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Abstract: As continuous industrial processes often operate around a desirable region of
profitability, the measurement series for most process variables act as stationary series. However,
there are inevitably some observed time series which are nonstationary caused by unexpected
disturbances. Some series grow slowly for a long time with the equipment aging, and others
appear to wander around as if they have no fixed population mean. For these series, traditional
dynamic PCA or other statistical modeling methods are not applicable because the statistical
properties of variables are time variant. In this paper, nonstationarity test is adopted to
distinguish nonstationary series from stationary series. After that, cointegration analysis is
used to describe the stochastic common trends and equilibrium error, which can be used to
construct monitoring indices. Case study on Tennessee Eastman process shows that the proposed
nonstationary process monitoring can efficiently detect faults in the nonstationary dynamic
process.

Keywords: dynamic processes, nonstationary multivariate series, nonstationarity test,
cointegration analysis, unit root test

1. INTRODUCTION

Principal component analysis and its variants are widely
used in the area of statistical process monitoring for in-
dustrial processes(Qin, 2012). Generally speaking, when
an industrial process operates under normal situation, the
measured variables approximately follow a multivariate
stationary stochastic process. If the sampling interval is
long and the samples seem to be time independent, static
PCA model performs well in describing cross correlations
among measurements. Otherwise, if the auto-correlation
between variables are evident, dynamic models are pre-
ferred to model the process. Different from static PCA
models, dynamic models capture not only cross correla-
tions between variables but also serial correlations among
measurement series.

One of the most widely used dynamic model was proposed
by Ku et al. with a lagged version of PCA to process
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multivariate variables (Ku et al., 1995), called dynamic
PCA model (DPCA). DPCA conducts the singular value
decomposition on an augmented matrix of time lagged
process variables. Li and Qin investigated the relation-
ship between dynamic PCA and a subspace identification
method (SIM) and proposed a consistent dynamic PCA
algorithm, called indirect dynamic PCA (IDPCA) (Li and
Qin, 2001). Ding et al. combined SIM and model based
fault detection technologies to propose another fault detec-
tion scheme (Ding et al., 2009). Using the linear dynamic
state space description of processes, the residual generator
of the parity space method after identifying a subspace
model is equivalent to indirect dynamic PCA modeling
for normal data. Negiz and Cinar used a canonical variate
(CV) state space model to describe dynamic processes,
which is equivalent to a vector autoregressive moving-
average time-series model (VARMA) (Negiz and Çinar,
1997). In order to reveal the latent structure hidden in the
multivariate time series, a dynamic latent variable model
was proposed by Li et al. similar to the concept of dynamic
factor analysis (Li et al., 2011). In their model, multi-
variate time series share several common autocorrelated
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stochastic trends, while the remaining subspace consists of
independently identically distributed series and modeling
residuals.

However, the aforementioned approaches all assume that
the measured series possesses stationary (i.e. time-invariant)
means and variances, rather than nonstationary cases. In
practice, some observed series contain a slow-varying trend
due to the equipment aging, and other observed series act
like a random walk under the influence of various distur-
bances. In this case, traditional PCA or DPCA models
are inadequate to describe relations among variables, and
a new model framework is desired to depict the process
structure. Nonstationarity test is a tool to test whether a
time series is stationary or not, which is studied frequently
in the econometrics (Phillips and Xiao, 1998). If two or
more time series are nonstationary, but a linear combi-
nation of these time series is stationary, these series are
cointegrated (Banerjee and Hendry, 1992). This paper will
apply nonstationarity test technology to identify nonsta-
tionary time series and use cointegration representation to
describe latent structures for nonstationary multivariate
processes, and further propose the statistical indices for
process monitoring.

The rest of the paper is organized as follows. In Section 2,
several nonstationarity tests are reviewed and compared to
identify whether a time series is stationary. Then, the coin-
tegration analysis is adopted to describe the nonstationary
multivariate time series in the Section 3. Following that,
fault detection indices are proposed in Section 4 based on
the proposed model. In Section 5, we use a case study on
Tennessee Eastman process to illustrate the effectiveness
of the method. Finally, conclusions are given in the last
section.

2. NONSTATIONARITY TEST FOR UNIVARIATE
TIME SERIES

2.1 Unit root test

Unit root tests are a popular tool to test whether a time
series is unit root nonstationary. A unit root process is a
data-generating process whose first difference is stationary.
In other words, the simplest unit root process xk has the
following form

xk = xk−1 + ek. (1)

where ek is a stationary series. A unit root test attempts
to determine whether a given time series is consistent with
a unit root process. Unit root test often uses the following
regression model

xk = µ+ ϕxk−1 +

p∑
i=1

αi△xk−i + ϵk (2)

where µ is the intercept, △ is the difference operator
such that △xk = xk − xk−1 and ϵk is the independent
identical distribution (iid) innovation process with zero
mean. The null hypothesis of unit root test is ϕ = 1 in
(2), which indicates the process is unit root nonstationary.

