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Abstract: The reconstruction of environmental events has gained increased interest in the
recent years. In this paper, the focus is on estimating the location and strength of a gas release
from distributed measurements. The estimation is formulated as Bayesian inverse problem,
which utilizes a Gaussian plume forward model. A novel recursive estimation algorithm based
on statistical linearization and Gaussian mixture densities with adaptive component number
selection is used in order to allow accurate and computationally efficient source estimation
at the same time. The proposed solution is compared against state-of-the-art methods via a
simulations and a real-word experiment.

1. INTRODUCTION

If a hazardous gas has been released—either accidentally
or deliberately—into atmosphere, it is of paramount im-
portance to gain knowledge of this event at an early stage
in order to increase the effectiveness of counter measures
for protecting the public and for mitigating the harm-
ful effects. By means of so-called atmospheric dispersion
models (ADMs), it is possible to predict the concentra-
tion spread of the released gas in space and time. These
models, however, merely provide reliable predictions if the
characteristics of the gas source are known precisely. To
determine or estimate the source characteristics it neces-
sary to solve an inverse problem, where one has to infer the
location and strength of the gas release from concentration
measurements of spatially distributed sensors.

In general, solution methods of the source estimation prob-
lem can be classified into forward and backward meth-
ods (Rao [2007]). Forward methods employ an forward-
running ADM multiple times in order to find an estimate
of the source that best describes the given concentration
measurements. Here, the mostly used techniques are based
on Bayesian inference in combination with Monte Carlo
sampling. Sequential Monte Carlo methods as described in
Sohn et al. [2002] or Zhang and Wang [2013] employ a set
of samples or particles that forms the posterior probability
distribution of the source parameters. This distribution
is updated by means of Bayes’ rule whenever new con-
centration measurements from sensors are available. In
contrast to this online procedure, Markov chain Monte
Carlo (MCMC) methods process all acquired concentra-
tion measurements in a batch in order to determine the
posterior distribution. For this purpose, samples are drawn
from the posterior distribution by simulating a Markov
chain that has the desired posterior distribution as its sta-
tionary distribution. Given a properly constructed Markov
chain it can be shown that MCMC reaches the stationary
distribution after a typically large number of sampling
steps. Application of MCMC to source estimation can be

found for instance in Senocak et al. [2008], Borysiewicz
et al. [2012], and Hirst et al. [2013].

Backward methods instead perform only one model run
in the reverse direction from the sensors to the source.
Commonly used techniques are backtracking, where an
inverse version of an ADM is utilized (see e.g. Hourdin
and Talagrand [2006]), and variational methods, where a
cost function between model predictions and concentration
measurements is optimized (see e.g. Stockie [2011], Rudd
et al. [2012]). The backward approach is preferred over
forward methods, when the number of sources is larger
than the number of sensors (Rao [2007]).

In this paper, a novel forward approach is proposed that
aims at performing on-line source estimation, i.e., the
current source estimate is updated at run-time whenever
sensors provide new concentration measurements. For this
purpose, a Gaussian plume dispersion model is employed
that allows predicting the gas dispersion in closed form
with low computational overhead. This forward model is
employed in a recursive Bayesian inference framework to
allow for uncertainties arising from modeling errors and
sensor noise. The resulting statistical inverse problem,
however, cannot be solved in closed form due to nonlinear-
ities in the Gaussian plume model. To overcome this issue,
the so-called adaptive Gaussian mixture filter (AGMF)
proposed in Huber [2011] is employed. Here, the poste-
rior distribution is approximated via a sum of Gaussians,
which is known to be a universal function approximator
(Maz’ya and Schmidt [1996]). To limit the computational
demand but still perform accurate estimation, the number
of Gaussian components is adapted at run-time depending
on the nonlinearity of the dispersion model.

The paper is structured as follows: In the next section,
a general ADM and its special case, the Gaussian plume
model, are introduced. The recursive Bayesian estimation
problem is stated in Section 3, while Section 4 describes the
AGMF. A comparison of the proposed source estimation
method with state-of-the-art is provided in Section 5,
followed by a conclusion in Section 6.
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2. PROBLEM FORMULATION

In this section, a physical model describing the spatial
dispersion of a substance in atmosphere is derived. It
models the transportation of a substance from an emitting
source to regions of low concentration under consideration
of various environmental conditions.

