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Abstract: This paper presents a model based disturbance feedback control scheme. Industrial process 
systems have been traditionally controlled by using relay and PID controller. However these controllers 
are affected by disturbances and model errors and these effects degrade control performance. The authors 
propose a new control method that can decrease the negative impact of disturbance and model errors. The 
control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a 
conventional PID controller and the disturbance feedback control. The simulation results demonstrate the 
effectiveness of the proposed method comparing with the conventional PID controller. 
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1. INTRODUCTION 

Unitary control such as relay control and PID control have 
been widely applied to industrial process systems. For a long 
time engineers have used relay and PID controllers because it 
is possible to implement those even with limited knowledge, 
information and low cost. However, these controllers have 
issues for disturbance, mutual interference, and model errors. 

For disturbance problems, Two-Degree-of-Freedom PID 
control gives better performances than conventional One-
Degree-of Freedom PID, both w.r.t. set point and disturbance 
response (Horowitz, 1963; Araki and Taguchi, 2003).This 
controller also make possible to improve both set-point and 
disturbance response by tuning new parameters α and β. 
However, the parameter gives the engineer an additional task, 
because these parameters are not tuned independently on 
control performance w.r.t. set point and disturbance response.  
More tuning parameters make it more complicated for the 
engineer.  

Multivariable control also has been applied to industrial 
systems in order to solve the following control issues. Model 
predictive control (MPC) has been applied to overcome 
mutual interference by minimize objective function 
(Maciejowski, 2000). Examples of such methods are given in 
e.g. (Kawai, 2007; Larsen, 2004). However MPC originally 
does not consider disturbances. Thus, we need to improve 
and modify the MPC algorithm as needed (Tange, 2009, 
2012). Furthermore, multivariable control design normally 
needs advanced and expensive hardware, as well as, much 
time and cost for model and control design, which makes a 
barrier for this to be in wide use.  

This paper proposes a new control method in order to 
attenuate the impact of disturbances and model errors. The 
control method is motivated by industrial practice for 
instance used for speed control of motor drives as shown in 

Fig.1 (Nishida, 1997; Miyashita, 2000). The advantage of the 
proposed method is examined by simulation tests by using 
two example models.  

2. THE MODEL BASED DISTURBANCE FEEDBACK 
CONTROL METHOD 

A block diagram for the proposed method is shown in Fig.2, 
where r is the reference input, u is the control input (u = u1 + 
ud), y is the control output, d is the disturbance, G is the 
controlled object, K is the feedback controller, Gn is the 
nominal plant, L is the gain of disturbance feedback, yn is the 
output of the nominal plant, ε = yn -y is an estimate of dG. 
The block diagram shows that the proposed method 
compensates the disturbance using ud. 

This control method compensates the error between yn and y 
including the effect of disturbance and mutual interference. 
For this reason, the proposed method is an effective 
technique to reject disturbance, mutual interference and 
model error for various systems. 

The closed loop transfer function is obtained as follow: 
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Fig.1. Example for a motor speed control by Fuji Electric. 
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Fig. 2. A block diagram of the disturbance feedback control. 

When G=Gn, namely nominal plant is equal to controlled 
object completely, then Equation (1) gives 
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Equation (2) describes that L can attenuate the disturbance. 

Furthermore, L can be tuned independently for disturbance 
response, and L will have no impact at the set-point response. 

2.1 Stability condition of disturbance feedback control 

Consider the second term of Equation (2). This part gives 
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For example, G and K are defined as follows: 
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Where, Gs is the process gain, T1 and σ are time constants, T1 
> σ, Kp is proportional gains. The long-time constant T1 is 
dominant in G. The long time constant T1 of the process is 
cancelled by the zero in the PI controller. 

From (3), (4), and (5) we have 
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From the (6), the characteristic equation is written as 
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When a real part of a solution is negative value, then the 
system is stable. Stability condition of Equation (7) is given 
by the following inequalities: 
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Therefore, if Kp and L satisfy (9), the system is stable. 
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2.2 An implementation method of the disturbance feedback 
control by a Two-Degree-of-Freedom structure 

The disturbance feedback control can be changed 
equivalently to Two-Degree-of-Freedom (2DOF) control. 

As an advantage this equivalent transformation can be 
implemented in the device of two-degree-of-freedom PID 
without having to provide a new controller for disturbance 
feedback control. 

However, since this control device has been designed based 
on the disturbance feedback control method, it can be 
designed independently of the suppression of the disturbance 
unlike two-degree-of-freedom PID control. 

