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Abstract: This paper deals with the trajectory tracking control for quadrotor aerial vehicles
equipped with a robotic manipulator. The proposed approach is based on a two-layer controller:
in the top layer, an inverse kinematics algorithm computes the motion references for the actuated
variables while in the bottom layer, an adaptive motion control algorithm is in charge of tracking
the motion references. A stability analysis of the closed-loop system is developed. Finally, a
simulation case study is presented to prove the effectiveness of the approach.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are employed in a large
number of applications, such as surveillance of indoor or
outdoor environments, remote inspection and monitoring
of hostile environments. There exist numerous types of
UAVs, but in the last years, the quadrotor helicopters
are emerging as popular platform, due to their simple
structure, the larger payload capability an the higher
manoeuvrability with respect to the single-rotor vehicles.

Motion control of a quadrotor vehicle is a challenging issue,
since the quadrotor is an under-actuated system, with two
directions not directly actuated. Both linear, such as PID
controllers (Hoffmann et al., 2007), and nonlinear con-
trollers, such as model predictive control (Kim and Shim,
2003), backstepping and sliding mode techniques (Bouab-
dallah and Siegwart, 2005), have been proposed in the last
decade. In particular, very interesting is the hierarchical
approach, based on an inner-outer loop, in Kendoul et al.
(2008) that exploit the conceptual separation between
position and orientation of a quadrotor. Some adaptive
control laws have been proposed: in Palunko and Fierro
(2011) the mathematical model of the UAV system is
rewritten in such a way to point out its linear dependency
to the center of gravity position, which is then used in a
feedback linearization approach; in Antonelli et al. (2013)
the effect of constant exogenous forces and moments and
the presence of unknown dynamic parameters (e.g., the
position of the center of mass) have been considered.

Recently, UAVs have been employed in tasks as grasping
and manipulation (Spica et al., 2012) as well as in co-
operative transportation (Maza et al., 2010). These are
challenging issues since the vehicle is characterized by an
unstable dynamics and the presence of the object causes
nontrivial coupling effects (Pounds et al., 2011). UAVs
equipped with a robotic arm for aerial manipulation tasks
have been proposed in Lippiello and Ruggiero (2012),
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where the dynamic model of the whole system, UAV plus
manipulator, is devised and a Cartesian impedance control
is developed in such a way to cope with contact forces
and external disturbances, and in Kondak et al. (2013),
where the influences imposed on an helicopter from a
manipulator are analyzed.

In Arleo et al. (2013) the problem of motion control
of the end-effector of a robot manipulator mounted on
a quadrotor helicopter is tackled through a hierarchical
control architecture. Namely, in the top layer, an inverse
kinematics algorithm computes the motion references for
the actuated variables, i.e., position and yaw angle of the
quadrotor vehicle and joint variables for the manipulator,
while in the bottom layer, a motion control algorithm
is in charge of tracking the motion references. In this
paper, the previous scheme is extended by adding, at the
motion control level, an adaptive term, in charge of taking
into account modeling uncertainties and overcoming some
assumptions done in Arleo et al. (2013) due to the un-
deractuation of the system. Moreover, a rigorous stability
analysis of the closed-loop system is performed. Finally, in
order to demonstrate the effectiveness of the approach, a
simulation case study is developed.

2. MODELING

Let us consider a system composed by a quadrotor vehicle
equipped with a n-DOF robotic arm, depicted in Fig. 1.

2.1 Kinematics

Let Σb denotes the vehicle body-fixed reference frame with
origin at the vehicle center of mass; its position with
respect to the world fixed inertial reference frame, Σ, is
given by the (3×1) vector pb, while its orientation is given
by the rotation matrix Rb

Rb(φb)=

[
cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

]
, (1)

where φb = [ψ θ ϕ]
T

is the triple of ZYX yaw-pitch-roll
angles and cγ and sγ denote, respectively, cos γ and sin γ.
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Fig. 1. Quadrotor and robotic arm system with the corre-
sponding frames.