The alternative hypothesis is |ϕ| < 1, which indicates the

process is trend stationary. Define ϕ̂ as the ordinary least
squares estimator of ϕ, i.e.

[µ̂, ϕ̂, α̂1, · · · , α̂p]
T = (ΨTΨ)−1ΨTX (3)

where

Ψ =


1 x0 △x0 . . . △x1−p

1 x1 △x1 . . . △x2−p

...
...

...
. . .

...
1 xn−1 △xn−1 . . . △xn−p

 (4)

and X = [x1, x2, . . . , xn]
T , n is the sample length of

the regression. Under the null hypothesis of ϕ = 1,
according to the functional central limit theorem, the limit
distribution of n(ϕ̂ − 1) converges in distribution to the
following function with n → ∞ (Shumway and Stoffer,
2011):

n(ϕ̂− 1)
d−→

σ[W (1)2 − 1− 2W (1)
∫ 1

0
W (t)dt]

2ω[
∫ 1

0
W 2(t)dt− [

∫ 1

0
W (t)dt]2]

(5)

whereW (t) is standard Brownian motion in [0, 1]. Further,
σ, ω are two parameters and can be estimated consistently
as σ̂2 =

∑
ϵ̂2k/n and ω̂2 = σ̂2/(1 −

∑
α̂j)

2, respectively.
Because the limiting distribution (5) does not have a closed
form, quantities of the distribution must be computed by
numerical approximation or by simulation. The lower tail
critical value of the distribution can be found in a table
with a given significance. If the test statistic is greater than
the critical value, the null hypothesis is accepted.

If p = 0 is selected, σ = ω in distribution (5) and the test

statistic n(ϕ̂−1) is well known as the unit root or Dickey-
Fuller (DF) statistic. If p > 0, the DF test is extended
to the so-called augmented Dickey-Fuller test (ADF). In
ADF test, the choice of p is crucial and should be large
enough to capture the essential correlation structure in
the original series. According to the work by Said and
Dickey (1984), the lag length p is enough to be n1/3. An
alternative test is the Phillips-Perron (PP) test, which
differs from ADF mainly in how they deal with serial
correlation and heteroskedasticity in the errors (Shumway
and Stoffer, 2011). ADF and PP tests are two commonly
used unit root tests, which test the coefficients estimation
of the regression model (2).

2.2 Stationarity test

While the null hypothesis of unit root test is nonstationar-
ity, stationarity tests with the Largrange multiplier (LM)
principle can test the null hypothesis of trend stationarity.
Kwiatkowski et al. proposed a well known test to identify
a random walk from a stationary series, which is so called
KPSS test (Kwiatkowski et al., 1992). It assumes that
the target series can be decomposed into the sum of a
deterministic trend, a random walk, and a stationary error:{

xk = µ+ rk + ek.
rk = rk−1 + uk

(6)

where ek is stationary series, rk is a standard random
walk,uk is iid(0, σ2

u). The model is known as the component
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representation. Let ek be the residuals from the regression
of xk on the deterministic trend as follows:

êk = xk − µ̂ (7)

Define σ̂2
e =

∑
ê2k/n as the estimate of the error variance

from the regression, and Sk =
∑k

i=1 êi as the partial sum
process of the residuals, then the LM statistic can be
constructed as follows (Phillips and Xiao, 1998)

LM =

∑
S2
k/n

2

σ̂2
ϵ

(8)

Under the null hypothesis of stationarity and ek is an
iid process, the LM statistic converges to the following
function in distribution

LM
d−→

∫ 1

0

V 2(t)dt (9)

where V (t) = W (t) − tW (1) is a standard Brownian
bridge, and W (t) is a Brownian motion. When there is
a serial dependence in ek, the statistic can be modified by
replacing the variance estimate σ̂2

ϵ in (8) with the long run
variance s2(l) (Kwiatkowski et al., 1992):

s2(l) = σ̂2
e +

2

n

l∑
s=1

[(1− s

l + 1
)

n∑
k=s+1

êkêk−s] (10)

The parameter l can be chosen as n1/2. Given a significance
level, the critical values can be calculated by numerical
simulation or found from a table. The KPSS test is a
upper tail test, thus when the test statistic (8) is below
the critical value, the null hypothesis is accepted.

