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Abstract: We study the problem of routing vehicles with energy constraints through a network
where there are at least some charging nodes. We seek to minimize the total elapsed time
for vehicles to reach their destinations by determining routes and recharging amounts when
the vehicles do not have adequate energy for the entire journey. For a single vehicle, we
formulate a mixed-integer nonlinear programming (MINLP) problem and derive properties of
the optimal solution allowing it to be decomposed into two simpler problems. For a multi-
vehicle problem, including traffic congestion effects, we use a similar approach by grouping
vehicles into “subflows.” We also provide an alternative flow optimization formulation leading
to a computationally simpler problem solution with minimal loss in accuracy.

1. INTRODUCTION

The increasing presence of Battery-Powered Vehicles
(BPVs), such as Electric Vehicles (EVs), mobile robots and
sensors, has given rise to novel issues in classical network
routing problems [Laporte [1992]]. More generally, when
the entities in the network are characterized by physical
attributes exhibiting a dynamic behavior, this behavior
can play an important role in the routing decisions. In
the case of BPVs, the physical attribute is energy. There
are four BPV characteristics which are crucial in rout-
ing problems: limited cruising range, long charge times,
sparse coverage of charging stations, and the BPV energy
recuperation ability [Artmeier et al. [2010]] which can be
exploited. In recent years, the vehicle routing literature
has been enriched by work aiming to accommodate these
BPV characteristics. For example, by incorporating the
recuperation ability of EVs (which leads to negative en-
ergy consumption on some paths), extensions to general
shortest-path algorithms are proposed in Artmeier et al.
[2010] that address the energy-optimal routing problem.
The energy requirements in this problem are modeled as
constraints and the proposed algorithms are evaluated in
a prototypical navigation system. Extensions provided in
Eisner et al. [2011] employ a generalization of Johnson’s
potential shifting technique to make Dijkstra’s algorithm
applicable to the negative edge cost shortest-path problem
so as to improve the results and allow for route planning
of EVs in large networks. This work, however, does not
consider the presence of charging stations, modeled as
nodes in the network. Charging times are incorporated
into a multi-constrained optimal path planning problem
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in Siddiqi et al. [2011], which aims to minimize the length
of an EV’s route and meet constraints on total traveling
time, total time delay due to signals, total recharging time
and total recharging cost. A particle swarm optimization
algorithm is used to find a suboptimal solution. In this
formulation, however, recharging times are simply treated
as parameters and not as controllable variables. In Khuller
et al. [2011], algorithms for several routing problems are
proposed, including a single vehicle routing problem with
inhomogeneously priced refueling stations for which a dy-
namic programming based algorithm is proposed to find a
least cost path from source to destination. More recently,
an EV Routing Problem with Time Windows and recharg-
ing stations (E-VRPTW) was proposed in Schneider et al.
[2012], where an EV’s energy constraint is first introduced
into vehicle routing problems and recharging times depend
on the battery charge of the vehicle upon arrival at the
station. Controlling recharging times is circumvented by
simply forcing vehicles to be always fully recharged. In the
Unmanned Autonomous Vehicle (UAV) literature, Sunder
and Rathinam [2012] consider a UAV routing problem
with refueling constraints. In this problem, given a set of
targets and depots the goal is to find an optimal path
such that each target is visited by the UAV at least once
while the fuel constraint is never violated. A Mixed-Integer
Nonlinear Programming (MINLP) formulation is proposed
with a heuristic algorithm to determine feasible solutions.

In this paper, our objective is to investigate a vehicle total
traveling time minimization problem (including both the
time on paths and at charging stations), where an energy
constraint is considered so that the vehicle is not allowed to
run out of power before reaching its destination. We view
this as a network routing problem where vehicles control
not only their routes but also times to recharge at various
nodes in the network. Our contributions are twofold. First,
for the single energy-aware vehicle routing problem, for-
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mulated as an MINLP, we show that there are properties
of the optimal solution and the energy dynamics allowing
us to decompose the original problem into two simpler
problems with inhomogeneous prices at charging nodes but
homogeneous charging speeds. Thus, we separately deter-
mine route selection through a Linear Programming (LP)
problem and then recharging amounts through another
LP or simple optimal control problem. Since we do not
impose full recharging constraints, the solutions obtained
are more general than, for example, in Schneider et al.
[2012] and recover full recharging when this is optimal.
Second, we study a multi-vehicle energy-aware routing
problem, where a traffic flow model is used to incorporate
congestion effects. This system-wide optimization problem
appears to have not yet attracted much attention. By
grouping vehicles into “subflows” we are once again able to
decompose the problem into route selection and recharging
amount determination, although we can no longer reduce
the former problem to an LP. Moreover, we provide an
alternative flow-based formulation such that each subflow
is not required to follow a single end-to-end path, but may
be split into an optimally determined set of paths. This
formulation reduces the computational complexity of the
MINLP problem by orders of magnitude with numerical
results showing little or no loss in optimality.

