14)

where K ∈ R
N×N is a diagonal positive matrix K =

diag(k1, . . . ,kN). Assume further that the disturbance d include
a constant component dc and a time-varying disturbance dd(t)
such that d = dc + dd(t) and there exists a constant D < ∞
satisfying ‖dd(·)‖2 ≤ D. Then, it can be shown, [Knorn et al.,
2013, Lemma 3], that

(1) for dd(t) = 0 the desired equilibrium

(p∗,∆∗,z∗3) =
(

M1v0,0,α
)

(15)

with α = K−1(B + R)−1 (

dc − B1v0
)

is globally asymptot-
ically stable (despite the presence of constant unknown
disturbances dc), and

(2) the equilibrium (15) is l2 string stable for disturbances
‖dd(·)‖2 satisfying ‖dd(·)‖2 < ∞.

An outline of a proof can be found in Appendix B at the end of
this paper.

4. MEASUREMENTS AND MEASUREMENT OFFSETS

4.1 Background on Measurement Offsets

The previous section described how a vehicle string system
with exact measurements can be controlled using local control
and integral action. Using integral action yields an l2 string
stable system for accurate measurements.

However, even small measurement offsets at each vehicle can
accumulate and lead to an undesired equilibrium. As will be
shown below in Section 4.2, l2 string stability of the desired
equilibrium in the presence of measurement offsets and the
control structure above cannot be guaranteed.

Assume that the distances between the vehicles ∆ are measured
locally by each vehicle using radar sensors. The distance be-
tween vehicle i and its predecessor, ∆i is measured by both
vehicle i and the predecessor, that is vehicle i − 1. Assume

further that both sensors operate independently of each other.
Thus, it is possible for both sensors to have a constant distinct
offset. Hence the overall measurement of the front distance,
∆m,f,i, and the back distance , ∆m,b,i, are described by

∆m,f,i = ∆i + ∆̂f,i and ∆m,b,i = ∆i + ∆̂b,i (16)

with |∆̂f,i| ≤ δ and |∆̂b,i| ≤ δ for all i where δ < ∞ is the upper
bound on the measurement offsets. The overall measurement
vectors thus are

∆m,f = ∆ + ∆̂f and ∆m,b = ∆ + ∆̂b. (17)

where ∆̂f =
[

∆̂f,1 ∆̂f,2 . . . ∆̂f,N

]T
and ∆̂b =

[

0 ∆̂b,2 . . . ∆̂b,N

]T
.

Note that apart from the lead vehicle, no agent measures the
distance between the first vehicle and the reference trajectory,
∆1. Thus, ∆̂b,1 = 0.

An alternative measurement and communication topology (i.e.
“distance measurement consensus”), which we consider later in
Section 4.3, allows basic communication between neighbouring
vehicles. If both vehicles then choose the algebraic mean of
both values instead of their local measurement, the local mea-
surement reduces to ∆m,i = ∆i + ∆̃i with |∆̃i| ≤ δ for all i. Thus,
the overall measurement vector is

∆m = ∆ + ∆̃. (18)

4.2 Effect of Measurement Offsets

Results in Subsection 3.2 revealed how string stability / scala-
bility of the system can be guaranteed when using appropriate
integral action control laws. However, if exact measurements
are not available (but unknown, constant measurement offsets
are present), the system diverges to a different equilibrium
point.
Lemma 2. Consider a string of N vehicles with local control
including integral action control given in (12)-(14) as discussed
in Section 3. Assume the first vehicle is following a reference
trajectory with velocity v0. If the system is subject to unknown
constant disturbances dc and unknown measurement offset as in
(17), then the stable equilibrium of the system is

(

p∗,∆∗,z∗3
)

=
(

M1v0,−CS −T∆̂,α
)

(19)

with
∆̂ = C−1∆̂f + (S T − I)C−1∆̂b (20)

and
α = K−1(B + R)−1 (

dc − B1v0
)

. (21)

(The proof can be found in Appendix C.) Note that the constant
disturbances dc do not influence the equilibrium of ∆. However,
∆∗ depends on the constant measurement offsets. Namely,

∆∗ = −CS −T∆̂ = −CS −T
(

C−1∆̂f + (S T − I)C−1∆̂b

)

(22)

implies

∆∗i =
N

∑

k=i+1

ci

ck
∆̂b,k −

N
∑

k=i

ci

ck
∆̂f,k. (23)

Thus, even though the system is stable (and by definition also
l2 string stable) the resulting equilibrium is highly undesirable
as it involves severe safety risks: Note that, the measurement
offsets might accumulate at the beginning of the string. The
distance between the first and the second vehicle in the string
can grow without bound. If the forward measurement offset on
all vehicles is consistently greater than the backwards mea-
surement offset, the distance between the first two vehicles gets
smaller when the string size increases. Thus, for an increasing
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string length the cars at the beginning of the string crash. In case
the forward measurement offset on all vehicles is consistently
smaller than the backwards measurement offset, the displace-
ment errors at the beginning of the string grow without bound
when N increases. Although this case does not result in pile up
crashes, this effect is also undesirable since it corresponds to
string break up.