Let us consider the frame Σe attached to the end effector
of the manipulator (see Fig. 1). The position and the
orientation of Σe with respect to Σ are given by

pe = pb +Rbp
b
eb , (2)

Re =RbR
b
e , (3)

where the vector pbeb and the matrix Rb
e describe the

position and the orientation of Σe with respect to Σb,
respectively. The linear and angular velocities ṗe and ωe
of Σe in the fixed frame are obtained by differentiating
(2)-(3)

ṗe = ṗb − S(Rbp
b
eb)ωb +Rbṗ

b
eb , (4)

ωe =ωb +Rbω
b
eb , (5)

where S(·) is the (3× 3) skew-symmetric matrix operator
performing the cross product (Siciliano et al., 2009), and

ωbeb=RT
b (ωe−ωb) is the relative angular velocity between

the end effector and the frame Σb, expressed in Σb.

Let q be the (n × 1) vector of joint coordinates of the

manipulator. Then, pbeb(q) and Rb
e(q) represent the usual

direct kinematics equations of a ground-fixed manipulator
with respect to its base frame, Σb. The (6 × 1) vector of
the generalized velocity of the end-effector with respect to

Σb, v
b
eb =

[
ṗbTeb ωbTeb

]
T, can be expressed in terms of the

joint velocities q̇ via the manipulator Jacobian Jbeb, i.e.,

vbeb = Jbeb(q)q̇. (6)

On the basis of (4), (5) and (6), the generalized end-

effector velocity, ve =
[
ṗT
e ωT

e

]T
, can be expressed as

ve = Jb(q,φb)TA(φb)ẋb + Jeb(q,Rb)q̇ , (7)

where xb =
[
pb

T φb
T
]
T and

TA(φb) =

[
I3 O3

O3 T (φb)

]
, T (φb) =

[
0 −sψ cψcθ
0 cψ sψcθ
1 0 −sθ

]
, (8)

T (φb) is the transformation matrix between the angular

velocity ωb and the time derivative of the Euler angles φ̇b,

namely ωb = T (φb)φ̇b. Matrices Jb and Jeb are given by

Jb =

[
I3 −S(Rbp

b
eb)

O3 I3

]
, Jeb =

[
Rb O3

O3 Rb

]
Jbeb ,

where Im and Om denote (m × m) identity and null
matrices, respectively.

Since the quadrotor is an under-actuated system, with 4
independent control inputs available against the 6 DOFs,
the position and the yaw angle are usually the controlled
variables, while pitch and roll angles are used as interme-
diate control inputs for position control. Hence, it is worth
rewriting the vector xb as follows

xb =
[
ηT
b σT

b

]T
, ηb =

[
pT
b ψ
]T
, σb = [θ ϕ]T .

Thus, the differential kinematics (7) becomes

ve = Jη(q,φb)η̇b + Jσ(q,φb)σ̇b + Jeb(q,φb)q̇

= Jζ(σb, ζ)ζ̇ + Jσ(σb, ζ)σ̇b ,
(9)

where ζ =
[
ηb

T qT
]
T is the vector of controlled variables,

Jη is composed by the first 4 columns of JbTA(φb), Jσ
by the last 2 columns of JbTA(φb) and Jζ = [Jη Jeb].

2.2 Dynamics

The dynamic model of the system can be written as

M(ξ)ξ̈ +C(ξ, ξ̇)ξ̇ + g(ξ) + d(ξ, ξ̇) = u , (10)

where ξ = [xb
T qT]T ∈ IR(6+n×1), M represents the

symmetric and positive definite inertia matrix of the
system, C is the matrix of Coriolis and centrifugal terms,
g is the vector of gravity forces, d explicitly takes into
account disturbances, such as aerodynamic effects, and
modeling uncertainties, and u is the vector of inputs

u =

[
uf
uµ
uτ

]
=




Rb(φb)f
b
b

TT(φb)Rb(φb)µ
b
b

τ


 , (11)

where τ is the (n × 1) vector of the manipulator joint

torques, while f bb = [0 0 fz]
T and µbb = [µψ µθ µϕ]

T are,
respectively, the forces and the torques generated by the 4
motors of the quadrotor, expressed in the frame Σb. Both
fz and µbb are related to the four actuation forces output
by the quadrotor motors f via (Nonami et al., 2010)

[
fz
µbb

]
=



1 1 1 1
0 l 0 −l
−l 0 l 0
c −c c −c






f1
f2
f3
f4


 = Γf , (12)

where l > 0 is the distance from each motor to the vehicle
center of mass, c = γd/γt, and γd, γt are the drag and
thrust coefficient, respectively.

