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Abstract: An artificial pancreas (AP) system with a hypoglycemia early alarm system and
adaptive control system based on multivariable recursive time series models is developed. The
inputs of the model include glucose concentration (GC) and physiological signals that provide
information about the physical activities and stress of the patient. The stability of the recursive
time-series models is guaranteed by a constrained optimization method. Generalized predictive
control (GPC) is used to regulate GC. Experiments in a clinical setting illustrate the performance
of the AP and compare it to open-loop regulation by the patient. Results show that the AP can
regulate GC successfully and prevent hypoglycemia in spite of exercise.

Keywords: Type 1 Diabetes, Artificial Pancreas, Adaptive Control, Hypoglycemia Alarm,
Integrated Systems

1. INTRODUCTION

Artificial pancreas systems enable automatic control of
blood glucose concentrations (GC) of patients with Type
1 Diabetes (T1D) by providing substitute endocrine func-
tionality of a healthy pancreas. Patients with T1D admin-
ister 3-5 insulin injections (usually pre-meal) per day or
use a manual insulin pump to keep their GC in normal
range (70-180 mg/dl). The success of maintaining GC in
normal range by manual injection therapies has been lim-
ited. Changing life style conditions such as stress, illness,
or physical activity are some factors that affect the per-
formance of manual regulation. Diabetes can cause long-
term complications such as cardiovascular diseases, kidney
failure, retinopathy, neuropathy, and problems with wound
healing. Diabetes has been reported as the seventh leading
cause of death in the United States, and the total cost of
diagnosed diabetes has been estimated to be $245 billion
in 2012 (American Diabetes Association, 2013). Better
regulation of GC will reduce the morbidity caused by
diabetes and its complications, and medical expenditures.

Use of proportional-integral-derivative (PID) controllers
for implementing an artificial pancreas showed the advan-
tages of closed-loop control (Bequette, 2005) but the mean
GC remained similar in open-loop and PID closed-loop
control which also caused hypoglycemia 2-3 hours post
meals (Steil et al., 2006). Model-based control strategies
provided better performance by handling delays in GC
measurement and insulin delivery and constraints on input
and output signals. Model-predictive controllers (MPC)

used in vivo (Bruttomesso et al., 2009; Clarke et al.,
2009; Breton et al., 2012) needed modification of model
parameters for different patients in these studies. Meal
information (time and amount) was provided as known
disturbances. Adaptive control strategies based on general-
ized predictive control (GPC) were also proposed (Turksoy
et al., 2013a; El-Khatib et al., 2010). Recursive least square
(RLS) parameter estimation was used to identify unknown
parameters of time-series models in (Turksoy et al., 2013a;
El-Khatib et al., 2010) without providing any information
about meals. Glucagon was used as a second manipulated
variable with a proportional-derivative controller to pre-
vent hypoglycemia events (El-Khatib et al., 2010).

Recursive time-series models are a powerful tool for de-
scribing the dynamics of GC (Turksoy et al., 2013a; El-
Khatib et al., 2010) and for glucose prediction and hy-
poglycemia alarm systems (Turksoy et al., 2013b; Eren-
Oruklu et al., 2012; Sparacino et al., 2007). Any uncon-
strained identification method may give unstable models
because of process and measurement noise even when the
process is known to be stable. Systems such as GC are sen-
sitive to disturbances such as meals and physical activities.
Thus it is possible to identify unstable models describing
GC dynamics with regular identification methods (RLS,
extended least square (ELS) method, and subspace identi-
fication), compromising controller or hypoglycemia alarm
system performance by using predictions from an unstable
model.

Fear of hypoglycemia is a major concern of patients in
using AP systems. Many closed-loop studies with various
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control algorithms have resulted in mild or severe hypo-
glycemic episodes (Steil et al., 2006; Schaller et al., 2006;
Bruttomesso et al., 2009; Clarke et al., 2009). Mathe-
matical models for the prediction of plasma insulin lev-
els have been incorporated into closed-loop studies for
hypoglycemia prevention (Steil et al., 2011; Ruiz et al.,
2012; El-Khatib et al., 2010; Turksoy et al., 2013a). Hypo-
glycemia prediction-based pump suspension methods have
been noted to decrease the occurrence of hypoglycemia
(Buckingham et al., 2009; Elleri et al., 2010). Bihormonal
closed-loop studies (El-Khatib et al., 2010; Ward et al.,
2011) using glucagon and insulin have also been proposed
for hypoglycemia prevention. Semi-automated hybrid sys-
tems (Steil et al., 2011; Weinzimer et al., 2008; Elleri et al.,
2013; Breton et al., 2012) have been reported to reduce the
increase in postprandial glucose levels and subsequently
decrease insulin-induced postprandial hypoglycemia. Al-
though the reported methods decreased the time spent in
hypoglycemia, complete avoidance of hypoglycemia was
not achieved, and additional carbohydrate (CHO) supple-
ments were needed for treatment of some of hypoglycemic
episodes.