There are also some other efficient tests for nonstation-
arity, such as the point optimal test and the local best
invariant test, which consider the case that ϕ in model (2)
is close to 1.

3. CO-INTEGRATION ANALYSIS FOR
MULTIVARIATE INTEGRATED SERIES

If the observed series are found to be unit root nonstation-
ary, the population variance of series is not a constant,
which makes the monitoring with traditional statistical
methods inadequate. However, in the econometrics area,
a phenomenon called co-integration has been observed
frequently. When two or more observed series are nonsta-
tionary but a linear combination of these series is station-
ary, these time series are called cointegrated. Engle and
Granger had initiated a discussion on the representation,
estimation and testing for cointegrated series and intro-
duced the following concepts (Engle and Granger, 1987).

Definition 1. If a series xk has a stationary, invertible, au-
toregressive moving average (ARMA) representation after
differencing d times with no deterministic component, it
is called integrated of order d, denoted as xk ∼ I(d).

For simplicity, only d = 0, 1 will be discussed in the paper.
The results can be generalized to other cases. According
to the definition, xk ∼ I(1) is a unit root nonstationary,
and xk ∼ I(0) is stationary.

Definition 2. For a vector series xk, if all components of
xk are I(d), and there exists a nonzero vector β so that

zk = βTxk ∼ I(d − b), b > 0, xk is called cointegrated of
order d, b, denoted as xk ∼ CI(d, b). and β is called the
cointegrating vector.

For the bivariate case, there is at most one cointegration
relation in xk, which was solved with a residual based
procedures by Engle and Granger (1987). In the case that
more than one relation may exist, say r cointegration
relations, the cointegrated vector is extended to a coin-
tegration matrix B with rank r, and zk is a vector series
with r dimension. There are two tasks in the cointegration
analysis: i) testing r, and ii) identifying B. There are sev-
eral representations for cointegrated processes, including
vector error correction and common trends model.

3.1 vector error correction and Johansen test

Suppose that a multivariate series is generated by a vector
autoregressive model of order p with Gaussian errors

xk = µ+

p∑
i=1

Aixk−i + ϵk (11)

where xk ∈ Rm is a m-dimensional series, Ai ∈ Rm×m

is the coefficient matrix, and ϵk is a m-dimensional white
noise process distributed as N(0,Σϵ). Here, we consider
that xk ∼ I(1), and △xk are stationary. Define

Π =

p∑
i=1

Ai − Im (12)

then Πxk ∼ I(0) and rank(Π) = r is the number of lin-
early independent cointegration relations (Reimers, 1992).
Decompose Π into two full-ranked matrices Π = ABT ,
where A ∈ Rm×r is the loading matrix and B ∈ Rm×r

is the cointegration matrix. Note that the decomposition
is not unique. Define Bi = −

∑p
j=i+1 Aj , then the model

(11) can be reparameterized as a vector error-correction
(VEC) model as follows (Reimers, 1992)

△xk = µ+ABTxk−1 +

p−1∑
i=1

Bi△xk−i + ϵk (13)

Remark 1. On one hand, if the goal of a VAR analysis is
to determine relationships among the original variables,
differencing loses information and may lead to a model
misspecification, since long-term information is reflected in
the levels. On the other hand, if the goal is to simulate an
underlying data-generating process, integrated levels data
can cause a number of problems. Fortunately, the VEC
model provides intermediate options, between differences
and levels, by mixing them together with the cointegrating
relations. Since all terms of the VEC model are stationary,
problems with unit roots are eliminated.

Johansen proposed a maximum likelihood procedure to es-
timate the parameters in (13), and formulated a likelihood
ratio test of the hypothesis H0 : r = r0 against H1 : r > r0
based on the statistic (Johansen, 1995):

−2 lnQ = −n
m∑

i=r0+1

ln(1− λ̂i) (14)
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where r0 is the given value of r to be tested, λ̂ is the m−
r0 smallest eigenvalues obtained by solving an eigenvalue
equation:

|λSpp − Sp0S
−1
00 S0p| = 0 (15)

where

Sij =
1

n
RiRj , (i, j = 0, p)

R0 = △X −△XY T (Y Y T )−1Y

Rp = X−p −X−pY
T (Y Y T )−1Y

△X = (△x1, . . . ,△xn)
Xp = (x−p+1, . . . , xn−p)
Y = (y0, . . . , yn−1)

yk = (1,△xT
k−1, . . . ,△xT

k−p+1)
T

The asymptotic distribution of the statistic is nonstandard
and depends on the restriction of the deterministic term
if existing, which can be found in Turner (2009). The
lag parameters p can be jointly estimated with r0 using
an order criterion (Reimers, 1992). Once the rank r and
lags p are determined, the cointegration matrix B can be
estimated by an ML procedure or an LS method from (13).