2.1 General Dispersion Model

In the following, c(x, t) is the concentration of the sub-
stance at position x = [x, y, z]T ∈ R3 and at time t ≥ 0.
The concentration follows the advection-diffusion equation

∂c(x, t)

∂t
= ∇ ·

(
K∇c(x, t)− v · c(x, t)

)
+ s(x, t) (1)

with ∇ , [∂/∂x, ∂/∂y, ∂/∂z]T (see e.g. Holzbecher [2012]).
The term K∇c(x, t) describes the diffusion according to
Fick’s law with diffusion matrix K(x, t) and the term
v · c(x, t) represents linear advection due to wind with
velocity v(x, t). Finally, s(x, t) is a source or sink term.

Analytical solutions of (1), i.e., functions c(x, t) satisfying
the equation, exist merely for some special cases. In the
following, one important special case utilized throughout
the paper is introduced.

2.2 Gaussian Plume

In order to obtain a closed-form solution, it is necessary
to make several assumptions:

(i) The substance is emitted at a constant rate q > 0 from

a single point source at location xs , [xs, ys, zs]
T. Thus,

the source term s(x, t) in (1) becomes

s(x, t) = q · δ(x− xs) · δ(y − ys) · δ(z − zs) ,

where δ(x− xs) is the Dirac delta localized at xs.

(ii) The wind is constant with velocity v ≥ 0 and the
wind direction draws an angle φ with the x-axis so that
v = v · [cosφ, sinφ, 0]T.

(iii) The diffusion is a function of the downwind distance
only. Furthermore, it is assumed that the diffusion in wind
direction can be neglected.

(iv) The terrain is flat and the ground cannot be pene-
trated by the substance.

(v) The solution is steady state, i.e., time independent.

Based on these assumptions and additional boundary
conditions that force vanishing concentrations at infinite
distance from the source and at upwind distances, (1) has
the time-invariant solution

c(x) = q
2π · v ·σyσz

· exp
(
− (1+2 sin(φ) cos(φ)) · (y−ys)2

2σ2
y

)
·
[
exp
(
− (z−zs)2

2σ2
z

)
+ exp

(
− (z+zs)

2

2σ2
z

)]
,

(2)

which is the well-known Gaussian plume dispersion model
(for a detailed derivation see Stockie [2011]). Here, σy and
σz are the so-called standard deviations of the Gaussian
concentration distribution. They are both functions of x,
y, φ and they depend on the stability of the atmosphere.

The Gaussian plume model (2) is employed as it is widely
used and suitable for describing short range substance
releases. Furthermore, being an analytical model, it allows
for an on-line and computationally light-weight estimation
of the unknown parameters.

In this paper, the focus is on estimating the source rate q
and location xs from a set of spatially distributed con-
centration measurements. It is assumed that the measure-
ments become available sequentially over time, i.e., batch
or off-line estimation is impractical. Additional parameters
like wind speed or direction are assumed to be known,
as they can be provided reliably from external sources
like weather stations. However, the approach proposed in
this paper can be easily extended to estimate also these
additional parameters.

3. RECURSIVE ESTIMATION

The Gaussian plume model forms an instance of a so-called
forward model

z = g(θ) , (3)

where the output or observations z are defined based on
physical transformations g(.) and model parameters θ.
In the considered problem, z corresponds to a set of
concentration measurements, g is the Gaussian plume

model (2), and θT ,
[
q, xTs

]
comprises the source rate

as well as the source location.

As the goal is to determine the parameters θ, an inverse
problem of (3) needs to be considered, where θ is estimated
given the observed concentrations z. Inverse problems are
typically difficult to solve: they are often ill-conditioned,
ambiguities exist—the observations z can be explained by
different parameters θ—, and an inverse transformation
g−1 often is not available.