The structure of the paper is as follows. In Section 2, we
introduce and address the single-vehicle routing problem
and identify properties which lead to its decomposition.
In Section 3, the multi-vehicle routing problem is formu-
lated, first as an MINLP and then as an alternative flow
optimization problem. Simulation examples are included
for the multi-vehicle routing problem illustrating our ap-
proach. Finally, conclusions and further research directions
are outlined in Section 4.

2. SINGLE VEHICLE ROUTING

We assume that a network is defined as a directed graph
G = (N ,A) with N = {1, . . . , n} and |A| = m (see Fig. 1).
Node i ∈ N/{n} represents a charging station and (i, j) ∈
A is an arc connecting node i to j (we assume for simplicity
that all nodes have a charging capability, although this is
not necessary). We also define I(i) and O(i) to be the set
of start nodes (respectively, end nodes) of arcs that are
incoming to (respectively, outgoing from) node i, that is,
I(i) = {j ∈ N|(j, i) ∈ A} and O(i) = {j ∈ N|(i, j) ∈ A}.
We are first interested in a single-origin-single-destination
vehicle routing problem. Nodes 1 and n respectively are
defined to be the origin and destination. For each arc
(i, j) ∈ A, there are two cost parameters: the required
traveling time τij and the required energy consumption
eij on this arc. Note that τij > 0 (if nodes i and j are
not connected, then τij = ∞), whereas eij is allowed to
be negative due to a BPV’s potential energy recuperation
effect [Artmeier et al. [2010]]. Letting the vehicle’s charge
capacity be B, we assume that eij < B for all (i, j) ∈
A. Since we are considering a single vehicle’s behavior,
we assume that it will not affect the overall network’s
traffic state, therefore, τij and eij are assumed to be
fixed depending on given traffic conditions at the time
the single-vehicle routing problem is solved. Clearly, this
cannot apply to the multi-vehicle case in the next section,

where the decisions of multiple vehicle routes affect traffic
conditions, thus influencing traveling times and energy
consumption. Since the BPV has limited battery energy
it may not be able to reach the destination without
recharging. Thus, recharging amounts at charging nodes
i ∈ N are also decision variables.

We denote the selection of arc (i, j) and energy recharging
amount at node i by xij ∈ {0, 1}, i, j ∈ N and ri ≥ 0,
i ∈ N/{n}, respectively. Moreover, since we take into
account the vehicle’s energy constraints, we use Ei to
represent the vehicle’s residual battery energy at node i.
Then, for all Ej , j ∈ O(i), we have:

Ej =

{
Ei + ri − eij if xij = 1
0 otherwise

which can also be expressed as

Ej =
∑

i∈I(j)

(Ei + ri − eij)xij , xij ∈ {0, 1}

The problem objective is to determine a path from 1 to n,
as well as recharging amounts, so as to minimize the total
elapsed time for the vehicle to reach the destination. Fig.
1 is a sample network for this vehicle routing problem. We

Fig. 1. A 7-node network with charging nodes.

formulate an MINLP problem as follows:

min
xij ,ri, i,j∈N

n∑
i=1

n∑
j=1

τijxij +

n∑
i=1

n∑
j=1

rigxij (1)

s.t.
∑

j∈O(i)

xij −
∑

j∈I(i)

xji = bi, for each i ∈ N (2)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (3)

Ej =
∑

i∈I(j)

(Ei + ri − eij)xij , for j = 2, . . . , n (4)

0 ≤ Ei ≤ B, E1 given, for each i ∈ N (5)

xij ∈ {0, 1}, ri ≥ 0 (6)

where g is the charging time per energy unit, i.e., the
reciprocal of a fixed charging rate. The constraints (2)-
(3) stand for the flow conservation, which implies that
only one path starting from node i can be selected, i.e.,∑

j∈O(i) xij ≤ 1. It is easy to check that this also implies

xij ≤ 1 for all i, j since b1 = 1, I(1) = ∅. Constraint
(4) represents the vehicle’s energy dynamics where the
only non-linearity in this formulation appears. Finally, (5)
indicates that the vehicle cannot run out of energy before
reaching a node or exceed a given capacity B. All other
parameters are predetermined according to the network
topology.

