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Abstract: Neural population models describe the macroscopic neural activity that can be
clinically recorded by an electroencephalogram (EEG). Such models are relevant for the
investigation of many pathological neurological phenomena including epilepsy and Parkinson’s
disease because the models operate on the same scale as the recorded data. Although several
models exist in the neuroscience literature, none have leveraged the systematic approach of
optimal control theory to design stimuli to treat such neurological conditions. In addition, these
models have not yet reached the control community, which has instead largely focused on single
neuron models. Here we present the model and a formulation of the seizure abatement goal
expressed as an optimal control problem. We show several results including a realistic, noise-
driven simulation where the control is applied as needed in a moving window.

1. INTRODUCTION

Epileptic seizures are transient neurological events which
can occur up to hundreds of times per day in some patients
(Blumenfeld and Taylor [2003]). Symptomatic manifesta-
tions of these events can include a loss of consciousness,
tonic-clonic convulsions and myoclonic jerks, among others
which can severely impact patient health and quality of
life. These seizure events often have distinctive electro-
graphic correlates detectable on an electroencephalogram
(EEG). One commonly observed electrographic seizure
waveform morphology is the spike wave discharge (SWD),
which is characterized by a fast spike followed by a slow
wave. SWDs are periodic oscillations with a frequency
typically slower than that of normal awake EEG. They
are frequently associated with absence seizures, myoclonic
seizures and complex partial seizures (Taylor and Baier
[2011]).

Although the first line of treatment for patients with
epilepsy is typically medication, in over 30% of cases
medication alone is insufficient (Keränen et al. [1988]).
Brain stimulation via electrodes has been suggested as an
alternative therapeutic treatment for epilepsy (Liang et al.
[2010, 2012], Saillet et al. [2012]) and has had success in
treating other neurological disorders including the motor
symptoms of Parkinson’s disease (Limousin et al. [1998],
Feng et al. [2007]).

Mathematical models of neural field dynamics enable the
analysis and prediction of system behavior. The recent
literature in epilepsy has developed several mathematical
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models of SWD on the macroscopic scale at which EEG
recordings are made (Breakspear et al. [2006], Marten
et al. [2009], Goodfellow et al. [2011], Taylor and Baier
[2011], Wang et al. [2012], Taylor et al. [2013a,c]). Progress
on deriving stimuli for seizure abatement for such models,
however, has not kept in step with this advancement in
model refinement. In particular, more advanced method-
ology from optimal control theory has largely been absent.

Some previous studies have investigated the impact of
stimulation and control in models with pathological ac-
tivity. For example, Tass [2003] demonstrated a technique
to disrupt synchrony in coupled phase oscillators, mod-
eling the synchronous phenomena underlying Parkinson’s
disease. Kramer et al. [2006] used PID-type feedback con-
trollers to effectively shift a model parameter to drive the
system away from regions of parameter-space correspond-
ing to epileptiform oscillations. Suffczynski et al. [2004]
demonstrated in a bistable model that single pulse pertur-
bations can abate abnormal epileptiform activity. Schiff
[2010] suggested a model-based controller in Parkinson’s
disease with further potential expansions to epilepsy.

Although progress has been made, there is a distinct op-
portunity to apply the systematic approach provided by
systems and control theory - in particular, computational
optimal control theory - to neural population models. A
number of important factors influence why open-loop opti-
mized controls are a preferred solution in neuroscience. In
feedback controllers, the stimulus is always “on”, whereas
optimal solutions can be triggered and then turned off
afterwards - in the long run this leads to a less invasive
solution. Similarly, optimal control allows us to generate
minimal stimuli (e.g., minimum energy) that again are
least invasive. A common criticism of open-loop control
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is the lack of robustness in optimal solutions, however, the
recent advancements in optimal ensemble control theory
provide mechanisms to overcome this deficiency in many
scenarios (Li et al. [2011]).

Within the control community, several groups, including
Moehlis et al. [2006] and Li et al. [2013], have applied
these systematic methods, however, have focused mainly
on phase-models, which are highly reduced models of
individual neurons. Since most patient data is collected
by EEG, which operates at the macroscopic scale, in this
work we use a more clinically relevant neural population
model.