3.1 Bayesian Estimation

For solving inverse problems, deterministic or probabilistic
approaches can be applied. In this paper, a probabilistic
approach employing Bayesian inference is considered. In
doing so, uncertainties arising for instance from sensor
noise or modeling errors can be incorporated.

According to Bayes’ theorem (see e.g. Särkkä [2013]),
the so-called posterior density p(θ|z) of θ is calculated
according to

p(θ|z) =
p(z|θ) · p(θ)

p(z)
, (4)

which is the conditional probability of the unknown model
parameters given the measurements. This density function
represents the solution of the inverse problem. In (4),
p(z|θ) is the likelihood, p(θ) is the prior density, and
p(z) = ∫ p(z|θ) · p(θ) dθ is a normalization constant.

By inspecting (4) it can be seen that all concentration mea-
surements are processed at once. Under weak assumptions
however, Bayes’ theorem also allows an recursive calcula-
tion of the posterior distribution. This is especially useful,
when the concentration measurements zk are acquired over
time at discrete time steps tk with k = 1, 2, . . . and one is
interested in constantly updating the posterior. Assuming
that the concentration measurements zk are conditionally
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independent given the model parameters, (4) can be re-
formulated in a recursion

p(θ|z1:k) =
p(zk|θ) · p(θ|z1:k−1)

p(zk|z1:k−1)
(5)

which commences from the prior p(θ) and where z1:k ,
(z1, z2, . . . , zk) is the collection of all measurements up to
and including zk.

3.2 Measurement Model

While the prior reflects the a priori knowledge of the user
on the source, the likelihood p(zk|θ) relates a concentration
measurement to the unknown source parameters. In order
to define the likelihood, one can make use of the Gaussian
plume model derived above, assuming that this model
represents the underlying dispersion mechanism. For this
purpose, suppose that the k-th measurement zk is acquired
by a sensor at location xr , [xr, yr, zr]

T at time tk. The
resulting measurement model is given by

zk = c(xr; θ) + vk , vk ∼ p(vk) , N (0, σ2
v

)
, (6)

where c(xr; θ) is the true concentration value according
to (2) and vk is the sensor’s noise, which is assumed to be
zero-mean Gaussian with variance σ2

v and independent in
time and space. The measurement model (6) can be turned
into a statistical model according to

p(zk|θ) =

∫
p(zk|vk, θ)︸ ︷︷ ︸

δ(zk−c(xr;θ)−vk)

· p(vk) dvk = N
(
zk; c(xr; θ), σ

2
v

)
,

(7)

where the second equality follows from the sifting property
of the Dirac delta distribution δ(.). This completes the
derivation of the Bayesian estimation formalism.

It is worth mentioning that in case of multiple sources, the
concentration measurement can be written as

zk =

N∑
i=1

ci(xr; θi) + vk , (8)

where the superposition of the concentration values
ci(xr; θi) of the sources i = 1, . . . , N is exploited (see
Stockie [2011]). The likelihood for multiple sources can be
derived analogously as described above.

3.3 Approximate Estimation

Unfortunately, the Bayesian formalism in (5) is merely
of limited practical use as a closed-form solution of the
recursion is not available in general. Except for some
special cases like the linear Gaussian one, an approximate
solution is inevitable. This holds also for the considered
source estimation problem due to the nonlinear Gaussian
plume model (2) that forms the likelihood. Typical ap-
proximations of nonlinear Bayesian estimation problems
rely on Monte Carlo methods like particle filters (see e.g.
Arulampalam et al. [2002]). However, the obtained results
are not reproducible and scaling for high dimensional
parameters is an issue. Alternatives are Gaussian filters
like the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) (see e.g. Särkkä [2013]), where the
posterior is approximated by means of a Gaussian distri-
bution. These approaches scale well with high dimensions,
but the approximation can be poor in case of strong

Linearization stop?

Splitting

Filtering Reduction

k → k−1

5
3p(θ)

p(θ|z1:k)p(θ|z1:k−1)

zk

Fig. 1. Flow chart of the adaptive Gaussian mixture filter.

nonlinearities. In this paper, an approximate Bayesian es-
timator named adaptive Gaussian mixture filter (AGMF)
is employed that provides Gaussian mixture posteriors. As
a result, significantly better approximations compared to
Gaussian filters are obtained with an at the same time low
computational demand and good scalability.