The matrices introduced in (10) can be detailed by con-
sidering the expressions derived in Lippiello and Ruggiero
(2012). The inertia matrix can be viewed as a block matrix

M(ξ) =



Mpp Mpφ Mpq

Mpφ
T Mφφ Mφq

Mpq
T Mφq

T M qq


 ,

where Mpp ∈ IR3×3, Mpφ ∈ IR3×3, Mpq ∈ IR3×n,

Mφφ ∈ IR3×3, Mφq ∈ IR3×n and M qq ∈ IRn×n.

Similarly, matrix C and vector g in (10) can be seen as

C(ξ, ξ̇) =

[
Cp

Cφ

Cq

]
, g(ξ) =



gp
gφ
gq


 ,

with Cp ∈ IR3×(6+n), Cφ ∈ IR3×(6+n), Cq ∈ IRn×(6+n)

and gp ∈ IR3, gφ ∈ IR3 and gq ∈ IRn.

3. KINEMATIC CONTROL SCHEME

A two-layer control scheme is proposed: on the top layer,
an inverse kinematics algorithm computes, based on the
desired end-effector trajectory, the motion references for
the quadrotor controlled variables and for the arm joints,
then, in the bottom layer, a motion control is designed in
such a way to track the reference trajectories output by
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Fig. 2. Block scheme of the control architecture

the top layer (Fig. 2). In the following, it is assumed that
dim{ζ} = n+4 ≥ dim{ve} = 6, i.e., the number of DOFs
characterizing the vehicle-manipulator system is, at least,
equal to the dimension of the assigned task.

3.1 Inverse Kinematics

The time derivative of the differential kinematics (9),

v̇e=J̇ζ(σb,ζ)ζ̇+Jζ(σb,ζ)ζ̈+J̇σ(σb,ζ)σ̇b+Jσ(σb,ζ)σ̈b, (13)

is considered to derive a second order closed-loop inverse
kinematics algorithm (Caccavale et al., 1997), in charge of
computing the trajectory references for the motion control
loops at the bottom layer

ζ̈r=J
†
ζ (σb,ζ) (v̇e,d +Kv(ve,d−ve)+Kpe)− (14)

J
†
ζ (σb,ζ)

(
J̇ζ(σb,ζ)ζ̇+Jσ(σb,ζ)σ̈b+J̇σ(σb,ζ)σ̇b

)
,

where J†
ζ = Jζ

T
(
JζJζ

T
)−1

is a right pseudoinverse of Jζ ,
Kv and Kp are symmetric positive definite gain matrices,
e is the kinematic inversion error between the desired end-
effector pose xe,d and the actual pose xe computed via
the direct kinematics on the basis of ζ and σb. If the unit
quaternions are used for the end-effector orientation, the
error can be computed as (Chiaverini and Siciliano, 1999)

e =

[
eP
eO

]
=

[
pe,d − pe(σb, ζ)
Re,d ǫ̃(σb, ζ)

]
, (15)

where ǫ̃ is the vectorial part of the unit quaternion ex-
tracted from the mutual orientation matrixRT

e,dRe(σb, ζ).
If n + 4 > 6 the system is kinematically redundant and
the redundant DOFs can be exploited to fulfill secondary
tasks, otherwise, if no secondary tasks are required, the
internal motions, i.e, motions of the structure that do
not change the end-effector pose, must be stabilized via
a suitable designed damping term to be projected onto
the null space of Jζ (Hsu et al., 1988).

3.2 Motion Control

Once ζr and its derivatives are computed by (14), they are
fed to the motion control to achieve the desired motion.
The proposed controller is an extension of that in Arleo
et al. (2013), in turn, it is a hierarchical inner-outer
loop control scheme: the outer loop is designed to track
the vehicle reference position; then, by using the relation
between the force vector uf and the quadrotor attitude,
a reference value for the roll and pitch angles is devised
and fed to the attitude controller (inner loop). Finally, a
controller for the arm joint positions is designed.

