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Abstract: Autonomous surface vehicles are with increasing popularity being seen in various
applications where automatic control plays an important role. In this paper the problem of two-
dimensional trajectory tracking for autonomous marine surface vehicles is addressed using Model
Predictive Control (MPC). At each time step, the reference trajectories of a vessel are assumed
to be known over a finite time horizon; the MPC controller computes the optimal forces and
moment the vessel needs in order to track the trajectory in an optimal way. Based on a horizontal
3 degrees of freedom nonlinear scaled vessel model, we present both nonlinear MPC (NMPC),
which solves a constrained multi-variable nonlinear programming problem, and linearized MPC
(LMPC), which solves a constrained quadratic programming problem through on-line iterative
optimization. In the latter case, the model used in LMPC for prediction is obtained from
a successive linearization of the nonlinear vessel model. Comparisons on performance and
computational complexity of the two approaches are presented. The effectiveness of the MPC
formulations in vessel trajectory tracking, especially the ability of explicitly handling constraints,

is demonstrated via simulations.

Keywords: Autonomous vessels; trajectory tracking; Nonlinear model predictive control;

Linearized model predictive control.

1. INTRODUCTION

The rising need for transportation services and the demand
for a higher safety level have been the driving forces for
a general trend towards automatic co-pilots or even au-
topilots of vehicle systems (Kiencke et al., 2006). The past
few years has seen an increasing interest in the design and
development of autonomous marine craft, see, e.g., (Mor-
eira and Soares, 2011; Fossen, 2011). Autonomous surface
vehicles are being used for different applications ranging
from environmental or geographical surveying, weather
information acquisition, rescue, military, pure research
platforms and transport over water. Such an autonomous
system, except for the external hardware (e.g., the hull, ac-
tuators, all kinds of sensors, etc.), relies on three dependent
software blocks which are known as navigation, guidance
and control (NGC) systems, illustrated in Figure 1. In this
paper, let us assume that all the system states can be
measured or estimated through the sensors or observers
within the navigation system and that the guidance system
can generate a desired trajectory over a finite future time
horizon. The focus then is on the control of the vehicle
dynamics via actuator inputs to complete certain missions.
Normally these missions have both spatial and temporal
constraints on the system states, resulting in a so-called
trajectory tracking control problem instead of just fol-
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lowing a predefined path independent of time, which is
typically referred to as path following.

Due to the complexity and nonlinearity of the vessel
dynamics as well as varying environmental disturbances,
vessel motion control has been challenging and thus drawn
a considerable interest in the field. The first recognized
and most widely implemented controller until now is still
based on classical PID (Proportional-Integral-Derivative)
control theory (Minorski, 1922), because of its simplicity
both in theoretical analysis and implementation. PID is
sufficient for an automatic steering system which is a typi-
cal single-input-single-output case. However, for multiple-
input-multiple-output systems, PID shows deficiencies.
Cascaded frameworks (Lefeber et al., 2003) may be ap-
plicable, but system constraints and disturbances are still
difficult to be handled. Other more complicated methods
such as Lyapunov’s direct can be found in Jiang (2002)
where an underactuated vessel model with zero diagonal
system matrix terms was employed. Do and Pan (2006)
eliminated the assumption of zero diagonal terms and
designed a robust and adaptive controller combining back-
stepping and Lyapunov’s direct method both theoretically
and experimentally on a model ship outdoor. However,
controllers mentioned above dealt with path following
problems without temporal considerations which will not
be sufficient if specific missions or safety issues (e.g., In-
ternational Regulations for Preventing Collisions at Sea
(COLREGS)) are involved. Constraints such as actuator
saturation are also excluded. However, in reality, engines
can only provide limited power and mechanical compo-
nents have maximum deflections or revolutions, which in-
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Fig. 1. Diagram of an NGC system for autonomous marine
surface vehicles.

troduces constraints to the vessel system; neglecting these
constraints in the controller design could lead to poor
control performances or even actuator damages in real
implementation.