2.1 Properties

Rather than directly tackling the MINLP problem, we
derive some key properties which will enable us to simplify
the solution procedure. The main difficulty in this problem
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lies in the coupling of the decision variables, xij and ri,
in (4). The following lemma will enable us to exclude ri
from the objective function by showing that the difference
between the total recharging energy and the total energy
consumption while traveling is given only by the difference
between the vehicle’s residual energy at the destination
and at the origin.

Lemma 1: Given (1)-(6),
n∑

i=1

n∑
j=1

(rixij − eijxij) = En − E1 (7)

Proof : See Wang et al. [2014]

In view of Lemma 1, we can replace
∑n

i=1

∑n
j=1 rigxij

in (1) by (En − E1)g +
∑n

i=1

∑n
j=1 eijgxij and eliminate

the presence of ri, i = 2, . . . , n − 1, from the objective
function. Note that E1 is given, leaving us only with the
task of determining the value of En. Now, let us investigate
the recharging energy amounts r∗i , i = 1, . . . , n − 1, in an
optimal policy. There are two possible cases: (i)

∑
i r
∗
i > 0,

i.e., the vehicle has to get recharged at least once, and (ii)∑
i r
∗
i = 0, i.e., r∗i = 0 for all i and the vehicle has adequate

energy to reach the destination without recharging. For
Case (i), we establish the following lemma.

Lemma 2: If
∑

i r
∗
i > 0 in the optimal routing policy,

then E∗n = 0.
Proof : See Wang et al. [2014]

Turning our attention to Case (ii) where r∗i = 0 for
all i ∈ {1, . . . , n}, observe that the problem (1) can be
transformed to

min
xij, i,j∈N

n∑
i=1

n∑
j=1

τijxij (8)

s.t.
∑

j∈O(i)

xij −
∑

j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

Ej =
∑

i∈I(j)

(Ei − eij)xij , for j = 2, . . . , n (9)

0 ≤ Ei ≤ B, E0 given, for each i ∈ N
xij ∈ {0, 1} (10)

In this case, the constraint (9) gives
n∑

j=2

Ej −
n∑

j=2

∑
i∈I(j)

Ei = −
n∑

j=2

∑
i∈I(j)

eijxij

Recall that Ei ≥ 0, we have

En = E1 −
n∑

j=2

∑
i∈I(j)

eijxij ≥ 0

and it follows that
n∑

i=1

n∑
j=1

eijxij ≤ E1 (11)

With (11) in place of (9), the determination of x∗ij boils
down to an integer linear programming problem in which
only variables xij , i, j ∈ N , are involved, a much simpler
problem.

We are normally interested in Case (i), where some
recharging decisions must be made, so let us assume the

vehicle’s initial energy is not large enough to reach the
destination. Then, in view of Lemmas 1 and 2, we have
the following theorem.

Theorem 1: If
∑

i r
∗
i > 0 in the optimal policy, then x∗ij ,

i, j ∈ N , in the original problem (1) can be determined by
solving a linear programming problem:

min
xij, i,j∈N

n∑
i=1

n∑
j=1

(τij + eijg)xij (12)

s.t.
∑

j∈O(i)

xij −
∑

j∈I(i)

xji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xij ≤ 1

Proof : See Wang et al. [2014].