In order to globally linearize the closed-loop dynamics, the
following adaptive control law can be considered

u = M(ξ)α+C(ξ, ξ̇)ξ̇ + g(ξ) + d̂(ξ, ξ̇) , (16)

where the auxiliary input α can be partitioned according
to (11) as α =

[
αp

T αφ
T αq

T
]
T, with αφ = [αψ αθ αϕ]

T.

The term d̂ =
[
d̂p

T d̂φ
T d̂q

T
]
T is an estimate of the

disturbance d in (10).

The auxiliary controls αq and αp and αψ can be chosen as

αq = q̈r +Kq,V (q̇r − q̇) +Kq,P (qr − q) , (17)

αp = p̈r +Kp,V (ṗr − ṗ) +Kp,P (pr − p) , (18)

αψ = ψ̈r + kψ,V (ψr − ψ̇) + kψ,P (ψr − ψ) , (19)

where K∗,V ,K∗,P (∗ = {q, p}) are symmetric positive
definite matrices and kψ,V , kψ,P are positive scalar gains.

Quadrotor position controller. On the basis of (16), the
following expression of uf can be derived

uf = Mppαp+Mpφαφ+Mpqαq+Cpξ̇+gp+ d̂p. (20)

This expression does not allow to compute uf , since
it includes the control αφ, whose computation requires
references values for roll and pitch angles, not available at
this stage. To overcome this problem, let us replace the
matrix M in (16) with the matrix M , obtained by setting
to zero the second and third columns of Mpφ, namely

Mpφ=[mpφ 03 03 ]. Thus, uf can be computed as

uf = Mppαp+mpφαψ +Mpqαq +Cpξ̇+ gp + d̂p. (21)

It can be noted that, since the manipulator links are much
lighter than the vehicle body, the elements of matrix Mpφ

are often negligible with respect to those of Mpp (Arleo
et al., 2013). Therefore, in practice, uf in (21) is very close
to the ideal control input computed in (20).

In view of (11), uf depends on the attitude of the
quadrotor via the relation

uf =h(fz ,σb) ⇒

[
uf,x
uf,y
uf,z

]
=

[
(cψsθcϕ + sψsϕ) fz
(sψsθcϕ − cψsϕ) fz

cθcϕfz

]
. (22)

Therefore, the total thrust, fz, and reference trajectories
for the roll and pitch angles to be fed to the inner loop can
be computed as

fz = ‖uf‖, (23)

θr = arctan

(
uf,xcψ + uf,ysψ

uf,z

)
, (24)

ϕr = arcsin

(
uf,xsψ − uf,ycψ

‖uf‖

)
. (25)

Remark 1. It is worth noticing that (24)–(25) are not well
defined if ‖uf‖ vanishes, but from (22) it can happen only
if fz=0, namely in presence of total thrust null. Moreover,
they imply that both θr and φr are defined in (−π/2 π/2):
this is a reasonable assumption for quadrotor vehicles.

Quadrotor attitude control. Once the reference value for
roll and pitch angles have been computed, the control
inputs αθ and αϕ can be obtained via

αθ = θ̈r + kθ,V (θ̇r − θ̇) + kθ,P (θr − θ) , (26)

αϕ = ϕ̈r + kϕ,V (ϕ̇r − ϕ̇) + kϕ,P (ϕr − ϕ) , (27)

where kθ,P , kθ,V , kϕ,P and kϕ,V are positive scalar gains. It
is worth noticing that (26) and (27) require the knowledge
of the time derivative of θr and ϕr, that can not be directly
obtained by (22), but only via numerical differentiation.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11051



Since in a practical scenario θr and ϕr are likely to be
affected by noise, it can be realistic compute the reference
velocities (θ̇r and ϕ̇r) by using suitable filters but their
derivative can be very noisy, thus it is possible to modify
(26) and (27) by adopting simple PD control laws as

ᾱθ = kθ,V (θ̇r − θ̇) + kθ,P (θr − θ) , (28)

ᾱϕ = kϕ,V (ϕ̇r − ϕ̇) + kϕ,P (ϕr − ϕ) . (29)

Finally, uµ can be computed as

uµ = Mpφ
Tαp+Mφφαφ+Mφqαq+Cφξ̇+gφ+d̂φ, (30)

and, from (11), the vehicle torques as

µbb = RT
b (φb)T

−T(φb)uµ. (31)

Computation of quadrotor inputs. Once fz and µbb have
been computed, the four actuation forces of the vehicle
rotors can be easily obtained by inverting the (12).