Model Predictive Control (MPC) naturally offers a solu-
tion to the control of constrained systems given its capabil-
ity of handling system constraints in an explicit way. MPC
has been widely implemented in industrial processes (Qin
and Badgwell, 2003) ever since a first formulation of it
was published in the early 1960s (Propoi, 1963). The first
application of MPC for vessels in literature is (Wahl and
Gilles, 1998). Recently, MPC has been applied to vessel
path following (Li et al., 2009) and heading control (Li
and Sun, 2012). In (Oh and Sun, 2010), a guidance al-
gorithm LOS (Line-Of-Sight) is integrated in the MPC
design which is based on a linearized model. The incor-
poration of LOS is proved to have a positive effect on the
tracking performance with simulation. Pavlov et al. (2009)
also applied MPC to the vessel path following problem
with guidance algorithm of LOS, but MPC is used there
to update the look ahead distance of LOS and has not
actually been applied to nonlinear vessel motion control.
Analytic nonlinear MPC was proposed for ship path fol-
lowing control in (Wang, 2009) using Lie derivatives and
seems to provide an efficient controller for path following
by explicitly giving the control laws. However, same with
the Lyapunov-based design techniques, constraints are dif-
ficult to be incorporated. Furthermore, the applications of
MPC in vessel systems mentioned above are confined to
path following problems while trajectory tracking, which
has wide applications in various scenarios, sees few utiliza-
tion of this advanced methodology.

The main contribution of this paper lies in the proposal
of two different MPC approaches for the vessel trajectory
tracking problem and the comparisons between them in
terms of tracking performance and computational com-
plexity. One of the approaches is NMPC which directly
employs the nonlinear vessel dynamics model as the pre-
diction model and iteratively solves a nonlinear optimiza-
tion problem online at each time step; the other approach,
LMPC, is based on the idea of successive linearization.
At each time step, a linear plant model is constructed by
linearizing the nonlinear vessel dynamics model around the
current operating point and then linear optimization tech-
niques like quadratic programming can be applied. The
successive linearization based MPC has been successfully
applied to aircraft control (Keviczky and Balas, 2005) and
road vehicle lane change control (Zheng et al., 2013), which

are similar to our approach in this paper in converting the
nonlinear system to a linear one.

This paper is organized as follows. We first describe the
vessel dynamical model used both as the plant process and
for controller design in Section 2. Then in Section 3, the
control problems are formulated when either a nonlinear
model or a linearized model is used. Simulation settings,
comparisons and results are given in Section 4. Finally,
concluding remarks and future research directions are
given in Section 5.

2. VESSEL MODEL

An accurate mathematical vessel model is crucial for
the development of a control system. A marine surface
vessel experiences motions along 6 DOF which are, for
convenience, typically described in two coordinate frames:
{b} = (xp, W, 2) and {n} = (zn, Yn, 2n). {b} is
the body-fixed reference frame which is moving with the
vessel. {n} can be approximately seen as the inertial
coordinate system for vessels sailing only in a local area.
The motions in the horizontal plane are referred to as
surge (longitudinal motion), sway (sideways motion) and
yaw (rotation around the vertical axis). The other three
DOF are roll (rotation about the longitudinal axis), pitch
(rotation about the transverse axis), and heave (vertical
motion), see Fig. 2.

For ship maneuvering control, it is common to formulate a
3 DOF ship model as a coupled surge-sway-yaw model and
thus neglect heave, roll and pitch motions (Fossen, 2011).
This section describes the horizontal 3 DOF nonlinear
dynamics model of Cybership IT (as shown in Figure 3), a
1:70 scale replica of a supply ship, developed in the Marine
Cybernetics Laboratory at NTNU. Manoeuver tests have
been conducted to identify the physical and hydrodynam-
ical quantities for this ship (Skjetne et al., 2004). It is
assumed that the vessel moves in calm water experiencing
negligible current, wind and waves such that forces caused
by environmental disturbances can be excluded. Another
assumption is that the craft has homogeneous mass distri-
bution and zz-plane symmetry such that

Ly = Iy, = 0, (1)
where Iy, and Iy, are the moments of inertia about plane
xy and yz, respectively. Following a vectorial model rep-
resentation in (Fossen, 2011), the kinematics and kinetic
model of a marine surface vessel can then be written as:

(1) = T(n(6)v() @
Muo(t) + C(v(t))v(t) + Dv(t) = 7(t),
where 7(t) is the pose (position and orientation) vector in
the inertial frame, v(t) is the body-fixed velocity vector
and 7(t) is the control vector. These vectors are given by:

x u fu
773[917 V= [U y T = [fV]a (3)
P r

by

where z (m), y (m) are the positions along axis x,, yn,
respectively, and ¢ (rad) is vessel’s orientation (heading
angle) in the inertial frame; u (m/s), v (m/s) and r (rad/s)
are the surge, sway velocities and yaw rate in the body-
fixed frame, respectively; f, (N), fv (N) and ¢, (Nm) are
the surge, sway forces and yaw moment produced by the
vessel actuators (propellers, thrusters, and rudders). The
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Fig. 3. CyberShip II in Marine Cybernetics Laboratory at
NTNU (Fossen, 2008).