In the sections that follow, we present the macroscopic
neural population model, formulate seizure abatement as
an optimal control problem, and outline the computational
method employed to solve the optimal control problem.
We present several results which provide insight into the
control of the model and also a sliding window controller
which emulates the robustness of the solution under a
realistic situation.

2. METHODS

2.1 Model

Experimental evidence suggests important roles for both
the cortex and thalamus in the genesis and maintenance of
epileptic SWD oscillations (Destexhe [1998], Pinault and
O’Brien [2005]). We therefore incorporate knowledge of
these anatomical structures into our model using neural
field equations based on the Amari framework (Amari
[1977], Taylor et al. [2013c,b]). The cortical subsystem
is composed of excitatory pyramidal (PY) and inhibitory
interneuron (IN) populations. The thalamic subsystem
includes variables representing populations of thalmocor-
tical relay cells (TC) and neurons located in the reticu-
lar nucleus (RE). All populations are interconnected in
agreement with experimentally known connections (Pin-
ault and O’Brien [2005]) using the connectivity parame-
ters Ci, i = 1, . . . , 9. The resulting excitation model for
(PY,IN,TC,RE) neurons, denoted (x1, x2, x3, x4), respec-
tively, is given as follows,

ẋ1(t) =τ1(h1 − x1 + C1f [x1]− C3f [x2] + C9f [x3]) + u(t)

ẋ2(t) =τ2(h2 − x2 + C2f [x1]) + u(t) (1)

ẋ3(t) =τ3(h3 − x3 − C6f [x4] + C7f [x1])

ẋ4(t) =τ4(h4 − x4 − C4f [x4] + C5f [x3] + C8f [x1])

where hi and τi, i = 1, 2, 3, 4, are input parameters
and timescale parameters, respectively; u(t) is the applied
stimulus; and f [α] is the sigmoid function,

f [α] = (1/(1 + ε−α)),

where ε determines the sigmoid steepness. This follows the
connection schematic as shown in Fig. 1. Notice that the
stimulus is applied only to the cortical variables PY and IN
because this corresponds to a less invasive, more realistic
scenario, since the thalamic structures are located deeper
inside the brain.

We use parameters which place the model in an excitable
state, namely C = (1.8, 4, 1.4, 0.2, 10, 1.5, 3, 3, 1), h =
(−0.35,−3.4,−2,−5), τ = (1, 1.25, 0.1, 0.1), and ε =
250000. In essence a threshold exists in the system which,

PY IN TC REC1 C4

C2 C5

C8

C3 C6C9

C7

cortex thalamus

Fig. 1. Connectivity scheme of the model. Excitatory
(inhibitory) connections indicated with arrows (but-
tons).

when a sufficiently strong supra-threshold stimulus is
applied, can drive the dynamics to undergo transient
SWD. We can, therefore, provoke a seizure in our model
by applying a large enough stimulus. Model solutions are
computed numerically using a fixed step Euler-Maruyama
solver using MATLAB (Kloeden and Platen [1992]).

These nonlinear dynamics evidence a stable focus repre-
senting the non-seizure equilibrium state, xr = (0.1691,
0.1645, -0.0913, 0.0032) for the chosen parameter values.
Seizure abatement in such a model can be understood
as driving the system from the region corresponding to
the transient SWD oscillations to a neighborhood around
the stable focus. This is a state transfer problem we can
solve by formulating it as an optimal control problem. In
practice it is valuable to consider minimum energy stimuli,
therefore, we create a cost function which derives minimum
stimuli with endpoint constraints that enforce the state
transfer. The optimal control problem seeks an input u(t)
which minimizes the cost functional,∫ T

0

u2(t) dt, (2)

over the time window t ∈ [0, T ] subject to the dynamics
given in (1) and the endpoint constraints x(T ) = xr and
x(0) = x0. Analytically solving such a highly nonlinear
optimal control problem is rarely tractable, so we turn to
computational methods to find the input u(t).