Fig.3 shows an example of a 2DOF PID control system, 
which is a set-point filter type, because it is obtained by 
inserting a filter in the set-point path of the conventional PID 
controller.  

Thus, the disturbance feedback control is categorized as a 
2DOF control system and the controller can be treated as a 
PID controller. The disturbance feedback control also can be 
changed to other equivalent 2DOF representations such as 
feed forward type, feedback type, and loop type expression as 
shown in Fig.4, Fig.5 and Fig.6 (Araki and Taguchi, 2003). 

 

Fig.3. A set-point filter type representation. 

 

 

Fig.4. A feed forward type representation. 

 

Fig.5. A feedback type representation. 

 

Fig.6. A loop type representation. 
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2.3 Impact of model error 

From Figure 2, a loop transfer function from r to y is given 
by 

 

          (10) 

Where, Glry is the loop transfer function from r to y. 

Now consider model error when the disturbance feedback 
control is applied. The model error is given by 

).1( GGG n ∆+=          (11) 

From (10) (11), we have 

           (12) 

where 

           (13) 

Equation (13) shows that L'→ 1 when L→∞. This means a 
larger L attenuates the effect of model error ΔG.  

Next, another loop transfer function from d to y is given by 

    ,      (14) 

where Gldy is the loop transfer function from d to y. 

From (11) and (14), we have 

          (15) 

where 

          (16) 

Equation (16) shows that large L makes the controller K’ 
more sensitive. 

3. NUMERICAL EXAMPLES 

Numerical examples are examined. Example Model 1 is a 
second order transfer function (Ǻström, 2006). The example 
Model 2 is an unstable process (Hast, 2013). 

Simulation results are estimated by Integral Absolute Error 
(IAE) and ymax, which is a maximum of y based on set point r. 
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3.1 Example 1 without model error 

Example 1 without model error is given by 
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The parameters of the PI controller K(s) is tuned by Betraqs 
method (Kawai, 2013). Betraqs method is a curve fitting 
method (Ǻström, 2006).  

PI controller is given by  

)11()(
sT

KsK
i

p += ,   (20) 

where 

 .,
2 1

1
ni

nsn

n
p TT

G
TK ==

σ
  (21) 

The set-point response and load disturbance response are 
examined with and without disturbance feedback control. 
Disturbance feedback gain L is adjusted to L = 10 by the 
simulation. 

Fig.7 and Fig.8 show simulation results of Example 1. The 
set-point response of Fig.7 shows both of u and y are 
completely equal between PI control and disturbance 
feedback control. Therefore it is confirmed that the 
disturbance feedback has absolutely no impact on set-point 
response when G=Gn. Fig.8 shows a load disturbance 
response. The disturbance feedback control can reach the set-
point faster than the PI control. 

 

 

 

 

 

 

 

 

 

Fig.7. Simulation results of the set-point response of 
Example 1. 

 

 

 

 

 

 

 

 

Fig.8. Simulation results of the load disturbance response of 
Example 1. 
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ymax and IAE are shown in Table 1 and Table 2. As regarding 
set-point response, both ymax and IAE are completely equal at 
two control methods. On the other hand, the disturbance 
feedback control method of load disturbance response can 
obtain a much lower IAE and ymax. 

These results demonstrate that the disturbance feedback can 
have a positive impact on disturbance response only. This 
feature gives a big advantage for engineers. Because 
parameter L can be tuned independently for disturbance 
response, additionally the disturbance feedback can improve 
the control performance at disturbance response. 

3.2 Example 1 with model error 

Example 1 with model error is given as 
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Where ΔGs is the model error of plant gain and the ΔGs is 
changed from -0.5 to 0.5 on simulation tests. 

Fig.9 and Table 1 shows set-point response with and without 
model error. These results shows disturbance feedback 
control is less affected than PI control when model error is 
applied. 

Fig.10 shows IAE and ymax of a set-point response for 
different L and ΔGs. The figure shows that larger L decrease 
IAE and ymax and the larger L also attenuate the effect of ΔGs. 

Fig.11 shows that the proposed method improves control 
performance regardless of the model error at load disturbance 
response. The proposed method also keeps a variation value 
(max-min) less than 3% when model error is applied, 
whereas ymax of PI control exceeded 15% as shown in Table 2.  

Fig.12 shows IAE and ymax of a load disturbance response for 
different parameters L and ΔGs. Similar to the results of 
Fig.10, a larger L decrease IAE and ymax and L also attenuate 
the effect of ΔGs. 