An integrated AP with a hypoglycemia early alarm (HEA)
system and GPC based control system is reported in
this paper. Both systems rely on multivariable recursive
time series models developed by extending RLS methods
with a constrained optimization method that guarantees
model stability. Modifications are made to classical GPC.
Physiological signals collected from a sports armband are
used to improve the prediction of GC (Eren-Oruklu et al.,
2012) and to indicate exercise or sleep to the controller for
computing the appropriate insulin infusion rate. Section
2 describes system identification. The HEA system and
the GPC system are introduced in Sections 3 and 4. The
results comparing the open-loop and closed loop insulin
regulation of one subject in a clinical study is presented in
Section 5. Discussion and conclusions are given in Sections
6 and 7.

2. SYSTEM IDENTIFICTION

2.1 Recursive Time-Series Models

Recursive time-series models can describe the time-varying
dynamics of blood GC (BGC) by adapting the model
with every new measurement. An autoregressive moving
average model with exogenous inputs (ARMAX) is used
to describe BGC dynamics. ARMAX models can easily
be extended to multi-input-multi-output systems. An AR-
MAX model is:

A(q−1)y(k) = Bi(q
−1)ui(k − 1− di) + C(q−1)ϵ(k) (1)

where y(k) is the observation (system output) at time k,
ui(k− 1) the ith input, ϵ(k) white noise, di the delay term
for input i.

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anA
q−nA (2)

Bi(q
−1) = b0i + b1iq

−1 + b2iq
−2 + ...+ bnBi

q−nBi (3)

C(q−1) = 1 + c1q
−1 + c2q

−2 + ...+ cnC
q−nC (4)

where q−1 is the backward shift operator, and nA, nBi , nC

are model orders to be determined from data. Writing the
ARMAX model in linear regression form:

ŷ(k) = ϕ(k)T θ̂(k) (5)

ϕ (k) = [−y (k − 1) · · · − y (k − nA) u1 (k − 1− d1) ,

· · · u1 (k − nB1 − d1) · · · um (k − 1− dm) ,

· · · um (k − nBm − dm) e (k − 1) · · · e(k − nC)]
T

(6)

θ̂(k) = [a1 · · · anA b01 · · · bnB1

· · · b0m · · · bnBm c1 · · · cnC ]
T

(7)

where ϕ(k) and θ̂(k) are the vectors of past observations
and model parameters, respectively. The white noise term
in Eq (6) is replaced with model error e(k) since the former
is an unknown signal:

e(k) = y(k)− ŷ(k) = y(k)− ϕ(k)T θ̂(k) (8)

The coefficients in Eqs (1)-(4) are recomputed with every
new measurement and the model is used until the next
measurement.

2.2 State Space Representation of RLS

Recursive least square (RLS) parameter estimation is used
to identify the unknowns in Eq (7). When the disturbance
acting on the system is non-stationary, RLS may estimate
coefficients that are outside the stability region. A con-
strained RLS method must be used to guarantee model
stability. To apply the stability constraints to RLS, the
time series model is written in state space form.

X(k) = ÃX(k − 1) + B̃ũ(k − 1) + K̃e(k)

y(k) = C̃X(k − 1) + D̃ũ(k − 1) + e(k)
(9)

with the state matrix Ã

Ã =



−[a1 · · · anA
] [b11 · · · bB1 ] · · · [b1m · · · bBm ] [c1 · · · cnC

]

Ip×p 0p×1 0p×r1 0p×1 · · · 0p×rm 0p×1 0p×s 0p×1

01×p 0 01×r1 0 · · · 01×rm 0 01×s 0

0r1×p 0r1×1 Ir1×r1 0r1×1 · · · 0r1×rm 0r1×1 0r1×s 0r1×1

...
...