Manipulator control. Finally, the torques acting on the
manipulator joints can be computed as

uq = MT
pφαp+MT

φqαφ+Mqqαq +Cqξ̇+ gq + d̂q. (32)

3.3 Uncertainties estimation

By considering the control law (21) in lieu of (20), and
the input ᾱφ = [αψ, ᾱθ, ᾱϕ]

T in lieu of αφ, the closed-loop
dynamics is

ξ̈ = α−∆α−M(ξ)−1
(
∆Mᾱ+ d− d̂

)
, (33)

where ∆M(ξ) = M (ξ) −M(ξ), and ∆α = α − ᾱ, with
ᾱ = [αp

Tᾱφ
Tαq

T]T.

Thus, the compensation term d̂ has to take into account
not only the modeling uncertainties, d, but also the
perturbation given by the practical implementation of the
control law, namely the use of M and ᾱ instead of M and
α in (16). To this aim, let us rearrange the (33) as

ξ̈ = α− δ + δ̂ = α− δ̃, (34)

where

δ = ∆α+M (ξ)−1 (∆M ᾱ+ d) , δ̂ = M (ξ)−1d̂.

A good approximations of the term δ can be obtained by
resorting to a parametric model, i.e.,

δ = Λ(ξ)χ+ ς, (35)

where Λ is a regressor matrix, χ is a vector of constant
parameters and ς is the interpolation error. Of course,
not all uncertainties can be rigorously characterized by
a linear-in-the-parameters structure, however, this mod-
eling assumption is not too restrictive, since it has been
demonstrated that it is valid for a wide class of functions
(Caccavale et al., 2013). The elements of the regressor
matrix can be chosen as Radial Basis Functions (RBFs)

λi,h(ξ) = exp

(
−

||ξ − ci,h||

2σ2

)
, (36)

where ci,h and σ are the centroids and the width of the
function, respectively. According to the Universal Interpo-
lation Theorem (Haykin, 1999), under mild assumptions,
any continuous function can be approximated by a RBF-
newtork with a bounded interpolation error ς.

Therefore, δ can be estimated via the estimate χ̂ of χ
obtained by designing the following update law

˙̂χ =
1

β
ΛTBTQ

[
ξ̃
˙̃
ξ

]
, (37)

where β is a positive scalar gain, Q is a symmetric and

positive definite matrix, B=[O6+n I6+n]
Tand ξ̃=ξr−ξ.

4. STABILITY ANALYSIS

To prove the stability of the closed-loop system, let us
consider the convergence to zero of both the kinematic
control outer loop and the motion control inner loop.

4.1 Inner loop

By considering (33), the following dynamics for the inner

loop error ξ̃ can be derived

¨̃
ξ = −ΩV

˙̃
ξ −ΩP ξ̃ + δ̃, (38)

where (for ∗ = V, P )

Ω∗ =

[
−Kp,∗ O3 O3

O3 −KΦ,∗ O3

On On −Kq,∗

]
,

Let us rearrange the (38) in the state space form by

considering z = [z1
T z2

T]T = [ξ̃T
˙̃
ξT]T and by assuming

ς = 0
ż = Ωz +Bδ̃ = Ωz +BΛχ̃, (39)

where χ̃ = χ − χ̂ and Ω =

[
O6+n I6+n

−ΩV −ΩP

]
. In order

to analyze the stability of the system (39), the following
Lyapunov candidate function could be considered

Vi =
1

2
zTQz +

β

2
χ̃

T
χ̃. (40)

The time derivative of Vi yields

V̇i = −zTP zz + zTQBΛχ̃+ β ˙̃χ
T
χ̃, (41)

where P z = −(QΩ+ΩTQ) is the symmetric and positive
definite solution of the Lyapunov equation that always
exists since Ω is Hurwitz. By assuming the parameter χ
constant or, at least, slowly-varying, and by considering
the update law (37), V̇i can be rewritten as

V̇i = −zTP zz + zTQBΛχ̃− β ˙̂χ
T
χ̃ = −zTP zz. (42)

Since P z is positive definite, V̇i is negative semi-definite;
this guarantees the boundedness of z and χ̃. By invoking
the Barbalat’s lemma (Khalil, 1996), it can be recognized

that V̇i → 0, which implies the global asymptotic con-
vergence to 0 of z as t → ∞, while, as usual in direct
adaptive control (Aström and Wittenmark, 1995), χ̃ is
only guaranteed to be uniformly bounded, i.e., ‖χ̃| ≤ χ.