4. ADAPTIVE GAUSSIAN MIXTURE FILTER

In this section, a brief introduction of the AGMF proposed
by Huber [2011] is given. It provides a Gaussian mixture
representation of the posterior p(θ|z1:k) according to

p(θ|z1:k) =

L∑
i=1

ωk,i · N
(
θ; θ̂k,i,Ck,i

)
,

where L is the number of mixture components, ωk,i are

non-negative weights summing up to one, and θ̂k,i, Ck,i

are the mean and covariance matrix, respectively, of the
i-th Gaussian component. By substituting this mixture
representation into the Bayesian recursion (5), one has to
evaluate two terms: the product of the Gaussian mixture
with the likelihood (7) and the integration required for
the normalization constant p(zk|z1:k−1). In order to obtain
the desired quantities, the AGMF performs four steps as
depicted in Fig. 1: linearization, splitting, filtering, and
reduction. Each step is explained in the following, where
the time index k is omitted for improved readability.

4.1 Statistical Linearization

The product of likelihood and mixture boils down to mul-
tiple products between the likelihood and each Gaussian
component of the mixture. These individual products also
appear in standard nonlinear Gaussian filters like the EKF
or UKF. The AGMF utilizes the same technique also used
in the UKF in order to provide an approximate solution of
the individual products. By means of so-called statistical
linearization, the nonlinearity inducted by the Gaussian
plume model is transformed into a linear one, i.e., the
nonlinear model (6) is approximated by means of the linear
model

z ≈ Hi · θ + bi + v . (9)
The terms Hi and bi are obtained via statistical lin-
ear regression, where the Gaussian plume model c(.) is

evaluated at a set of weighted regression points L ,{
α
(i)
j , θ

(i)
j

}
j=0...N

with non-negative weights α
(i)
j . The re-

gression points are drawn deterministically from the i-th
Gaussian component in such a way that sample mean and

covariance of L coincide with the mean θ̂i and covari-
ance Ci. The solution of the linear regression yields

Hi =
(
Cθz

)T
C−1i and bi = ẑ −Hi · θ̂i (10)
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for the required terms in (9), where L is used to approxi-
mate the mean and cross-covariance of z according to

ẑ ≈
N∑
j=0

α
(i)
j · z

(i)
j , Cθz ≈

N∑
j=0

α
(i)
j ·
(
θ
(i)
j − θ̂

)
·
(
z
(i)
j − ẑ

)T
,

respectively, with z
(i)
j = c

(
.; θ

(i)
j

)
for j = 0 . . . N . The

terms in (10) minimize the square of the error

ei , c(.; θ)−Hi · θ − bi (11)

in such a way that the error has zero mean and variance

σ2
e,i = σ2

z,i −HiCiH
T
i − σ2

v , (12)

where σ2
z,i ≈

∑
j α

(i)
j ·
(
z
(i)
j − ẑ

)(
z
(i)
j − ẑ

)T
+σ2

v . The error

variance (12) gives a good indication of the linearization
error as it is merely zero iff c(.) is affine. The Gaussian
plume model approaches an affine function with an in-
creasing distance between the sensor location xr and the
gas source.

4.2 Splitting

As statistical linearization (9) has to be performed for
every component of the Gaussian mixture p(θ|z1:k−1), it is
called local linearization in the following. It typically pro-
vides a better estimation performance compared to a single
global linearization (see Alspach and Sorenson [1972]). A
further performance improvement can be achieved by in-
creasing the number of mixture components. It was proven
in Ali-Löytty [2009] that Gaussian mixture filters relying
on a local linearization converge towards the optimal esti-
mate when increasing the component number.