In some cases, one might assume that on average the sum of
forward and backwards measurement offsets will be close to
zero even for a long string. However, even if this is true for
the expected value of the steady state error, the variance of the
steady state error will still grow without bound as N increases.
To see this, assume all forward and backwards measurement
offsets are independent, have an expected value of 0 and a
variance of Var

(

∆̂b,i

)

= Var
(

∆̂f,i

)

= σ2 < ∞ for all i. Further
assume that the measurement offsets are uncorrelated to each
other. Then

Var
(

∆∗i
)

=Var















N
∑

k=i+1

ci

ck
∆̂b,k















+ Var















N
∑

k=i

ci

ck
∆̂f,k















=

N
∑

k=i+1

(

ci

ck

)2

Var
(

∆̂b,k

)

+

N
∑

k=i

(

ci

ck

)2

Var
(

∆̂f,k

)

=σ2















2
N

∑

k=i+1

(

ci

ck

)2

+ 1















. (24)

Note that for i = 1 and ck = c for all k, Var
(

∆∗1

)

grows linearly
with N. This effect could be reduced by choosing decreasingly
stiff springs between the vehicles towards the end of the string.
However, to avoid variance growth with string length, the
compliance coefficients have to decrease drastically with the
position within the string. This is clearly undesirable from a
practical point of view and would lead to other complications
such as much slower settling times towards the end of the string.
Also, in this setting global knowledge is required since every
agent (e.g. vehicle) needs to know its position within the string.

Unfortunately neither the correct distance between neighboring
vehicles nor the measurement offset can be observed through
y = ∆ + ∆̂. To see that consider the system





















ṗ
∆̇
˙̂
∆





















=



















0 0 0
−S M−1 0 0

0 0 0





































p
∆

∆̂



















+

















I
0
0

















u, y =
[

0 I I
]



















p
∆

∆̂



















. (25)

The observability matrix, O =
[

0 I I;−S M−1 0 0; 0 0 0
]

,
clearly does not have full rank. While building an observer
might help to filter measurement noise it cannot avoid con-
vergence to the undesirable equilibrium due to accumulated
measurement offsets.

4.3 Distance measurement consensus

In the following lemma we will show that l2 string stabil-
ity of a bounded equilibrium can be guaranteed if all vehi-
cles reach “distance measurement consensus” with their direct
neighbours.
Lemma 3. Consider a string of N vehicles with local control
including integral action given in equations (12)-(14) as dis-
cussed in Section 3. Assume the first vehicle is following a
reference trajectory with velocity v0. If the system is subject to
unknown constant disturbances dc and unknown measurement
of the form described in (18) then the equilibrium of the system

N = 10

D
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ta
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e
∆

i(
t)

Time t
0 1000 2000 3000 4000 5000

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 1. Scenario 1: ∆i for i = 1 (red), 2 (orange), · · · , 10
(purple)

(

p∗,∆∗,z∗3
)

=
(

M1v0,−∆̃,α
)

(26)

with
α = K−1(B + R)−1 (

dc − B1v0
)

. (27)
is asymptotically stable. Further, the equilibrium is l2 string sta-
ble for any additional time-varying disturbance dd(t) satisfying
‖dd(·)‖2 < ∞.

The proof can be found in Appendix D.

Hence, l2 string stability of a bounded equilibrium can be guar-
anteed by establishing a simple consensus algorithm between
neighbouring vehicles. Since the measurement offsets after
agreeing on the arithmetic mean for both vehicles is equivalent,
it does not accumulate towards the beginning of the string.
The disadvantage here is, however, that the boundedness of the
equilibrium crucially depends on inter vehicle communication.

5. EXAMPLE

Two homogeneous bidirectional vehicle strings have been sim-
ulated. The first is of length N = 10 while the second contains
N = 100 vehicles. In both cases the first vehicle is required
to follow a given trajectory with q0 = v0t and all vehicles start
with initial values being zero both for the velocity v and the dis-
placements ∆. The measurement of ∆ is subject to randomised
(values vary between 0 and 1) measurement offsets both in
the forward and the backwards measurements. Two random
vectors of length N = 100 have been generated to simulate the
measurement offsets. For the shorter platoon, only the first 10
entries of the vectors are used.