2.2 Pseudospectral Method

The pseudospectral method is a direct collocation method
to transform an optimal control problem into a nonlinear
programming problem. The pseudospectral method has
been successfully applied in a variety of applications in-
cluding guidance for aircraft, quantum control, and neuro-
science (Fahroo and Ross [2008], Li et al. [2011, 2013]). The
method employs a relationship between orthogonal Legen-
dre polynomials, which permit spectral accuracy (i.e., only
a small number of terms are needed to approximate the
function), and interpolating Lagrange polynomials, which
enable the collocation nodes of the interpolation approx-
imation to be used directly in the subsequent nonlinear
optimization. The former facilitates efficient computation
and the latter facilitates ease of implementation.

For the sake of space, we defer the reader to these re-
sources for a comprehensive description of the method (Li
et al. [2011]). In summary, we consider an optimal control
problem with cost in Bolza form,
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Fig. 2. Trajectories of the model driven by the optimal
control (inset axis) in which terminal constraints, were
imposed on all states, i.e., e = xr − x(T ).

min φ(T, x(T )) +

∫ T

0

L(x(t), u(t)) dt,

s.t. ẋ(t) = F (x(t), u(t)),

e(x(0), x(T )) = 0,

g(x(t), u(t)) ≤ 0, ∀ t ∈ [0, T ],

where x(t) and u(t) is the state and control, respectively, at
time t; φ and L are the terminal and running costs; F is the
dynamics; and e and g are endpoint and path constraints,
respectively; is transformed to a nonlinear programming
problem of the form,

min φ(T, x̄N ) +
T

2

N∑
i=0

L(x̄i, ūi)wi,

s.t.

N∑
k=0

Djkx̄k =
T

2
F (xj , uj),

e(x̄0, x̄N ) = 0,

g(x̄j , ūj) ≤ 0, ∀ j ∈ {0, 1, . . . , N},
where x̄j = x(tj) and ūj = u(tj); tj is the j

th interpolation
point; wi are weights characteristic of quadrature approxi-
mations of integrals; and D is a constant coefficient matrix
determined by the order of approximation/discretization
N . Nonlinear programming problems of this form can be
solved by any number of commercial and open source
solvers. In this work we employ a commercial solution
using AMPL and KNITRO (Fourer et al. [2002], Byrd
et al. [2006]).

3. RESULTS & DISCUSSION

In this work we present four successively more sophisti-
cated demonstrations of stimuli solutions that eliminate
the pathological spike wave discharge seizure behavior in
the presented model.

3.1 Optimal Control

In this first demonstration, we investigate the state trans-
fer problem in a “controlled environment.” At time t = 0,
we start the system at x0 = (0, 0, 0, 0), which if left uncon-
trolled will directly enter seizure oscillations. Given these
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Fig. 3. Trajectories of the model driven by the optimal
control (upper inset axis) in which terminal con-
straints were imposed on TC and RE states only, i.e.,
ei = xri −xi(T ) for i = 3, 4. Trajectories of the model
(lower inset axis) in which terminal constraints were
imposed on PY and IN states only, i.e., ei = xri −
xi(T ) for i = 1, 2.

initial conditions, we solve the minimum energy optimal
control problem with terminal constraint x(T ) = xr (i.e.,
e = xr − x(T )). In these optimizations the final time is
fixed at T = 4. This value is chosen arbitrarily and can
be adjusted. Oscillations present a challenge practically
when discretizing optimal control problems and a fixed
duration ensures that our level of discretization (N = 71)
is sufficient to capture the motion accurately.

Figures 2 and 3 show that optimized stimuli (u(t) plotted
on the upper inset axes) are able to drive the system
to the resting equilibrium xr, indicated by • symbols in
the figures. In Fig. 3, we impose a terminal constraint
on only the TC, x3(T ), and RE, x4(T ), states, whereas
in Fig. 2 terminal constraints are imposed on all states.
Although the cortical and thalamic subsystems mutually
influence each other, Fig. 3 illustrates the importance of
the thalamic subsystem. This effect is likely due to the
large timescale separation, which in our model can be con-
sidered as conductance delays between the respective brain
structures. Notably, seizure abatement can be achieved by
only by imposing an endpoint criteria on the thalamus
variables. In contrast we find that imposing terminal con-
straints on the PY, x1(T ), and IN, x2(T ), variables alone
does not achieve the same effect (see lower inset axes of
Fig. 3).