The AGMF adds additional components to the mixture
by splitting existing ones, i.e., an existing component
is replaced by several new components that share some
statistics with the original component and that have
lower weights and covariances. To select a component for
splitting, AGMF takes the local linearization error induced
by each component into account. Here, the statistical
linearization described above already provides a measure
via the error variance σ2

e in (12). Besides the linearization
error, also the importance of a mixture component, which
is given by its weight ωi, is crucial. Both ingredients are
combined in the so-called selection criterion

i∗ = arg min
i=1...L

{si} , si , ωγi ·
(
1− exp(−σ2

e,i)
)1−γ

(13)

in order to select component i∗ for splitting. Here, the
term 1 − exp(−σ2

e,i) normalizes the error σ2
e,i of the i-th

component to the interval [0, 1]. The criterion considers
the component weight and linearization error through a
geometric interpolation with parameter γ ∈ [0, 1], where
for γ = 0 only the linearization error is the determining
factor and for γ = 1 it is the weight.

In order to trade the reduction of the linearization error off
against controlling the computational load and the growth
of the number of components, the Gaussian component
selected for splitting is replaced by two Gaussians only in
each splitting round. As splitting is performed recursively
by the AGMF, the newly introduced components can be
split again in the next rounds if the linearization error is
still too high.

Let ω · N (θ; θ̂,C) be the component considered for split-
ting. It is replaced by two components according to

ω · N (θ; θ̂,C) ≈
2∑

n=1

ωn · N (θ; θ̂n,Cn) ,

with parameters

ω1 = ω2 = ω
2 ,

θ̂1 = θ̂ +
√
λ ·µ · ε , θ̂2 = θ̂ −

√
λ ·µ · ε ,

C1 = C2 = C− λ ·µ · ε εT ,

(14)

where µ ∈ [−1, 1] is a free parameter. The parametrization
in (14) ensures moment preservation, i.e., the original
Gaussian component and its split counterpart have the
same mean and covariance. Furthermore, λ and ε in (14)
are a particular eigenvalue and eigenvector, respectively,
of C. Splitting is merely performed along eigenvectors
of C, which is computationally cheap and numerically
stable compared to arbitrary splitting directions. Among
all possible eigenvectors, the one is chosen that currently
induces the highest error according to (11), i.e., splitting is
performed along the eigenvector where the Gaussian plume
model posses the strongest nonlinearity.

As indicated in Fig. 1, in every splitting round a stopping
criterion is evaluated. Splitting stops, if at least one of the
three following thresholds is reached:

Error threshold : The value si in the selection crite-
rion (13) drops below smax ∈ [0, 1] for every component.

Component threshold : The number of mixture compo-
nents excels Lmax.

Deviation threshold : The deviation between the original
Gaussian mixture p(θ) and the mixture obtained via
splitting p̃(θ) excels dmax ∈ [0, 1].

The deviation considered for the latter threshold is de-
termined by means of the normalized integral squared
distance measure

D
(
p(θ), p̃(θ)

)
=

∫
(p(θ)− p̃(θ))2 dθ∫

p(θ)2 dθ +
∫
p̃(θ)2 dθ

∈ [0, 1] .

Since splitting always introduces an approximation error
to the original mixture, continuously monitoring the devi-
ation limits this error.

4.3 Filtering

Let ωsi · N (θ; θ̂
s

i ,C
s
i ) be the Gaussians resulting from

splitting with i = 1 . . . Ls and Ls ∈ [L,Lmax] ⊂ N. Given
the concentration measurement zk, the recursive Bayesian
update according to (5) boils down to a bank of Kalman
filter updates thanks to the locally linearized models (9).
Thus, the update of each (prior) Gaussian component gives
rise to the parameters of the corresponding component of
the posterior Gaussian mixture p(θ|z1:k) according to

ωi = c ·ωsi · N (zk; ẑi, σ
2
z,i) ,

θ̂i = θ̂
s

i + Ki · (zk − ẑi) ,

Ci = Cs
i −KiHiC

s
i ,

(15)

with predicted measurement ẑi = Hi · θ̂
s

i + bi, Hi and
bi according to (10), Kalman gain Ki = Cs

iH
T
i /σ2

z,i, and

innovation variance σ2
z,i = HiC

s
iH

T
i + σ2

v + σ2
e,i with σ2

e,i

being the linearization error variance (12). In the calcula-
tion of the weight ωi in (15), c = 1/

∑
i
ωs

i ·N (zk;ẑi,σ
2
z,i) is a

normalization constant.
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Fig. 2. Source estimate by AGMF based on the data from the Indianapolis field study. (a) The red dashed line marks the
trajectory of the estimated source location [x, y]T, whereas the true location of the source is marked by the black
cross. Circular markers denote the sensor locations colored with the measured concentration in ppt. (b) Estimate of
source height z and emission rate q with increasing number of measurements. The shaded area denotes the 3-sigma
confidence region and the red line indicates the true value.