In the first scenario the measurement offset vectors both are
uniformly distributed on [0,1]. Thus, on average the difference
between the forward and the backwards measurement offset
is zero. While it seems in Fig. 1 that measurement offsets
are accumulating in steady state, close examination of Fig. 2
reveals that this is not the case as the string length increases.
However, the span of the steady state displacements grows from
approximately 0 − 2m for N = 10 to −3 − 1.5m for N = 100.
This could have been expected as the variance in this case grows
with the string length N.

In Scenario 2 an additional offset of 0.1m is added to each
forward measurement error. As expected in this case (with
unbalanced forward and backward measurement offsets) the
steady state deviations of delta at the beginning of the string
increase with the string length N, Fig. 3.
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Figure 2. Scenario 1: ∆i for i = 1 (red), 2 (orange), · · · , 100
(purple)
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Figure 3. Scenario 2: ∆i for i = 1 (red), 2 (orange), · · · , 100
(purple)

In the third scenario it is assumed that neighbouring vehicles
communicate and exchange their deviation measurement with
each other. Then the average value of both measurements is
used in both vehicles. The effect of this simple additional
algorithm can be seen in Fig. 4. In this case, the measurement
offsets no longer accumulate at the beginning of the string,
and in addition, the variance of the steady state deviations
does not increase. This can easily be explained realising that
with this algorithm the deviation between both vehicles will
be the algebraic mean of two bounded uniformly distributed
values. Thus, the resulting deviation in steady state will also be
bounded independently of the string length N.

6. CONCLUSIONS

This paper studies the effect of unknown, constant measurement
offsets on scalability of bidirectional vehicle platoons. It is
shown that under some assumptions measurement offsets might
accumulate at the beginning of the string. This might lead
to undesirable equilibrium state as the distances between the
vehicles can grow without bound even though the measurement
errors are assumed to be individually bounded.

It is shown that in this case it is sufficient to implement a
simplistic consensus algorithm to guarantee a bounded equi-
librium. In case neighbouring vehicles agree on a measurement
(instead of each vehicle using their individual measurement),
offsets do not affect the behaviour of other vehicles in the string.
Thus, measurement offsets do not accumulate at any part of

N = 100

D
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ta
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∆
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t)

Time t
0 1000 2000 3000 4000 5000

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4. Scenario 3: ∆i for i = 1 (red), 2 (orange), · · · , 100
(purple)

the string. Hence, scalability of the system can be guaranteed
despite constant unknown measurement offsets.

In future work, we intent to extend the presented results by
investigating the effect of non static measurement error, com-
munication loss and delay between vehicles.

Appendix A. PROOF FOR STABILITY UNDER LOCAL
CONTROL

From (9) and (5) the dynamic equations for the closed loop have
the form

ṗ = − (R + B)M−1(p − M1v0) + S TC−1(∆ −CS −TB1v0),
(A.1)

∆̇ = − S M−1(p − M1v0). (A.2)

Thus the closed loop has the port Hamiltonian form
[

ṗ
∆̇

]

=

[

−(B + R) S T

−S 0

]

∇Hcl(p,∆), (A.3)

with the closed-loop Hamiltonian function

Hcl(p,∆) =
1
2

(p − M1v0)TM−1(p − M1v0)

+
1
2

(

∆ −CS −TB1v0

)T
C−1

(

∆ − CS −TB1v0

)

. (A.4)

Using Hcl(p,∆) as Lyapunov function, and computing the time
derivative of Hcl(p,∆) yields

Ḣcl(p,∆) = ∇THcl

[

−(B + R) S T

−S 0

]

∇Hcl ≤ 0 (A.5)

since (B+R) = (B+R)T > 0. The biggest invariant set included
in S =

{

(p,∆)|Ḣcl(p,∆) = 0
}

is (p∗,∆∗) = (M1v0,CS −TB1v0).
Thus, by LaSalle’s Invariance Principle (e.g. [Khalil, 2001,
Theorem 4.4]) it can be shown that the system is asymptotically
stable and the equilibrium reached is (p∗,∆∗).

Appendix B. PROOF OUTLINE FOR STABILITY AND L2
STRING STABILITY WITH INTEGRAL ACTION

B.1 Asymptotic Stability

To show that global asymptotic stability first define the follow-
ing change of coordinates

z1 =p − M1v0 + MK(z3 − α), (B.1)
z2 =∆. (B.2)
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Combining (A.1), (13) and (14) and using (A.2) yields

ż1 = − (B + R)M−1z1 + S TC−1z2,

ż2 = − S M−1z1 + S K(z3 − α).