2.2 Determination of optimal recharging amounts r∗i

Once we determine the optimal route, P , in (12), it is
relatively easy to find a feasible solution for ri, i ∈ P , to
satisfy the constraint (4), which is obviously non-unique
in general. Then, we can introduce a second objective
into the problem, i.e., the minimization of charging costs
on the selected path, since charging prices normally vary
over stations. As before, we re-index nodes and define
P = {1, ..., n}. We denote the charging price at node i
by pi. Once an optimal route is determined, we seek to
control the energy recharging amounts ri to minimize the
total charging cost dependent on pi, i ∈ N/{n}. This can
be formulated as a multistage optimal control problem:

min
ri, i∈P

∑
i∈P

piri (13)

s.t. Ei+1 = Ei + ri − ei,i+1

0 ≤ Ei ≤ B, E1 given

ri ≥ 0 for all i ∈ N
This is a simple two-point boundary-value problem and
can be easily solved by discrete-time optimal control
approaches [Bryson and Ho [1975]] or treating it as a linear
programming problem where Ei and ri are both decision
variables. Due to space limitations, we omit numerical
results providing example solutions of the simple linear
programming problem (12) and subsequent solutions of
(13). Finally, we note that Theorem 1 holds under the
assumption that charging nodes are homogeneous in terms
of charging speeds (i.e., the charging rate 1/g is fixed).
However, our analysis allows for inhomogeneous charging
prices. The case of node-dependent charging rates is the
subject of ongoing work and can be shown to still allow a
decomposition of the MINLP, although we can no longer
generally obtain an LP.

3. MULTIPLE VEHICLE ROUTING

The results obtained for the single vehicle routing problem
pave the way for the investigation of multi-vehicle routing,
where we seek to optimize a system-wide objective by
routing vehicles through the same network topology. The
main technical difficulty in this case is that we need to
consider the influence of traffic congestion on both trav-
eling time and energy consumption. A second difficulty
is that of implementing an optimal routing policy. In the
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case of a centrally controlled system consisting of mobile
robots, sensors or any type of autonomous vehicles this
can be accomplished through appropriately communicated
commands. In the case of vehicles with individual drivers,
implementation requires signaling mechanisms and possi-
bly incentive structures to enforce desired routes assigned
to vehicles, bringing up a number of additional research
issues. In the sequel, we limit ourselves to resolving the first
difficulty before addressing implementation challenges.

If we proceed as in the single vehicle case, i.e., determining
a path selection through xkij , i, j ∈ N , and recharging

amounts rki , i ∈ N/{n} for all vehicles k = 1, . . . ,K, for
some K, then the dimensionality of the solution space is
prohibitive. Moreover, the inclusion of traffic congestion
effects introduces additional nonlinearities in the depen-
dence of the travel time τij and energy consumption eij
on the traffic flow through arc (i, j), which now depend on
x1ij , · · · , xKij . Instead, we will proceed by grouping subsets
of vehicles into N “subflows” where N may be selected to
render the problem manageable.

Let all vehicles enter the network at the origin node 1 and
let R denote the rate of vehicles arriving at this node.
Viewing vehicles as defining a flow, we divide them into
N subflows (we will discuss the effect of N in Section
3.3), each of which may be selected so as to include the
same type of homogeneous vehicles (e.g., large vehicles
vs smaller ones or vehicles with the same initial energy).
Thus, all vehicles in the same subflow follow the same
routing and recharging decisions so that we only consider
energy recharging at the subflow level rather than individ-
ual vehicles. Note that asymptotically, as N →∞, we can
recover routing at the individual vehicle level.

Clearly, not all vehicles in our system are BPVs and are,
therefore, not part of our optimization process. These
can be treated as uncontrollable interfering traffic for
our purposes and can be readily accommodated in our
analysis, as long as their flow rates are known. However, for
simplicity, we will assume here that every arriving vehicle
is a BPV and joins a subflow.

Our objective is to determine optimal routes and energy
recharging amounts for each subflow of vehicles so as to
minimize the total elapsed time of these vehicle flows
traveling from the origin to the destination. The decision
variables consist of xkij ∈ {0, 1} for all arcs (i, j) and

subflows k = 1, . . . , N , as well as charging amounts rki
for all nodes i = 1, . . . , n − 1 and k = 1, . . . , N . Given
traffic congestion effects, the time and energy consump-
tion on each arc depends on the values of xkij and the
fraction of the total flow rate R associated with each
subflow k; the simplest such flow allocation is one where
each subflow is assigned R/N . Let xij = (x1ij , · · · , xNij )T

and ri = (r1i , · · · , rNi )T . Then, we denote the traveling
time and corresponding energy consumption of the kth
vehicle subflow on arc (i, j) by τkij(xij) and ekij(xij) re-