4.4 Reduction

As the number of components of p(θ|z1:k) grows due to
splitting, it is necessary to bound this growth in order
to reduce the computational and memory demand of
subsequent estimation steps. For this purpose, one can
exploit the redundancy and similarity of Gaussian compo-
nents. Furthermore, many components will have negligible
weights and thus, they can be removed without introduc-
ing significant errors. To reduce a Gaussian mixture, many
algorithms have been proposed in the recent years (see e.g.
West [1993], Runnalls [2007], Huber and Hanebeck [2008]).
Most of these algorithms require a reduction threshold
Lred � Ls to which the number of components of the
given Gaussian mixture has to be reduced. The reduction
to Lred components closes the calculation of the posterior
Gaussian mixture in (5) for time step k.

5. RESULTS

The estimation performance of the AGMF is assessed in
the following by means of real data in Section 5.2 and
by means of a synthetic example in Section 5.3. However,
as the AGMF is a generic estimator allowing specific
parametrization depending on the estimation task, the
selected setup is described first.

5.1 AGMF Parametrization

The three processing steps linearization, splitting, and
reduction allow specialized parametrization. For the sta-
tistical linearization, the selection of the regression points
is based on the scaled unscented transform (Julier and
Uhlmann [2004]). Hence, the points and their weights are
given by

θ0 = θ̂ , α0 = λ2−d
λ2 ,

θj = θ̂ + λ ·P j , αj = 1
2λ2 , j = 1 . . . d ,

θd+j = θ̂ − λ ·P j , αd+j = αj , j = 1 . . . d ,

with d being the dimension of θ, λ , ν ·
√
d+ κ being a

scaling factor, and P j being the j-th column of the matrix

P =
√
C, where the matrix square root is calculated

via the Cholesky decomposition. The free parameters in
λ are chosen to be ν = 1, β = 2, and κ = 0.5 in the
following experiments, which leads to equal weights α(j)

for all j = 0 . . . 2d.

Both the mixing parameter γ in the selection criterion (13)
and the displacement parameter µ in (14) are set to be
0.5. The thresholds for stopping component splitting are
chosen to be smax = 0 and dmax = 1, which actually
disables these thresholds. Only the threshold Lmax is
active, but set differently depending on the considered
experiment.

For reducing the Gaussian mixture after performing the
filtering step, the reduction algorithm proposed by Run-
nalls [2007] is employed as it provides a good trade-off
between computational demand and reduction error. The
reduction threshold Lred is set to be Lmax/8.

5.2 Indianapolis Field Study

In the first experiment, it is demonstrated how the pro-
posed source estimation solution performs on a real data
set. For this purpose, the data acquired during the EPRI
Indianapolis field study is considered, where a SF6 tracer
gas was released from a zs = 83.8 m stack at a power
plant in Indianapolis, Indiana, USA. Data was recorded
by 160 ground-level sensors over 19 days in September and
October 1985 for 8 to 9 hours every day. Details about the
field study and the data can be found in Hanna et al.
[1997].