system matrices M, C(v), and D are the inertial mass
matrix (invertible), Coriolis and centrifugal matrix, and
damping matrix, respectively, which are given by:

mi1 0 0 d11 0 0

M = [ 0 moo m23‘| s D= [ 0 d22 dgg] y
0 mg32 m33 0 d32 d33 (4)
0 0 —C31

0 0 C23 ‘| y

c31 —c23 0

C .=

where ¢33 = mi1u and c3; = Mo + %(mgg + mas2)r. The
Jacobian matrix T(n) transforms the body-fixed velocities
v into the inertial velocities 7 and is given by

cos(p) —sin(y) 0
l sin(¢) cos(v)) 0] .
0 0 1

For modeling as well as experimental details of Cybership
I1, readers are referred to (Skjetne et al., 2004).

T(n) = (5)

3. MODEL PREDICTIVE CONTROL

MPC, also referred to as model based predictive control
or receding horizon control, determines a control action
by computing a future control sequence over a defined
prediction horizon in such a way that the prediction of the
system output is driven close to the reference (Negenborn,
2007). A constrained optimization problem is formulated
at each step based on the predictions over a future horizon.

A sequence of optimal control inputs can be obtained
but only the first element is applied to the system. This
procedure is repeated when the time is shifted one step
forward, forming the so-called receding horizon approach.
Advantages of MPC are that in principle it can take into
account all information available and that it can therefore
anticipate undesirable situations in the future at an early
stage (Maciejowski, 2002). This could be very useful for
vessel trajectory tracking since the ship control system,
typically strongly nonlinear, susceptible to uncertain pa-
rameters and environmental disturbances, does not have a
good enough manoeuvrability to respond timely when an
emergency happens. Furthermore, for physical dynamics
boundaries as well as safe, economical and environmental
reasons, there can be various constraints on inputs, states
and outputs; MPC can handle those constraints in an
explicit way. The characteristics of the ship trajectory
tracking control problem make the MPC approach a nat-
ural choice.

In this section, we propose two different MPC formulations
for the marine surface vessel trajectory tracking problem,
namely NMPC and LMPC, based on the vessel dynamical
model introduced in the previous section. Basically, the
control objective is to get optimal control commands (7(t))
for actuators so that the difference between the outputs
generated by system (2) and the time varying desired
trajectory are minimized while all the system constraints
are satisfied.

3.1 Trajectory tracking using NMPC

In terms of controller design, it is convenient to rewrite
model (2) into a state space format from a control per-
spective. For NMPC, the state space model is denoted as

follows:

x(t) = f(x(t),u(t))

y(1) = g(x(1)), ®
where x — [nT UT}T’ u=7 and f: RExR? 5RO isa
nonlinear smooth function, which can be further given as:

T(p1x(t))(P2x(t)) (7)
M~ (—C(p2x(t)) (p2x(t)) — D(p2x()) +u(t)) |’
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where p1 = [001000] and py = [000010].In
000001

this paper, for the problem of trajectory tracking, the
objective is to minimize the deviations of the vessel’s
real positions from the reference positions. Therefore the

output map g(x(t)) is defined as:

sx(®) = 4400 00| x(0 )

In numerical simulations, the continuous differential model
(6) still cannot be used directly to predict open loop state
values along the prediction horizon in MPC controllers.
Proper sampling is needed to obtain discrete-time dynam-
ics for prediction. Zero order hold in which each element
of the control sequence is assumed to be constant during
the time interval of [(k — 1)T%, kT (k=1, 2,...,N, where
N is the prediction horizon and Ty is the sampling time)
gives approximate solutions to the ordinary differential
equations (ODE) of (6):

x(n +1) = fa(x(n),u(n))
_ (9)
y(n) = ga(x(n)),

where f4q and gq stand for discretized maps. Available ODE
solvers such as ODE45 (Senan, 2012) are able to provide
solutions within certain error tolerances given a proper
sampling time. Therefore, based on the current measured
or estimated states, future predictions can be calculated
interactively as the functions of control sequences u(k+n)
(n=0, 2, ..., N-1). The tracking problem is then repre-
sented by solving a constrained finite horizon nonlinear
programming problem. A minimal trajectory tracking er-
ror as well as a minimal control effort at each simulation
step k can be realized, reflected by the first and second
term in the following cost function, respectively:

g]l(vikr)l J(R(k), (k) =
(k4 1) — Yret (k1) "QUE (k + 1) = yrer (k + 1))