spectively. As already mentioned, τkij(xij) and ekij(xij) can
also incorporate the influence of uncontrollable (non-BPV)
vehicle flows, which can be treated as parameters in these
functions. Similar to the single vehicle case, we use Ek

i to
represent the residual energy of subflow k at node i, given
by the aggregated residual energy of all vehicles in the

subflow. If the subflow does not go through node i, then
Ek

i = 0. The problem formulation is as follows:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τkij(xij) + rki gx

k
ij

)
(14)

s.t. for each k ∈ {1, . . . , N} :∑
j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N (15)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n (16)

Ek
j =

∑
i∈I(j)

(Ek
i + rki − ekij(xij))x

k
ij , j = 2, . . . , n (17)

Ek
1 is given, Ek

i ≥ 0, for each i ∈ N (18)

xkij ∈ {0, 1}, rki ≥ 0 (19)

Obviously, this MINLP problem is difficult to solve. How-
ever, as in the single-vehicle case, we are able to establish
some properties that will allow us to simplify it.

3.1 Properties

Even though the term τkij(xij) in the objective function
is no longer linear in general, for each subflow k the
constraints (15)-(19) are still similar to the single-vehicle
case. Consequently, we can derive similar useful properties
for this problem in the form of the following two lemmas.

Lemma 3: For each subflow k = 1, . . . , N ,
n∑

i=1

n∑
j=1

(rki − ekij(xij))x
k
ij = Ek

n − Ek
1 (20)

Lemma 4: If
∑n

i=1 r
k∗
i > 0 in the optimal routing policy,

then Ek∗
n = 0 for all k = 1, . . . , N .

Proof : See Wang et al. [2014].

In view of Lemma 3, we can replace
∑n

i=1

∑n
j=1 r

k
i gx

k
ij

in (14) by (Ek
n − Ek

1 )g +
∑n

i=1

∑n
j=1 e

k
ij(xij)gxij and

eliminate, for all k = 1, . . . , N , the presence of rki , i =
1, . . . , n − 1, from the objective function similar to the
single-vehicle case. Since Ek

1 is given, this leaves only the
task of determining the value of Ek

n. There are two possible
cases: (i)

∑
i r

k∗
i > 0, i.e., the kth vehicle subflow has to get

recharged at least once, and (ii)
∑

i r
k∗
i = 0, i.e., rk∗i = 0

for all i and the kth vehicle subflow has adequate energy
to reach the destination without recharging.

Similar to the derivation of (11), Case (ii) results in a new
constraint

∑
i

∑
j e

k
ij(xij)x

k
ij ≤ Ek

1 for subflow k. However,

since ekij(xij) now depends on all x1ij , . . . , x
N
ij , the problem

(14)-(19) with all rki = 0 is not as simple to solve as was
the case with (8)-(10). Let us instead concentrate on the
more interesting Case (i) for which Lemma 4 applies and
we have Ek∗

n = 0. Therefore, along with Lemma 3, we have
for each k = 1, . . . , N :

n∑
i=1

n∑
j=1

rki x
k
ij =

n∑
i=1

n∑
j=1

ekij(xij)x
k
ij − Ek

1

Then, proceeding as in Theorem 1, we can replace the
original objective function (14) and have the following new
problem formulation to determine xk∗ij for all i, j ∈ N and
k = 1, . . . , N :
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min
xij, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τkij(xij) + ekij(xij)gx

k
ij

)
(21)

s.t.
∑

j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

xkij ∈ {0, 1}
Since the objective function is no longer necessarily linear
in xkij , (21) cannot be further simplified into an LP problem
as in Theorem 1. The computational effort required to
Solve this problem heavily depends on the dimensionality
of the network and the number of subflows. Nonetheless,
from the transformed formulation above, we are still able
to separate the determination of routing variables xkij
from recharging amounts rki . Similar to the single-vehicle
case, once the routes are determined, we can obtain
any rki satisfying the energy constraints (17)-(18) such
that Ek

n = 0, thus preserving the optimality of the
objective value. To further determine rk∗i , we can introduce
a second level optimization problem similar to the single-
vehicle case in (13). Next, we will present an alternative
formulation for the original problem (14)-(19) which leads
to a computationally simpler solution approach.