...
... · · · ...

...
...

...
01×p 0 01×r1 0 · · · 01×rm 0 01×s 0

0rm×p 0rm×1 0rm×r1 0rm×1 · · · Irm×rm 0rm×1 0rm×s 0rm×1

0s×p 0s×1 0s×r1 0s×1 · · · 0s×rm 0s×1 Is×s 0s×1


(10)

where p = nA − 1, ri = nBi − 2 (for i = 1, · · · ,m) and
s = nC − 1

X (k − 1) =




y(k − 1)

y(k − 2)
...

y(k − nA




u1(k − 1− 1)

u1(k − 1− 2)
...

u1(k − 1− nB1)


...

um(k − 1− 1)

um(k − 1− 2)
...

um(k − 1− nBm)




e(k − 1)

e(k − 2)
...

e(k − nC





B̃ =



b01 · · · b0m
0 01×(m−2) 0
...

...
...

0 01×(m−2) 0

1 01×(m−2) 0

0 01×(m−2) 0
...

...
...

0 01×(m−2) 0
...

...
...

0 01×(m−2) 1

0 01×(m−2) 0
...

...
...

0 01×(m−2) 0

0 01×(m−2) 0

0 01×(m−2) 0
...

...
...

0 01×(m−2) 0



(11)

D̃ = [ b01 · · · b0m ] ũ (k − 1) =

 u1(k − 1)
...

um(k − 1)

 (12)
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C̃ = [−[a1 · · · anA ] [b11 · · · bB1 ] · · · [b1m · · · bBm ] [c1 · · · cnC ] ] (13)

K̃ = [ 1 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0 1 0 · · · 0 ]T (14)

2.3 Constrained Recursive Least Squares

RLS can be extended to weighted RLS (WRLS) in order
to assign different importance to specific measured values
over time. The coefficients of the ARMAX model are
obtained by minimizing the constrained objective function:

θ̂(k) = min
θ(k)

[∆θTP−1(k − 1)∆θ + e(k)
2
]

s.t. ρ(Ã) ≤ 1

θmin ≤ θ(k) ≤ θmax

(15)

where ρ(Ã) is the spectral radius of Ã. The first constraint
in Eq (15) satisfies the stability condition of the model
and the second satisfies the physiological properties. P (k)
is the estimate of the error covariance matrix and usually
P (0) is selected as diagonal matrix.

P (k) =
1

λ
[P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

λ+ ϕT (k)P (k − 1)ϕ(k)
] (16)

The forgetting factor λ in Eq (16) is the only tuning
parameter adjusted by users. When λ = 1, the estima-
tor gives equal weight to all data (infinite memory). A
small value of λ gives more weight on recent observations
(short memory). The estimator is slow and insensitive to
disturbances for large values of λ.

3. HYPOGLYCEMIA EARLY ALARM SYSTEM

Once the unknown parameters are identified, the predic-
tions of BGC (ŷp) can be obtained at each sampling time
by using past data:

ŷp = M
[(

Ã− K̃C̃
)
X (k − 1)− K̃y(k)

]
(17)

where

M
∆
=


C̃

C̃Ã
...

C̃ÃN−1

 (18)

HEA system is proposed as illustrated in the flow chart in
Fig. (1). The alarm algorithm first checks the current data
and if the glucose concentration is under the hypoglycemia
threshold, an immediate hypoglycemia alarm is triggered.
Then sleep or exercise conditions are checked via the
armband (the details of the armband are provided in the
result section). In case of sleep or exercise, the thresholds
for signaling hypoglycemia are increased. This provides
more time to compensate for potential hypoglycemia, since
BGC can decrease drastically and suddenly under these
states. If a GC is higher than the defined threshold, the
algorithm checks for predictions of future GC to determine
the need to trigger a hypoglycemia early alarm. When
the n-step-ahead predicted value crosses the hypoglycemia
threshold a hypoglycemia early alarm is raised.

IMMEDIATE 
HYPOGLYCEMIA 

ALARM  

Request BG 
measurement  

YES 

Sleeping or 
Exercise ? 

N-step ahead 
prediction below 

90 mg/dl? 

NO 

YES NO 

N-step ahead 
prediction below 

100 mg/dl? 

Current  
CGMS reading or 1 step-

ahead prediction below the 
threshold? 

N-step ahead 
prediction below 

70 mg/dl? 