N
+ Z u(k + n) "Ru(k +n)
n=0

(10)

subject to
X(k) = Xmeasure(k') (11)
x(k+n+1)= fa(x(k+n),u(k +n)) (12)
vk +n)=gx(k+n)) (13)
Ymin Sy(k+n) < Vmax,forn=1,2,..,N (14)

Upmin < u(k +’Il) < umaxvfor n= 07 ]-a aNf ]-7
(15)

where X(k) and (k) are the state and control input
matrices over the prediction horizon (future N steps)
at the kth step; Q and R are weighting matrices of
appropriate dimensions; y(k + n) stands for the nth future
prediction output vector at prediction step k. Although
we obtain a sequence of optimal results (u(k), u(k +
1), ..., u(k+N —1)) by solving the nonlinear optimization
problem (10)—(15), only the first element of the sequence,
i.e., u(k), is applied to the process plant. At each decision
step, we go through Algorithm 1 in case of the nonlinear
MPC scheme.

Algorithm 1 Nonlinear MPC algorithm

1: Measure current states x(k) of the system and com-
pute future predicted outputs y(k+mn), n =1,...,. N
as functions of future control inputs u(k + n), n =

1,..,N—1

2: Solve the nonlinear programming problem (10) (using
MATLAB function fmincon)and get the optimal con-
trol sequence u(k+n), n=1,...,N —1

3: Apply the first element of the above optimal solution,
ie., u(k) to system with an initial state measured
at kth simulation step measure(k) during the time
interval [kTy, (k + 1)T4)

4: Save system data and shift both the control and
reference sequences one step forward

5: At next simulation step k + 1, go to step 1

Note that time varying references are sampled with the
same sampling time T as well. At each step, a sequence
of reference signals with a length of the prediction horizon
is provided to the cost function in (10) and at the next
simulation step, the reference sequence will be shifted one
step forward in Algorithm 1 step 4.

8.2 Trajectory tracking using LMPC

NMPC directly uses the nonlinear vessel trajectory track-
ing model which can reflect the system dynamics better.
However, the computational burden can be a main ob-
stacle, since a constrained nonlinear optimization problem
has to be solved over a finite prediction horizon at each
step. Our second approach overcomes this problem by
using a linearized system model in the scheme of MPC.
This linearized model is obtained at the beginning of each
decision step through successive online linearization of
the nonlinear system model around the current operating
point. In this way, the prediction model, though linear and
approximate, can represent the latest plant conditions as
accurately as possible. The repeated linearization allows
the controller to adapt as plant conditions change.

By linearizing and discreterizing the system model (6)
at the latest operating point (x4(n), u4(n)), we get a
linear discrete state space model at the beginning of each
simulation step:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k),

where A € R6*6, B ¢ RO6*3 C ¢ R2?*6 are the
state, input and output matrices of the linearized state
space model, respectively. A similar trajectory tracking
problem can be formulated as (10) while linear system
dynamics (16) and (17) are employed as the prediction
model in linear MPC. Cost function J in the linear case can
thus be easily translated into a Quadratic Programming
(QP) problem by iterating and stacking system matrices
into a compact QP matrix form, which gives:

min(k) J(&(k), Q(k)) = u(k) Hu(k) + hTu(k) ~ (18)

subject to
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( ) = Xmeasure(k') (19)
x(k+n+1) = Ax(k +n) + Bu(k) (20)
y(k+n)=g(x (k:—i—n (21)
Ymin < ¥k +n) < Ymax,forn=1,2,...,N (22)

Umin < u(k+n) < upax,forn=0,1,...,.N—1,

(23)

Similarly, the time varying reference trajectory is sampled,

stacked and provided with a length of the prediction

horizon to the cost function in the QP problem and shifted
one step forward at each simulation loop.