3.2 Optimal Control with Arbitrary Initial Conditions

In practice, the control needs to be applied “online” rather
than predictably at the outset (i.e., the seizure will begin
at some point into the observation, t0 > 0) and starting at
a state different from the origin. The first step forward is
to generalize the previous results for any arbitrary initial
condition x(0) = x0.

We observe that during a seizure, the system state tra-
jectory follows relatively consistently path while it oscil-
lates. We, therefore, modify the initial condition equality
constraint to enforce a starting state selected arbitrarily
from the trajectory of the seizure oscillation. For example,
Figure 4 demonstrates driving the system from x0 = (0.30,
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Fig. 4. Trajectories of the model driven by the optimal
control (inset axis) starting from an arbitrary initial
point contained in the seizure oscillations.

0.25, 0.02 , 0.14), which lies on the trajectory of the seizure
oscillations, to xr. Similarly as before, the stimulus is
successful in aborting the seizure before it begins.

When we try to incorporate this stimulus into a moving
window controller (as will be discussed in Section 3.4), in
which the stimulus is triggered by a state-dependent cri-
teria, we find that this solution no longer works properly.
The controller triggers the stimulus when the state comes
within a small neighborhood of the triggering point. In
order for the stimulus to function consistently, it must
be robust to variation in the initial state because any
triggering mechanism will inherently introduce variation.
In the context of this problem, this is enough to substan-
tially affect the performance of the stimulus. With this
motivation, we turn to ensemble control to develop robust
open-loop stimuli.

3.3 Ensemble Optimal Control

Ensemble control is concerned with the study of systems
which are structurally similar and driven by a common
input, but differ by a parameter (Li et al. [2011]). Using
this methodology we can formulate an optimal ensemble
control problem, whose solution is robust to the variation
in the parameter or parameters. Ensemble control has been
employed to compensate for actual observed heterogeneity
as well as uncertainty in the parameters. Because the
initial condition of the system can be seen as a parameter
of the dynamics, we can use this framework to develop
stimuli robust to the starting state (Ruths and Li [2012]).

Similar to the case above, we select a portion of the
trajectory traced out by the seizure oscillations, which
we denote Ω. We sample this section of the curve and
create an optimal ensemble control problem which seeks to
simultaneously drive NΩ systems starting at various points
along the trajectory to the stable equilibrium with a single
common stimulus. The pseudospectral method provides a
natural extension to implement and solve the ensemble
optimal control problem (Li et al. [2011, 2013]).
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Fig. 5. Trajectories of 5 systems with different initial
conditions x0 ∈ Ω driven by the common optimal
ensemble control (inset axis).

Figure 5 displays the trajectories corresponding to five
(NΩ = 5) different starting locations which are simulta-
neously driven to a neighborhood of xr by the common
ensemble control, plotted on the inset axis. Therefore, this
stimulus is able to compensate for the variation in starting
state, which makes it significantly more capable of main-
taining its efficacy when applied as an online controller.

3.4 Moving Window Seizure Abatement

We now develop a realistic simulation of seizure abatement
using the model and the results described in the previous
sections. In this case, the model is also driven, namely
the TC (x3) dynamics, by an additional noise term, which
represents both the measurement noise and the inherent
background noise in the brain. Although the noisy input
alone is sufficient to start a seizure, we add on top of this
noise a small extra stimulus, or “kick”, to reliably induce
a seizure. This allows us to know that the seizure will
occur within a given time horizon, which is convenient for
practical reasons. Noise induced seizures are identical in
overall shape and pattern, so inducing the seizure is not
seen as artificial. More importantly, the kick allows us the
opportunity to more systematically validate our ensemble
control stimulus under a variety of onset parameters.
Although the systems eventually reach the same seizure
oscillation cycle, the transient behavior following a kick is
more unique and related to the timing, the amplitude, and
the duration of the kick. The ensemble control should be
robust to any of these types of transient behavior.