3.2 common trend representation and Stock-Watson test

Another representation for cointegrated variables is known
as common-trend representation or dynamic factor model:{

xk = Γτk + ek
τk = τk−1 + uk

(16)

where ek is a stationary multivariate series, Γ ∈ Rm×(m−r)

is the loading matrix, τk ∈ Rm−r is a (m− r)-dimensional
random walk process, uk is an iid process. Stock and
Watson (1988) proposed an estimation procedure of the
common trend representation (16) and test for the number
of the random walks. First of all, they used principal
component analysis to estimate the τk with m−r principal
components. Then the autoregressive coefficient matrix Φ
in the form of τk = Φτk−1 + ϵk was estimated by least
squares regressor. At last, the following statistic is used to
test the hypothesis of H0 : r = r0 against H1 : r > r0 :

qm−r = n(real(λ̂min)− 1) (17)

where λ̂min is the smallest eigenvalue of Φ, and real(·)
means the real part of a number. Under theH0 hypothesis,
the estimated minimum eigenvalue should be insignifi-
cantly different from one. The asymptotic distribution of
qm−r is nonstandard and depends on r (Stock and Watson,
1988).

4. FAULT DETECTION BASED ON
COINTEGRATION REPRESENTATION

In the study on economics, nonstationary test and cointe-
gration analysis are directly performed on economical data
collected in the long term. Here, these kinds of modeling
are used in the monitoring of industrial processes, which
should be adapted for the special use. As is mentioned,
cointegration model can describe nonstationary variables
with strong correlations, which are called cointegrated
variables. However, it is desired to construct monitoring

indices to indicate whether there is a disturbance or break
in the normal structure. Different from traditional PCA,
only equilibrium error process zk can be acquired as a sta-
tionary multivariate series, which is proper for monitoring.

However, if xk ∼ I(1), △τk ∼ I(0) is stationary, and the
difference information of common trends can also be used
for monitoring purpose. The remaining directions which
are orthogonal to col(B) contain the common stochastic
trends in xk, which can be extracted as

τk = B⊥Txk (18)

where col(B) means the space spanned by the columns of
B, and B⊥ means the full-column-rank matrix which is
orthogonal to B̂. For a new observation xk, we calculate
the zk and △τk as

zk = B̂Txk + µ̂

△τk = B⊥T (xk − xk−1)
(19)

The T 2 statistic for zk and △τk are listed in Table 1.

Table 1. Fault detection indices

Statistics Calculation Control limit

T 2
z zTΛ−1

z z
r(n2−1)
n(n−r)

Fr,n−r,α

T 2
τ △τTΛ−1

τ △τ
(m−r)(n2−1)
n(n−m+r)

Fm−r,n−m+r,α

Λz , Λτ are covariance of zk and △τk, respectively. Fa,b,α is

the critical value of F-distribution with degree a, b at the

significance α

The statistic T 2
z monitors the equilibrium relations among

nonstationary series, which is similar to SPE index in a
PCA model, while the statistic T 2

τ monitors the variations
in the nonstationary components, which is similar to T 2

index in a PCA model.

5. CASE STUDY ON TE PROCESS

In this section, the proposed method is investigated for
nonstationary variables in the Tennessee Eastman Pro-
cess (TEP). TEP was created to evaluate process control
and monitoring methods, such as PCA, PLS, and Fisher
discriminant analysis (FDA) (Chiang et al., 2000). The
process contains 12 manipulated variables and 41 mea-
sured variables. Process measurements are sampled with
an interval of 3 minutes. 19 composition measurements are
sampled with time delays that vary from six minutes to fif-
teen minutes, which are not used in this study. Therefore,
22 process measurements and 11 manipulated variables,
i.e. XMEAS(1-22) and XMV(1-11), are chosen as X.