N-step ahead 
prediction below 

80 mg/dl? 

YES NO NO YES 

YES YES EARLY 
HYPOGLYCEMIA 

ALARM 

BG below 70 
mg/dl? 

Relative 
difference 

between CGMs 
and BG > 25% ? 

YES 

YES 

No Early 
Alarm 

NO NO 

NO 

Calibration 
Recommended 

No Action 

NO 

Take CHO 

Meal in last 30 
minutes? 

No Action 

NO 

YES 

Fig. 1. Hypoglycemia early alarm flow chart for real time
implementation

4. GENERALIZED PREDICTIVE CONTROL

Model-based predictive control algorithms proposed mini-
mize a cost function for obtaining the control law. The aim
is to minimize the error between the future output ŷ and
a reference trajectory r and to minimize the magnitude of
the control effort u on the horizon considered:

J (N1, N2, Nu) =
N2∑

j=N1

[ŷ (k + j)− r (k + j)]
2
+

Nu∑
j=1

w(j)[∆u(k + j − 1)]
2

(19)

where N1 and N2 are the first and last time instants of
the modeling horizon and Nu is the control horizon. w(·)
is the weight for penalizing the control input. Defining

ŷ
∆
= [ ŷ(k +N1) ŷ(k +N1 + 1) · · · ŷ(k +N1 +N2) ]

T

r
∆
= [ r(k +N1) r(k +N1 + 1) · · · r(k +N1 +N2 )]T

w
∆
= diag{w(1) w(2) · · · w(Nu) }

∆u
∆
= [∆u(k) ∆u(k + 1) · · · ∆u(k +Nu − 1) ]

T

(20)
the constrained control signal is calculated by minimizing

u(k) = min
u

[
(ŷ − r)

T
(ŷ − r) + ∆uTw∆u)

]
s.t. umin ≤ u ≤ umax

(21)

where only the first element of u(k) is implemented.

L
∆
=



C̃B̃ 0 · · · 0

C̃ÃB̃ C̃B̃ · · · 0
...

...
. . . 0

C̃ÃNu−1B̃ C̃ÃNu−2B̃ · · · C̃B̃
...

... · · ·
...

C̃ÃN−1B̃ C̃ÃN−2B̃ · · · C̃ÃN−NuB̃


(22)

where N = N2 −N1 and

ŷ = LU + ŷp (23)

In (23), the first part LU is called forced response while
the rest of equation is called free response. Since the model
in (1) is created as multi input model, U represents the
future values matrix of all inputs. However, in the whole
system the only control input is insulin. Thus only the
first input of the model is calculated by the controller.
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Fig. 2. Closed-loop control of a subject in CRC. Legend: Glucose concentration from CGM, infused insulin rate (Ins),
energy expenditure (EE) and galvanic skin response (GSR). B: breakfast, L: lunch, D: dinner, S: snack, E: exercise,
C: calibration. The green band indicates the normal range of blood glucose concentration. The darker green section
indicates the closed-loop duration. The black dashed line shows hypoglycemia threshold. Vertical bars; black:
regular meal, snack or exercise, green: early alarm-based meal or snack, magenta: calibration.

The predictions of the other input signals have to be
implemented externally. Each input signal is used in an
ARMA model to calculate their predicted values:

Ai(q
−1)yi(k) = Ci(q

−1)ϵi(k) (24)

where yi(k) represents inputs of (1) except the first input.
The predictions of inputs i = 2, · · · ,m yield:

ŷi
∆
=

[
ŷi(k +N1 − di) ŷi(k +N1 + 1− di) · · · ŷi(k +N1 +N2 − di)

]T (25)

ŷi = Mi

[(
Ãi − K̃iC̃i

)
Xi (k − 1)− K̃iyi(k)

]
(26)

where Mi, Ãi, K̃i, C̃i, and X̃i(k− 1) can be calculated by
using (5) to (23) based on the model in (24). Then,

U = u+ ŷ2 + · · ·+ ŷm (27)

5. RESULTS

Subjects were recruited from the University of Chicago
Medical Center, Kovler Diabetes Center and were sched-
uled for a visit at the University of Chicago General
Clinical Research Center (GCRC). Subjects were young
adults aged 18-35 years with T1D. All subjects used insulin
pump therapy, were healthy and physically active. Each
visit was approximately 70 hours long and the first day
was used for sensor calibration and open-loop operation
under conditions that the subjects will face the following
two days during the closed-loop experiment. The subject’s
own insulin type and pump were used in the experiments.
Subjects were provided a total of 8 meals and snacks
during the 2 days of the closed-loop experiment. Data were
continuously collected every 10 minutes from the subjects.
CGM readings were manually entered to the computer
every ten minutes and SenseWear signals were recorded
wirelessly. Every 10 minutes insulin infusion rates were
computed by the controller and reviewed by a medical
expert. Upon approval, the computed insulin infusion rates
were entered manually to the subject’s insulin pump.