3.2 Flow control formulation

We begin by relaxing the binary variables in (19) by
letting 0 ≤ xkij ≤ 1. Thus, we switch our attention from
determining a single path for any subflow k to several
possible paths by treating xkij as the normalized vehicle
flow on arc (i, j) for the kth subflow. This is in line with
many network routing algorithms in which fractions xij of
entities are routed from a node i to a neighboring node
j using appropriate schemes ensuring that, in the long
term, the fraction of entities routed on (i, j) is indeed xij .
Following this relaxation, the objective function in (14) is
changed to:

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τkij(xij) +

n∑
i=1

N∑
k=1

rki g

Moreover, the energy constraint (17) needs to be adjusted
accordingly. Let Ek

ij represent the fraction of residual

energy of subflow k associated with the xkij portion of the
vehicle flow exiting node i. Therefore, the constraint (18)
becomes Ek

ij ≥ 0. We can now capture the relationship
between the energy associated with subflow k and the
vehicle flow as follows: ∑

h∈I(i)

(Ek
hi − ekhi(xij)) + rki

 · xkij∑
h∈I(i) x

k
hi

= Ek
ij (22)

Ek
ij∑

j∈O(i)E
k
ij

=
xkij∑

j∈O(i) x
k
ij

(23)

In (22), the energy values of different vehicle flows entering
node i are aggregated and the energy corresponding to
each portion exiting a node, Ek

ij , j ∈ O(i), is proportional
to the corresponding fraction of vehicle flows, as expressed
in (23). Clearly, this aggregation of energy leads to an
approximation, since one specific vehicle flow may need
to be recharged in order to reach the next node in its

path, whereas another might have enough energy without
being recharged. This approximation foregoes controlling
recharging amounts at the individual vehicle level and
leads to approximate solutions of the original problem
(14)-(19). Several numerically based comparisons are pro-
vided in the next section and Wang et al. [2014] showing
little or no loss of optimality relative to the solution of
(14).

Adopting this formulation with xkij ∈ [0, 1] instead of

xkij ∈ {0, 1}, we obtain the following simpler nonlinear
programming problem (NLP):

min
xij,ri, i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τkij(xij) +

n∑
i=1

N∑
k=1

rki g (24)

s.t.
∑

j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N (25)

b1 = 1, bn = −1, bi = 0, for i 6= 1, n ∑
h∈I(i)

(Ek
hi − ekhi(xij)) + rki

 · xkij∑
h∈I(i) x

k
hi

= Ek
ij (26)

Ek
ij∑

j∈O(i)E
k
ij

=
xkij∑

j∈O(i) x
k
ij

(27)

Ek
ij ≥ 0, (28)

0 ≤ xkij ≤ 1, rki ≥ 0 (29)

As in our previous analysis, we are able to eliminate ri
from the objective function in (24) as follows.

Lemma 5: For each subflow k = 1, . . . , N ,
n∑

i=1

rki =

n∑
i=1

n∑
j=1

ekij(xij) +
∑

i∈I(n)

Ek
in −

∑
i∈O(1)

Ek
1i

Proof : See Wang et al. [2014]

Similar to Lemma 3, we can easily see that if
∑

i r
k∗
i > 0

under an optimal routing policy, then
∑

i∈I(n)E
k∗
in = 0.

In addition,
∑

i∈O(1)E
k
1i = Ek

1 , which is given. We can

now transform the objective function (24) into (30) and
determine the optimal routes xk∗ij by solving the following
NLP:

min
xij

i,j∈N

N∑
k=1

 n∑
i=1

n∑
j=1

[
τkij(xij) + ekij(xij)g

]
− Ek

1

 (30)

s.t.
∑

j∈O(i)

xkij −
∑

j∈I(i)

xkji = bi, for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i 6= 1, n

0 ≤ xkij ≤ 1

The values of rki , i = 1, . . . , n, k = 1, . . . , N , can be deter-
mined so as to satisfy the energy constraints (26)-(28), and
they are obviously not unique. We may then proceed with
a second-level optimization problem to determine optimal
values similar to Section 2.2.