Since the successively linearized model is an approxi-
mation of the original nonlinear system, performance of
LMPC could be worse than the nonlinear counterpart,
though working more efficiently. Especially when the state
and input trajectories deviate from the current operating
points, the model mismatch could increase, which could
generate large open loop prediction errors resulting in an
instability of the closed-loop system. In the next section,
we investigate this further.

4. SIMULATION EXPERIMENTS

Numerical simulations based on the 3 DOF horizontal
model of CyberShip II as introduced in Section 2 and the
two different controller designs presented in Section 3 are
carried out in this section to demonstrate the potential of
vessel trajectory tracking using MPC.

4.1 Model parameters

The following specifications of Cybership II was obtained
in (Skjetne et al., 2004) and are used in our simulations:

e System matrices:

258 0 O 072 0 0
M = [ 0 338 1 ], D= [ 0 0.890.03].
0 1 28 0 0.03 1.9
(24)

e Maximum nominal speed: 0.2 m/s (which corresponds
to 1.7 m/s or 3.3 knots of the corresponding full scale
vessel).

e Maximum actuator forces (f, and f,) and yaw mo-
ment (¢;): 2 N, 2 N and 1.5 Nm, respectively (which
corresponds to 686 kN, 686 kN and 36015 kNm of the
corresponding full scale vessel).

4.2 Controller parameters

For both of the controllers (NMPC and LMPC), in or-
der to compare their trajectory tracking performances
and computational complexities under different prediction
horizons, different groups of parameters (N, Ts) have been
shown in Table 1. For all the simulations, the following
time varying reference trajectory (zq(t), ya(t)) is used:

Tret(t) = 4sin(0.02¢)

Yret(t) = 2.5(1 — cos(0.02t)),
which is an ellipse with varying trajectory curvature.
The following weighting matrices (Q,R) and simulation
100 0 10

00 0 1R [19] s = 0.

Constraints on control inputs are given by:

(25)

time are used: Q= [

Table 1. Parameters for different groups of

simulations
Parameters N (step) Sampling time (s)
Scenario 1 3 2
Scenario 2 5 1
Scenario 3 10 0.5

-2 2
[Q]Su@g[z]. (20
—-1.5 1.5

4.8 Simulation results and analysis

All the simulations are done in MATLAB 2011b and the
nonlinear 3 DOF vessel model for successive linearization
is constructed in Simulink. Simulations are first run under
the settings of N = 10, Ty = 0.5 with an initial position
at (xo, yo) = (0.5, 0.5).

The trajectory tracking errors and performances of NMPC
and LMPC are shown in Figure 4 and Figure 5, respec-
tively. Control inputs produced by two controllers are
shown in Figure 6.

Figure 4 shows the absolute distance error between the
measured and desired positions, which is calculated as

de(k) = \/ @measare (k) — 22 () + (Ymeasure () — 92 (k).
It can be seen that NMPC yields smaller tracking errors
while LMPC sees a few big fluctuations. But all errors
are bounded within the range of 1 m. Trajectory tracking
performances are shown in Figure 5. It can be seen that
both NMPC and LMPC show the ability to track the refer-
ence trajectory. However, NMPC generates more smooth
trajectories with higher tracking accuracy while LMPC
goes through some deviations which are acceptable if tight
tracking is not required. Minimal tracking errors, and thus
better tracking performances, is the result of the first term
in cost function of the optimization problem (10). The
second term in (10) is included to minimize the control
effort which is desirable from an economical perspective.
The control inputs shown in Figure 6(a) and 6(b) are
all bounded within the actuator saturation limits due
to MPC’s ability in handling constraints. NMPC shows
relatively large changes in control inputs at the beginning
and then remains small fluctuations while LMPC has input
changes all the time. But both of them succeed to keep the
input values around 0, and thus be able to minimize costs.

Although NMPC is better than LMPC in tracking accu-
racy, it is noteworthy that it takes much longer time for
NMPC to run the simulation under same settings and a too
heavy computational burden can bring about implement-
ing issues. Therefore, different metrics are specified to com-
pare these two approaches. Tracking performance metrics
including the maximum, average and standard deviation
of the absolute tracking error are considered; in addition,
computational times were also saved as another metric.
When evaluating the computational burden of successive
linearization based MPC, we consider that the time for
linearizing the nonlinear model to get a discrete linear
state space model ((16) and (17)) and further translating
it into a standard QP problem in each iteration loop is
necessary to be included in addition to the time required
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Table 2. Performance comparison in terms of
tracking errors and computational time