Firstly, 480 original normal samples are chosen to test the
nonstationarity of all variables and find out the nonsta-
tionary variables. We use ADF test, PP test and KPSS test
with lags p = 2 and without linear time trend to identify
nonstationary series in TE process. The test results are
listed in Table 2, where ’0’ represents to accept the hy-
pothesis of unit root nonstationarity and ’1’ represents to
accept the hypothesis of trend stationarity. From the table,
7 variables seem to be nonstationary. However, there are
only four nonstationary series, which are plotted in Figure

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10619



0 200 400 600
64.5

65

65.5

66

66.5

sample index

x 18

0 200 400 600
200

220

240

260

sample index
x 19

0 200 400 600
335

340

345

sample index

x 20

0 200 400 600
40

45

50

55

sample index

x 31

Fig. 1. nonstationary series in TE process
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Fig. 2. Common trends τ1, τ2 and error process z1, z2

1. The results show that ADF and PP test outperform
KPSS test in unit root test for industrial process. Let
x = [x18, x19, x20, x31]

T . We then adopted the Johansen
test on xk, and had r = 2 as the test result. The cointe-
gration matrix and the intercept are estimated as

B =


−5.3796 −10.3143
−0.5358 0.2777
−0.1131 −0.5579
2.8858 0.6203

 , µ =

[
378.6013
774.9191

]

Following that, common trends τk and the error process zk
are calculated by (18) and (19), respectively and plotted
in the Fig. 2. The nonstationary tests for zk, τk are listed
in Table 3, which is consistent with the cointegration test.

There are 15 known faults in TE process (Yin et al.,
2012). Take the IDV(1) as an example. When IDV (1)
is introduced to testing data at the 160th sample, a step
change is induced in the A/C feed ratio in Stream 4.
The proposed statistics can detect the fault effectively,

Table 2. Nonstationary tests for 22 measure-
ments and 11 manipulated variables

Variable Description ADF PP KPSS

test test test

Xmeas(1) A feed (stream 1) 1 1 1

Xmeas(2) D feed (stream 2) 1 1 1

Xmeas(3) E feed (stream 3) 1 1 1

Xmeas(4) Total feed (stream 4) 1 1 1

Xmeas(5) Recycle flow (stream 8) 1 1 1

Xmeas(6) Reactor feed rate(stream

6)

1 1 1

Xmeas(7) Reactor pressure 1 1 1

Xmeas(8) Reactor level 1 1 1

Xmeas(9) Reactor temperature 1 1 1

Xmeas(10) Purge rate (stream 9) 1 1 1

Xmeas(11) separator temperature 1 1 1

Xmeas(12) separator level 1 1 1

Xmeas(13) separator pressure 1 1 1

Xmeas(14) separator underflow 1 1 1

Xmeas(15) stripper level 1 1 1

Xmeas(16) stripper pressure 1 1 1

Xmeas(17) stripper underflow 1 1 0

Xmeas(18) stripper temperature 0 0 0

Xmeas(19) stripper steam flow 0 0 0

Xmeas(20) compressor work 0 1 0

Xmeas(21) reactor cooling water out-

let temp

1 1 1

Xmeas(22) condenser cooling water

outlet temp

1 1 1

Xmv(1) D feed flow (stream 2) 1 1 1

Xmv(2) E feed flow (stream 3) 1 1 1

Xmv(3) A feed flow (stream 1) 1 1 1

Xmv(4) total feed flow (stream 4) 1 1 1

Xmv(5) compressor recycle valve 1 1 0

Xmv(6) purge valve (stream 9) 1 1 1

Xmv(7) separator pot liquid flow 1 1 1

Xmv(8) stripper liquid product

flow

1 1 1

Xmv(9) tripper steam valve 0 0 0

Xmv(10) reactor cooling water flow 1 1 1

Xmv(11) condenser cooling water

flow

1 1 0

Table 3. Nonstationary tests for common
trends and error process

series ADF test PP test KPSS test

τ1 0 0 0

τ2 0 0 0

z1 1 1 1

z2 1 1 0

as plotted in Fig. 3. From Fig. 3, it is observed that T 2
z

outperforms T 2
τ , because T

2
τ utilizes the differencing series

of original data, which loses much information.

For other stationary variables, traditional PCA or DPCA
can be applied to model and monitor the process effec-
tively. However, for these four nonstationary variables,
cointegration analysis is more efficient to process the non-
stationary series with common trends.
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Fig. 3. Fault detection result with T 2
z and T 2

τ

6. CONCLUSIONS

In this paper, the process monitoring problem for nonsta-
tionary multivariate series is addressed. As the statistical
properties of nonstationary variables vary along time, tra-
ditional multivariate statistical process monitoring tech-
niques are inadequate to deal with the modeling and
monitoring of nonstationary processes. This paper utilizes
nonstationary tests to identify the nonstationary variables
in a dynamic process, and then adopts cointegration anal-
ysis to describe the common trends among cointegrated
variables. Based on the survey of these methods and mod-
els, a new fault detection policy is established for detecting
the fault during multivariate nonstationary processes. The
proposed method is demonstrated by the case study on TE
process. The results show the effectiveness of the proposed
method. In the future, the results will be extended to the
monitoring of nonstationary processes with a deterministic
trend.
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