Thus, the closed loop dynamics have the port Hamiltonian form
















ż1
ż2
ż3

















=



















−(B + R) S T 0
−S 0 S
0 −S T 0



















∇Hz(z) (B.3)

with the Hamiltonian function

Hz(z) =
1
2

zT
1 M−1z1 +

1
2

zT
2 C−1z2 +

1
2

(z3 − α)TK(z3 − α). (B.4)

Using Hz(z) as Lyapunov function, and computing the time
derivative of Hz(z) yields

Ḣz(z) = −∇THz1 (z)(B + R)∇Hz1(z) ≤ 0 (B.5)

since (B+R) = (B+R)T > 0. The biggest invariant set included
in S =

{

z|Ḣz(z) = 0
}

is
(

z∗1,z
∗
2,z
∗
3

)

= (0,0,α). Thus, by LaSalle’s
Invariance Principle (see [Khalil, 2001, Theorem 4.4]) it can be
shown that the equilibrium

(

z∗1,z
∗
2,z
∗
3

)

is asymptotically stable.
This implies that the equilibrium in the original coordinates is
(

p∗,∆∗,z∗3
)

=
(

M1v0,0,α
)

.

B.2 l2 String Stability

To show that the system is l2 string stable, choose the Hamil-
tonian function (B.4). Thus, in presence of dynamical distur-
bances dd(t) the closed loop dynamics have the port Hamilto-
nian form
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ż2
ż3

















=



















−(B + R) S T 0
−S 0 S
0 −S T 0



















∇Hz(z) +

















dd(t)
0
0

















. (B.6)

Taking the derivative of Hz it can be shown that Ḣz(z) ≤
1

2λmin(B+R) |dd(t)|2. Hence, it follows that (details can be found

in Knorn et al. [2013]) Hz(z(t)) ≤ (mini(mi))−1|z1(0)|2 +
(mini(ci))−1|z2(0)|2 + maxi ki|z3 − α|2 + (2 mini(bi))−1‖dd(·)‖2.
Since the mass mi, the compliance ci, the drag coefficient bi
and the integral action control parameter ki for each vehicle are
positive the norm of the states z is bounded for all N if |z(0)|
and ‖d(·)‖2 do not increase with N. Thus, the system is l2 string
stable.

Appendix C. PROOF OF LEMMA 2

As the measurement of ∆ is subject to unknown measurement
offset, equations (12)-(14) change to

F = − (B + R)M−1 p + e1R1v0 + S TC−1
(

∆ +CS −T∆̂
)

+ FIA

FIA =MKS TC−1
(

∆ +CS −T∆̂
)

− (B + R)Kz3

ż3 = − S TC−1
(

∆ +CS −T∆̂
)

.

Choose the following change of coordinates z1 = p − M1v0 +

MK(z3 − α) and z2 = ∆ + CS −T∆̂. Using the fact that for the
undisturbed system ṗ = F and with (A.2), it follows that, ż1
yields

ż1 = − (B + R)M−1 (

p − M1v0 + MK(z3 − α)
)

+S TC−1
(

∆ +CS −T∆̂
)

= − (B + R)M−1z1 + S TC−1z2 (C.1)

ż2 = − S M−1 (

p − M1v0 + MK (z3 − α)
)

+ S K (z3 − α)

= − S M−1z1 + S K (z3 − α) (C.2)

Thus, the closed loop dynamics have the port Hamiltonian form
(B.3) - (B.4). Using Hz(z) as Lyapunov function, and computing
its time derivative yields (B.5) since (B+R) > 0. The biggest in-
variant set included in S =

{

z|Ḣz(z) = 0
}

is
(

z∗1,z
∗
2,z
∗
3

)

= (0,0,α).
Thus, by LaSalle’s Invariance Principle (see [Khalil, 2001, The-
orem 4.4]) it can be shown that the equilibrium

(

z∗1,z
∗
2,z
∗
3

)

(and

in original coordinates is
(

p∗,∆∗,z∗3
)

=
(

M1v0, −CS −T∆̂,α
)

) is
asymptotically stable.

Appendix D. PROOF OF LEMMA 3

As the measurement of ∆ is subject to unknown measurement
offset, equations (12)-(14) change to

F = − (B + R)M−1 p + e1R1v0 + S TC−1(∆ + ∆̃) + FIA (D.1)

FIA =MKS TC−1
(

∆ + ∆̃
)

− (B + R)Kz3 (D.2)

ż3 = − S TC−1
(

∆ + ∆̃
)

. (D.3)

After the following change of coordinates z1 = p − M1v0 +

MK(z3−α) and z2 = ∆+∆̃, very similar steps as in Section C can
be followed to show that the equilibrium

(

z∗1,z
∗
2,z
∗
3

)

= (0,0,α) is
asymptotically stable. This implies that the equilibrium in the
original coordinates is

(

p∗,∆∗,z∗3
)

=
(

M1v0, − ∆̃,α
)

. Note that
all measurement errors are bound by some δ. Thus, although the
system converges to an undesired equilibrium, the equilibrium
states do not diverge. Further, similar steps as above can be
followed to show that the equilibrium is l2 string stable.
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