3.3 Numerical Examples

Using the relationship between speed and density of a
vehicle flow introduced in Ho and Ioannou [1996], the time
subflow k spends on arc (i, j) becomes:
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τkij(xij) =
dij · xkij · RN

vf (1− (

∑
k
xk
ij

N )p)q

where vf is the reference speed on the road without traffic
and the parameters p and q are empirically identified for
actual traffic flows (for more details see Wang et al. [2014].)
Note that we do not include uncontrollable vehicle flows
in our example for simplicity. As for ekij(xij), we assume
the energy consumption rates of subflows on arc (i, j) are
all identical, proportional to the distance between nodes i
and j, giving ekij(xij) = e · dij · R/N . Therefore, we aim
to solve the multi-vehicle routing problem (21) with the
objective function as follows in this case:

min
xk
ij

i,j∈N

n∑
i=1

n∑
j=1

N∑
k=1

 dijx
k
ij

R
N

vf (1− (

∑
k
xk
ij

N )p)q
+ egdij

R

N
xkij


(31)

For simplicity, we let vf = 1 mile/min, R = 1 vehicle/min,
p = 2, q = 2 and e · g = 1. The network topology used is
that of Fig.1, where the distance of each arc is as shown.
The results of solving this problem are shown in Tab. 1 for
different values of N . It can be seen that the traffic conges-
tion effect makes the flow distribution differ from follow-
ing the shortest path. The number of decision variables
(hence, the solution search space) rapidly increases with
the number of subflows. However, it is observed that the
optimal objective value quickly converges around N = 10.
Thus, even though the best solution is found when N = 25,
a near-optimal solution can be determined under a small
number of subflows. This suggests that one can rapidly
approximate the asymptotic solution of the multi-vehicle
problem (dealing with individual vehicles routed so as to
optimize a systemwide objective) based on a relatively
small value of N . Next, we obtain a solution to the same

Table 1. Numerical results for sample problem

N 2 10

obj 37.077 31.5279

routes
1→ 4→ 7

1→ 2→ 3→ 7

(1→ 4→ 7)× 4
(1→ 2→ 3→ 7)× 3
(1→ 5→ 6→ 7)× 3

N 15 30

obj 31.4851 31.4768

routes

(1→ 4→ 7)× 5
(1→ 2→ 3→ 7)× 5
(1→ 5→ 6→ 7)× 4
(1→ 4→ 6→ 7)× 1

(1→ 4→ 7)× 11
(1→ 2→ 3→ 7)× 10
(1→ 5→ 6→ 7)× 8
(1→ 4→ 6→ 7)× 1

problem (31) using the alternative NLP formulation (30)
where 0 ≤ xkij ≤ 1. Since in this example all subflows

are identical, we can further combine all xkij over each
arc (i, j), which leads to the N -subflow relaxed problem
(refer to Wang et al. [2014]). Using the same parameter
settings as before, we obtain the objective value of 31.4465
mins and the optimal routes are: 35.88% of vehicle flow:
(1 → 4 → 7); 31.74% of vehicle flow: (1 → 2 → 3 → 7);
27.98% of vehicle flow: (1 → 5 → 6 → 7); 4.44% of
vehicle flow: (1 → 4 → 6 → 7). Note that, the difference
in objective values between the integer and flow-based
solutions is less than 0.1%. This supports the effectiveness
of a solution based on a limited number of subflows in the

MINLP problem. Additional numerical examples may be
found in Wang et al. [2014].

4. CONCLUSIONS AND FUTURE WORK

We have introduced energy constraints into the vehicle
routing problem, and studied the problem of minimizing
the total elapsed time for vehicles to reach their destina-
tions by determining routes as well as recharging amounts
when there is no adequate energy for the entire journey.
For a single vehicle, we have shown how to decompose this
problem into two simpler problems. For a multi-vehicle
problem, where traffic congestion effects are considered,
we used a similar approach by aggregating vehicles into
subflows and seeking optimal routing decisions for each
subflow. We also developed an alternative flow-based for-
mulation which yields approximate solutions with a com-
putational cost reduction of several orders of magnitude,
suitable for large problems. Numerical examples show
these solutions to be near-optimal.

Our ongoing work introduces different characteristics into
the charging stations, such as recharging speeds and queue-
ing capacities. We also believe that extensions to multiple
vehicle origins and destinations are straight-forward, as
is the case where only a subset of nodes has recharging
resources or not all vehicles in the network are BPVs.
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