Moreover, if the persistency of excitation (PE) condition
is fulfilled (Aström and Wittenmark, 1995) both z and χ̃
are exponentially convergent to 0.
In the presence of bounded estimation error ς the PE
ensures that both z and χ̃ are bounded, while if PE cannot
be met, to ensure the boundedness of χ̃ the update law
(37) can be modified by adopting the so-called projection
operator (Aström and Wittenmark, 1995).
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4.2 Kinematic control outer loop

Under the assumption of perfect acceleration tracking (i.e.

ζ̈ = ζ̈r), by substituting (14) in (13), the following holds

v̇e,d − v̇e = −Kv (ve,d − ve)−Kpe. (43)

Let us consider, the following inverse kinematics error

ε =

[
εP
εO

]
, εP =

[
eP
ėP

]
, εO =

[
eO
ω̃e

]
, (44)

where eP and eO are defined in (15), while ω̃e = ωe,d−ωe.
To prove the symptotic stability of the equilibrium point
ε = 0 let us consider the following candidate Lyapunov
function (Chiaverini and Siciliano, 1999)

Vo=(ηd−η)
2+(ǫd−ǫ)T(ǫd−ǫ)+ ω̃

T
e ω̃e+εTPQPεP , (45)

where η (ηd) and ǫ (ǫd) are the scalar part and the vector
part of the unit quaternion representing the end-effector
(desired) orientation and QP is a symmetric and positive
matrix. The time derivative of Vo is given by

V̇o = −eTOKp,OeO − 2ω̃T
eKv,Oω̃e − 2ω̃T

eKp,OeO

+εTP

(
QPAP +AT

PQP

)
εP ,

(46)

where K∗,O (∗ = v, p) is the matrix including the last
three row of matrix K∗, and

AP =

[
O3 I3

−Kp,P −Kv,P

]
.

with K∗,P (∗ = v, p) the matrix including the first three
row of matrix K∗. Since AP is Hurwitz, always exists a
matrix P P , symmetric and positive definite, solution of
the Lyapunov equation in (46), hence

V̇o ≤ −λm(Kp,O)‖eO‖
2 − 2λm(Kv,O)‖ω̃e‖

2

+2λM (Kp,O)‖ω̃e‖‖eO‖ − λm(P P )‖eP ‖
2

≤ −

[
‖eO‖
‖ω̃e‖

]T
Ξ

[
‖eO‖
‖ω̃e‖

]
− λm(P P )‖eP ‖

2,

(47)

with

Ξ =

[
λm(Kp,O) −λM (Kp,O)
−λM (Kp,O) 2λm(Kv,O)

]
,

and λm(·) and λM (·) representing the minumum and
maximum eigenvalue of a matrix. If the following holds

λm(Kv,o) >
λ2M (Kp,o)

2λm(Kp,o)
, (48)

matrix Ξ is positive definite, therefore V̇o can be upper
bounded as

V̇o ≤ −λm(Ξ)‖εO‖
2 − λm(P P )‖εP ‖

2 ≤ −λε‖ε‖
2, (49)

where λε = min {λm(Ξ), λm(P P )}.

Thus, since V̇o is negative definite the error ε is asymptot-
ically convergent to zero.

4.3 Two-loops dynamics

Under the assumption of perfect acceleration tracking,
for the two-loops dynamics, by considering the following
Lyapunov candidate function

V = Vo(ε) + Vi(z), (50)

it is straightforward derived from (42) and (47) that V̇ is
negative definite and both ε and z are globally asymp-
totically convergent to zero. Moreover the convergence is
exponential in the absence of interpolation error (ς = 0)
and in the presence of PE for the regressor Λ.