Max. Mean SD Time
(m) (m) (m) (s)
Scenario 1 0.39 0.00 0.03 828
NMPC  Scenario 2 0.60 0.00 0.04 4355
Scenario 3 0.67 0.01 0.04 37584
Scenario 1 10.81 2.30 3.45 29
LMPC  Scenario 2 8.70 1.20 1.86 53
Scenario 3 0.83 0.22 0.14 112

to solve the QP optimization problem. Table 2 shows the
comparisons in respect to these metrics under different set-
tings. For both NMPC and LMPC, the computational time
increases along with the increase of prediction step, which
is intuitive because larger N means larger computation in
prediction and more variables in the optimization problem.
However, the tracking accuracy has shown different trends
in NMPC and LMPC. For NMPC, the differences for the
three groups are very small while the general trends shows
larger N and smaller sampling time lead to larger errors for
all the metrics, maximum, mean and standard deviation
tracking error. LMPC, on the other hand, is quite sensible
to the parameter settings. A larger IV is observed to result
in larger errors. This could be due to the fact that in the
chosen approach, the model is linearized only around the
current operation point at the beginning of each simulation

Reference
NMPC
5r = LMPC

Lateral position x (m)

Longitudinal position x (m)

Fig. 5. Comparison of trajectory tracking per-
formance of NMPC and LMPC.
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Table 3. Effects of prediction horizon on track-
ing performance of LMPC

Ts (s) N (step) Max. Mean  SD Time
(m) (m) (m) (s)
10 0.70 0.01 0.08 709
0.1 20 0.70 0.10 0.09 826
50 1.51 0.84 0.33 1137
10 0.83 0.22 0.14 112
0.5 20 0.67 0.35 0.07 177
50 1.06 0.67 0.15 202

loop. Between too long sampling times, the operation point
might have great changes and could thus cause a serious
model mismatch, causing a large error over the open loop
prediction horizon. When T, = 2s, a maximum error of
almost 11m is observed. So, for LMPC, controller parame-
ter tuning is considered to be important to get a satisfying
control performance. Large sampling times and prediction
steps which will result in large prediction time horizon
are not suggested because of serious model mismatch. The
effects of prediction horizon parameters (Ts, N) on the
tracking performance of successive linearized based MPC
is given in Table 3. Increasing prediction step from N = 10
to N = 20 can improve tracking performance slightly, but
further increase in N will on the contrary deteriorate the
control results because the prediction time (74N) has lead
to an unacceptable model mismatch.
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5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed two different MPC ap-
proaches for addressing the horizontal nonlinear trajectory
tracking problem of autonomous marine surface vehicles.
The first approach directly adopts the nonlinear vessel
dynamics as the prediction model and designs a nonlin-
ear MPC controller which requires solving a constrained
nonlinear optimization problem each step; the second ap-
proach uses a linearized model which is obtained by iter-
atively linearizing the nonlinear model online at the be-
ginning of each simulation loop and translates the LMPC
formulation into a QP problem. Simulations are run and
results have illustrated the feasibility and effectiveness
at the utilization of MPC in vessel trajectory tracking.
Nonlinear MPC has the advantage of better tracking per-
formance but it is much more computational complex
especially under larger prediction horizons, which will lead
to difficulties in implementation; LMPC, however, though
it does show relatively poor tracking performance, seems to
be real-time implementable if the tracking accuracy is not
very strict and the initial position does not deviate from
the tracking point too much. Note that in this paper we
made a comparison using particular quadratic and nonlin-
ear optimization problem solvers. We do expect, however,
that the main conclusions drawn from the comparison will
also hold with other solvers. We will make test of this
hypothesis explicitly in future work. Research here thus
starts an interesting but challenging topic, which deserves
and requires further exploration.

Future work includes mainly three parts: from the control
performance point of view, we will investigate improving
the efficiency of NMPC and the accuracy of LMPC ei-
ther by more efficient optimization techniques or model
mismatch reductions. It is noteworthy that environmental
disturbances (winds, waves and currents) are excluded
in this paper; these disturbances will be considered in
future research by introducing either an observer or filter
into the system; desired trajectories have been designed
to be an ideal ellipse, however, specific applications of
autonomous marine surface vehicles such as inter terminal
transport would involve multiple constraints in terms of
mission requirements or safety reasons (e.g., COLREGS),
so the guidance or optimal trajectory generation problem
in specific scenarios also needs to be investigated further.
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