In this scenario, we employ a moving window controller
which monitors the system state in real-time. When a
seizure is detected and the state approaches within a
neighborhood of Ω (i.e., ∥x(t)− v∥ ≤ ϵ for any v ∈ Ω), the
ensemble control is triggered and drives the state to the
stable equilibrium, thereby stopping the seizure. Figure 6
compares the PY states of the uncontrolled and controlled
system using the stimulus developed in Section 3.3 (up to
now we have dealt with time in a dimensionless scale, now
we represent this in physical time - i.e., in seconds).
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Fig. 6. The moving window controller detects and stops
seizures as they occur. The PY variable, x1(t), is
plotted for the controlled and uncontrolled cases.

Another limiting factor in practice is the ability to monitor
all state variables. Determining the current state of the
cortical variables, PY and IN, is significantly easier than
observing the thalamic variables, TC and RE. Due to
the fact that the thalamus is located in the middle of
the brain, it is is extremely valuable (less invasive) if the
seizure triggering mechanism only requires observations of
the cortical variables. In addition, measurements can be
taken using the stimulus probe, therefore, the PY and IN
variables can already be monitored. The ensemble control
is also able to address this issue because the ensemble
control is able to compensate for the variation of TC and
RE along the seizure oscillation cycle at a specific chosen
PY and IN. Therefore, all results of this section used a
triggering method based only on PY and IN (including
Figs. 6 and 7).

We tested the ensemble stimulus over a comprehensive
range of kick parameters, from ×1 up to ×4 the nominal
kick amplitude and kick duration. We also tested the
response to shifting the kick by up to 1 second in time,
which is longer than a single period of oscillation, because
different portions of the dynamics are more susceptible
to the kick than others. Over these range of parameters,
the controlled seizures lasted between 0.8 and 2.6 seconds.
Using the same parameters (and notably the same noise
vector), the uncontrolled seizures lasted between 4.1 and
25.0 seconds. Because the controller is triggered by the
cortical variables alone, it is possible that the stimulus
is applied when the cortical states are within Ω but the
thalamic states are not. If this behavior is present, it
typically occurs immediately after the kick before the
periodic seizure oscillation is established. When it does
happen, often the stimulus is applied twice, however, we
consistently observe (see Fig. 7) that the seizure is stopped
in significantly less time than when the control is applied
compared to when it is not.

4. CONCLUSION

We have introduced to the control community a neuron
population level model for epilepsy characterized by spike

0 4 8 12

seizure duration (seconds)

uncontrolledcontrolled

16 20 24

Fig. 7. Boxplots of the aggregate statistics for controlled
and uncontrolled seizure durations over a wide range
of kick parameters (delay: 0−1 second; amplitude and
duration: ×1 to ×4).

wave discharge type oscillations. This model offers novel
opportunities to model and study epilepsy behavior at the
scale of clinical data using tools from dynamics and control
theory. To the neuroscience community, this work provides
a large step forward in developing methods which can be
used to derive stimuli for neuroscience applications.

We demonstrate the flexibility and utility of the method by
developing several types of stimuli, which offer intuition to
the dynamics of the system and also introduce sequentially
higher levels of clinical practicality. Our final example
employs an ensemble control to flexibly drive the system
from a region of seizure behavior to the stable resting
point. This is done in a real-time moving window fashion,
in which the controller monitors a subset of the system
state and activates the stimulus when the system exhibits
seizure behavior.

Both the model and the method admit straightforward
generalizations to a spatially extended version with corti-
cal nodes distributed across the brain. In this extension
each spatial cortical location is connected both to the
thalamus, as is done in the present model, and also with
other cortical locations. The weighting of these latter con-
nections is given by a connectivity matrix, or network, rep-
resenting the correlation in activity between the different
cortical locations. We aim to expand the proof-of-concept
reported in this article to address the spatially extended
model.
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