However, in practice the inner loop cannot guarantee in-
stantaneous perfect tracking of the desired joint acceler-

ation, therefore by considering the error
¨̃
ζ = ζ̈r − ζ̈, the

(43) becomes

v̇e,d − v̇e = −Kv (ve,d − ve)−Kpe+ Jζ
¨̃
ζ . (51)

The perturbation term Jζ
¨̃
ζ can be upper bounded as

‖Jζ
¨̃
ζ‖ ≤ ‖Jζ‖‖

¨̃
ζ‖ ≤ ‖Jζ‖‖ż2‖ ≤ ‖Jζ‖

(
‖Ω‖‖z‖+ ‖δ̃‖

)
.

Since, in the presence of PE and in the absence of interpo-
lation error, it can be viewed as a vanishing perturbation,
by resorting to Lemma 9.1 in Khalil (1996) it can be
stated that the equilibrium point {ε = 0, z = 0}, is
again exponentially stable. On the contrary, if the PE
condition cannot be met and/or bounded interpolation

error (‖ς‖ ≤ ς) is present, Jζ
¨̃
ζ can be seen as a bounded

non-vanishing perturbation and the errors ε and z are only
bounded (Lemma 9.2 in Khalil (1996)).

5. SIMULATION RESULTS

The proposed algorithm has been tested in simulation by
using the Matlab/SimMechanics c© environment and by
considering a quadrotor equipped with a 5-DOF robotic
manipulator with all revolute joints. In the simulation
model, to set both the dynamic parameters (mass and
inertia moments) and the Denavit-Hartenberg parameters
for the robotic arm, the values used in Arleo et al. (2013)
have been considered. In order to simulate the model
uncertainties, d, only a nominal estimate of the inertia
matrix has been considered available for the controller,
namely its elements are assumed to be equal to 0.9 times
their true values.

In order to simulate a realistic scenario, it has been as-
sumed that only vehicle position, orientation and Euler
angles’ rate, as well as, manipulator joint position mea-
surements are available. Linear velocities, joint velocities
and angular accelerations measurements for roll and pitch
angles, σ̈b, have been obtained via a first-order filter with
a time constant of 0.03 s, from the available positions and
velocities measurements. All the measured data have been
considered available at a frequency rate of 250 Hz. More-
over, a normally distributed measurement noise has been
added to the available signals: in detail for vehicle position
the noise has mean of 10−3 m and standard deviation of
5 ·10−3m, for vehicle orientation the mean is 10−3 rad and
the standard deviation is 10−3 rad, for the attitude rates
the mean is 5 ·10−3 rad/s and the standard deviation is
5 ·10−3 rad/s and for the joint position the mean is 10−4

rad and the standard deviation is 5·10−4 rad. The controller
parameters are summarized in Table 1.

The end-effector is tasked to follow the 3D trajectory
reported in Fig. 3. At the end of the path an hovering
phase of 5 s is commanded. Moreover, a rotation of π/5
rad along roll, pitch and yaw axes is required as well.

Table 1. Controller parameters

Gain Value Gain Value

Kp,P , Kp,V 12 · I3, 5 · I3 Kq,P , Kq,V 140I5, 20I5

kψ,P , kψ,V 8, 3 kθ,P , kθ,V 2, 1
kϕ,P , kϕ,V 2, 1 Kp, Kv 7.5I6, 0.6I6

β 4 – –
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Fig. 3. 3D desired trajectory of the end-effector.
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Fig. 4. End-effector pose error norm.
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Fig. 5. Norm of the motion control errors, with (blue line)
and without (red line) the adaptive term

Fig. 4(a) and Fig. 4(b) depict the norm of the end-effector
pose error between the desired and the actual trajectory:
it can be seen that the controller guarantees good tracking
capabilities since the maximum errors are comparable with
the measurement noise. The motion control errors are
shown in Fig. 5: it represents the norm of the position
and orientation errors relative to the UAV (Fig. 5(a)–
5(b)), as well as the norm of joint errors Fig. 5(c). More in
details, the figures show a comparison between the error

obtained by set to zero the adaptive term, δ̂, and that
obtained by using the adaptive term: it can be recognized
that the adaptive term improves the attitude and the
position control of the quadrotor, while the manipulator
joint controller is almost insensitive to it. This is due both
to the presence of M and ᾱ that affect only the vehicle
dynamics, and to the fact that the link are very lightweight
and the uncertainties on matrixM do not compromise the
joint controller performance.
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