In Fig. 2(a), the locations of the sensors and the sen-
sors’ concentration measurements are depicted for the 19th

September 1985. The source is located at the origin and
the emission rate of the tracer gas is q = 0.0041 g/s.
Information about wind speed, wind direction, and at-
mospheric stability was made available by meteorological
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q

Fig. 3. Bivariate posterior densities of the AGMF source
estimate. The diagonal plots are the univariate
marginal densities. Red crosses indicate the true
value, while white and black circles, respectively, de-
note the mean of the respective density.

observations. The initial estimate of the source at time
step k = 0 is given by a single Gaussian with mean

vector θ̂0 = [2000, 3000, 100, 0.033]T and covariance matrix
C0 = diag(106, 106, 500, 0.001). Fig. 2(a) and (b) show
the convergence of the source estimate towards the true
source location over time and with increasing number of
concentration measurements, respectively. It is important
to note that many sensor measurements (typically 60%-
70%) provide a concentration measurement of almost zero
as most of the sensors are outside the gas plume, as
can be seem in Fig. 2(a). This explains the discontinuous
convergence of the estimate and reduction of the variance
in Fig. 2(b).

The posterior density p(θ|z1:k) after all k = 1200 measure-
ments is depicted in Fig. 3. It can be seen that the mean of
the estimate is close to the true source parameters. Slight
deviation from the ground truth is only observed for the
emission rate, but the true parameters are still within the
high confidence region of the estimate. Thus, the proposed
estimator is not overconfident.

5.3 Simulation

In contrast to the previous experiment, a synthetic exam-
ple is considered here allowing the comparison with state-
of-the-art source estimation methods via Monte Carlo
simulations. In this example, the locations and emission
rates of two sources have to be estimated. Thus, the
measurement model (8) for N = 2 applies here. The
employed simulation parameters are listed in Table 1. The
standard deviations σy, σz of the Gaussian plume model
are assumed to take the form

σ(x) = a ·x · (1 + b ·x)−c (16)

Table 1. Simulation parameters, where U(a, b)
is a uniform distribution over the interval [a, b].

Parameter Distribution / Value

location 1st source xs,1, ys,1 ∼ U(0m, 100m)

height 1st source zs,1 ∼ N (4m, 1m2)
emission rate 1st source q1 ∼ U(0.005 g/s, 0.006 g/s)

location 2nd source xs,1, ys,2 ∼ U(0m, 100m)

height 2nd source zs,2 ∼ N (6m, 1m2)
emission rate 2nd source q2 ∼ U(0.0075 g/s, 0.0085 g/s)

wind speed u ∼ U(1m/s, 2m/s)
wind direction φ ∼ U(−π/4 rad, π/4 rad)

standard deviation σy a = 0.08, b = 0.0001, c = 0.5
standard deviation σz a = 0.06, b = 0.0015, c = 0.5

according to Briggs [1973]. The constants in (16) de-
pend on the atmospheric stability, for which class D is
assumed—corresponds to “neutral” in accordance to the
Pasquill-Gifford classification scheme. As described in Car-
rascal et al. [1993], the corresponding values of the con-
stants for class D are as listed in the last two rows of
Table 1.

For comparison, the following estimators are considered:

AGMF16 Proposed source estimator with Lmax = 16.

AGMF32 Proposed source estimator with Lmax = 32.

GMF16 Gaussian mixture estimator by Simandl and
Duńık [2005], i.e., AGMF without adaptation.
The number of components remains constant
at 16.

GMF32 Same estimator as GMF16 but with 32 mixture
components.

UKF Unscented Kalman filter proposed by Julier
and Uhlmann [2004], i.e., only a single Gaus-
sian represents the posterior.

GN Backward off-line method utilizing Gauß-New-
ton optimization proposed by Rudd et al.
[2012].

MCMC Forward off-line method utilizing Markov chain
Monte Carlo sampling. The number of sam-
pling steps is chosen in such a way that the
runtime of MCMC is similar to AGMF32.

The initial estimate of each estimator at time step k = 0

is Gaussian with mean vector θ̂0 drawn randomly from
N (θ;C) with

θ = [xs,1, ys,1, zs,1, q1, xs,2, ys,2, zs,2, q2]T ,

C = diag
(
502, 502, 102, 0.00252, 502, 502, 102, 0.00252

)
.

The initial covariance matrix is set to be C0 = C.