Table 1. IAE and ymax at the set-point response of Example 1. 
DFC: Disturbance feedback control. 

 ΔGs=0 ΔGs=-0.5 ΔGs=0.5 max-
min 

IAE of PI 0.6429 1.0900 0.5393 0.5507 
IAE of DFC 0.6429 0.8079 0.6102 0.1977 
ymax of PI 0.0430 0.0000 0.1074 0.1074 
ymax of DFC 0.0430 0.1215 0.0309 0.0906 

Table 2. IAE and ymax at the load disturbance response of 
Example 1. DFC: Disturbance feedback control. 

 ΔGs=0 ΔGs=-0.5 ΔGs=0.5 max-
min 

IAE of PI 0.5200 0.5199 0.5200 0.0001 
IAE of DFC 0.0557 0.0701 0.0536 0.0164 
ymax of PI 0.2979 0.2075 0.3578 0.1503 
ymax of DFC 0.0950 0.0781 0.1044 0.0263 
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Fig.9. Impact of the model error. Set-point response of 
Example 1. Parameter L =10 at DFC. 
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Fig.10. IAE and ymax of the set-point response of Example 1 
with the proposed method. Impact of parameter L and model 
error ΔGs. 
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Fig.11. Impact of the model error. Load disturbance 
response of  Example 1. Parameter L =10 at DFC. 

Now consider the stability and sensitivity of the disturbance 
feedback control. Fig. 13 shows Nyquist plots of loop 
transfer function by changing the parameter L =1, 10, 100. A 
plot with L=100 is close to the critical point (-1, 0). The 
results demonstrate a characteristic of the (14) such the large 
L makes the controller more sensitive.  
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Fig. 14 also shows that larger L improves control 
performance and attenuates the effect from ΔGs. However, at 
the same time, larger L gets the controller more sensitive as 
shown at Fig.13. Therefore, L should be tuned by some 
constraints such as maximum sensitive circle, which range of 
1.2 to 2.0 in order to avoid an effect from measurement noise. 
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Fig.12. IAE and ymax of the load disturbance response of 
Example 1 with the proposed method. Impact of parameter L 
and model error ΔGs. 

 

 

 

 

 

 

 

 

Fig.13. Nyquist plots of the loop transfer function in 
Example 1. Ms: Maximum sensitive circle. 

3. 3 Example 2 

The model for Example 2 is given as 
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The PID controller K is tuned by Convex-Concave 
optimization (Boyd, 2004; Hast, 2013). This parameter 
tuning method gives Kp=3.81, Ti=3.33, and Td=4.25.  

Tds
s

TiKpsK ++=)(    (24) 

The set-point response and load disturbance response are 
examined with and without disturbance feedback control. The 
disturbance feedback gain L is 20 tuned by simulations. 

 Fig.15 shows that u and y are completely equal for the two 
methods. Therefore it is confirmed that disturbance feedback 
has absolutely no impact on the set-point response when 
G=Gn.  

Fig.16 shows a load disturbance response. The disturbance 
feedback control can reach the set-point much faster than the 
Convex-Concave optimization method. 

Table 3 shows ymax and IAE. As regarding set-point response, 
both ymax and IAE are completely equal for the two control 
methods. On the other hand, the disturbance feedback control, 
ymax and IAE are significantly improved compared with the 
Convex-Concave optimization at the load disturbance 
response. 

Consideration of the simulation results with the open loop 
unstable plant of Example 2 show the same effectiveness   as 
seen in Example 1. 

Fig.14. Impact of parameter L and model error.   L=1, 10,100.  ΔGs=-0.5, 0, 0.5. 
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Fig.15. Simulation results of set-point response of Example 2. 
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Fig.16. Simulation results of load disturbance response of 
Example 2. 

Table 3. IAE and ymax at the set-point response of example 
model 2. CON: Convex-Concave optimization, DFC: 
Disturbance feedback control 

 Set point 
response 

Load disturbance 
response 

IAE of CON 1.0107 0.5681 
IAE of DFC 1.0107 0.0533 
ymax of CON 0.3884 0.2563 
ymax of DFC 0.3884 0.0536 

 

4. CONCLUSIONS 

This paper proposes a new control strategy that uses 
disturbance feedback control with PID controllers. 
Simulation results show the effectiveness of the proposed 
method comparing to the conventional PID controller. 

As future work, we will examine how to decide the feedback 
gain L systematically. 
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