Three different sensor noise levels for σ are considered:
10 mg/m3 (strong noise), 5 mg/m3 (medium noise), and
1 mg/m3 (low noise). For each noise level, 100 Monte Carlo
simulation runs are performed. In each run, 600 concen-
tration measurements are acquired at locations drawn ran-
domly from U(0 m, 200 m)×U(0 m, 200 m). In Table 2, av-
erage values of the distance between source estimates and
true source locations for both sources as well as the average
absolute deviation between estimated and true emission
rate are listed. For low and medium noise, the proposed
AGMF provides the lowest source distance, where allowing
more components for splitting leads to a slightly better
estimation performance. Regarding the emission rate, GN
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Fig. 4. Distances between estimated source position and true source positions for the low noise case. (a) Average
distance depending on the number of measurements. For the batch methods GN and MCMC, for each number
of measurements separate estimation runs have been performed. (b) Median (red line), lower and upper quantiles
(blue box), and spread (black lines) of the distances for 600 measurements. Red crosses indicate outliers.

Table 2. Average distance and average source
rate deviation in case of two sources.

Strong Noise Med. Noise Low Noise
dist rate dist rate dist rate

AGMF16 49.9 29.0 37.1 31.9 37.5 27.3

AGMF32 45.6 28.5 34.6 32.1 34.2 28.1

GMF16 58.0 27.2 42.6 30.9 61.2 36.8

GMF32 52.2 28.2 41.6 31.1 48.8 33.7

UKF 69.9 29.1 74.5 34.7 124.1 59.8

GN 63.8 21.8 63.5 21.3 64.2 21.6

MCMC 34.3 25.5 43.0 29.9 75.8 36.3

is the most accurate estimator. In case of strong noise,
MCMC is the best estimator with respect to the source
location. MCMC however, is an off-line estimator, i.e.,
estimates become available after processing all measure-
ments in a batch, while the AGMF continuously provides
estimates at runtime.

The superior estimation performance of the AGMF com-
pared to the other estimators in case of low noise does not
vary with the number of concentration measurements as
shown in Fig. 4(a). From 50 to 600 measurements AGMF
always provides the smallest distance between estimated
and true source location. A similar result is obtained for
the other noise levels, except that MCMC always provides
a better estimate for the strong noise case.

Fig. 4(b) shows that the majority of the estimates provided
by the AGMF is better than the average listed in Table 2.
Some outliers significantly lower the average performance.
These outliers result from random initializations, where
the initial estimated source location is far outside the
sensor area [0 m, 200 m] × [0 m, 200 m]. Due to the po-
tentially large distance between estimate and measure-
ment location, the Gaussian plume model becomes almost
linear, which is also indicated by the lineariztion error
measure (12). As a consequence no splitting is performed
and thus, the AGMF degrades to a simple UKF. By means
of allowing also splitting towards the sensor location would
resolve this issue and would result in a better performance.

Of all on-line estimators, AGMF performs best. This
clearly shows that a single Gaussian and also a fixed

Table 3. Average and standard deviation of
number of mixture components per time step.

Strong Noise Med. Noise Low Noise

AGMF16 12.46 ± 8.07 9.77 ± 8.93 8.59 ± 8.96

AGMF32 25.13 ± 16.02 19.64 ± 17.85 16.53 ± 17.86

Gaussian mixture representation are not sufficient. By
means of the adaptation via splitting, a much better
source estimation is possible. It is worth mentioning that
it is not necessary to utilize the maximum number of
components Lmax at all time steps in order to provide
a meaningful representation of the posterior density. As
shown in Table 3, the average number of components per
time step is significantly below Lmax, whereas the lower
the measurement noise the lower the required number
of components. Thus, the proposed AGMF can carefully
control the demand of splits.

6. CONCLUSION

The state-of-the-art in dispersion source estimation mainly
focuses on MCMC methods. While this allows accurate
estimates, only batch processing is possible. The proposed
adaptive Gaussian mixture filter shows that a similar and
in some cases an even better estimation performance can
be obtained with an on-line estimator. Therefore, it is of
paramount importance to not rely on a single Gaussian
or a fixed Gaussian mixture representation. By means
of splitting that adapts the Gaussian mixture to the
nonlinearity of the Gaussian plume dispersion model, a
significant improvement can be achieved.
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