Two Guardian R⃝ REAL-time CGM (Medtronics, Northride,
CA) were used to collect the glucose concentration infor-
mation. The Guardian R⃝ REAL-time CGM system mea-
sures glucose in the interstitial tissue and displays the GC

every 5 minutes. The SenseWear Pro3 armband (Body-
Media Inc, Pittsburgh, PA) worn on the dominant upper
arm over the triceps muscle collects metabolic and physical
activity data. Each subject participated in a 20-minute
exercise bout (treadmill running) of moderate-to-intense
intensity before or after lunch. The subjects ran using a
ramped protocol where the speed (miles per hour [mph])
and the incline (%) of the treadmill were gradually in-
creased until the exercise session ended. Overall, the sub-
jects exercised 85±8.3 % (mean and standard deviation)
of their age-predicted heart rate of 220-age (American
College of Sports Medicine, 2010) (range: 70-97%).

Every two hours and before meals, BGC was measured
using a blood glucose meter or YSI (Yellow Springs In-
strument (YSI) 2300 STAT; Yellow Springs, Ohio). The
meter BGC value was entered to CGM devices for calibra-
tion, if there was a significant difference (25% ≤ relative
difference) between the CGM reading and the meter mea-
surements and glucose values were stable.

Closed-loop control was performed for 32 hours for each
subject. Breakfast, lunch, dinner and a late night snack
were provided based on protocol. Additional snacks were
provided whenever requested by the subjects. No limita-
tion on food or snack was imposed. All subjects performed
a treadmill exercise after or before lunch. The exercise
intensity was adjusted based on target heart rate and the
upper exercise tolerance limit of the subjects. Each subject
was free to stop the exercise at any time.

The integrated multivariable HEA and GC control system
recommends insulin infusion rates for high GC values
and triggers hypoglycemia warnings when low GC values
are predicted. Sleep or exercise states are noted prior to
deciding on the final insulin infusion rate. The system
requires a confirmatory finger-stick (or YSI) measurement
when hypoglycemia is detected. If the finger-stick value
is less than the threshold, an early alarm is triggered
and treatment with a 15 g carbohydrate (CHO) snack is
suggested (Fig. 1). However, the subject does not have
to eat the snack if a meal was consumed within the last
30 minutes as the amount of CHO ingested during the
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meal should be sufficient to prevent hypoglycemia. Once
the snack is eaten, a flag is lifted inside the algorithm
to prevent the continuous alarm; this will prevent snack
induced hyperglycemia. When the predicted and confir-
matory finger-stick value are above the GC thresholds, the
flag is brought down and the system is prepared to give
a new early alarm when future episodes of hypoglycemia
are predicted.

Fig. (2) shows the closed-loop results for one subject.
The experiment began at 0815 hours with a confirmatory
YSI measurement. The subject ate breakfast, with 65 g
CHO at 0820 hours. The CGM and insulin pump were
calibrated based on a finger-stick meter value at 1010
hours because the difference between the CGM and other
readings was high (CGM: 153 mg/dl, YSI: 238 mg/dl).
The subject had 144 grams of CHO at lunch around 1130
hours. Based on the protocol, the subject was supposed to
have a high-intensity treadmill exercise after lunch. But
the subject preferred to have a walking exercise for 30
minutes (E* in Fig. 2). Once the exercise started, EE
measurements informed the controller about the exercise,
which subsequently suggested less aggressive insulin dosing
to prevent post-exercise hypoglycemia. The HEA system
triggered a low GC prediction alarm at 1545 hours, and
two glasses of orange juices (30 g CHO) were consumed
by the subject. 75 g CHO was provided at dinner at 1805
hours. At 0145, 0432, and 0630 hours, the HEA triggered
alarms, and juice (37 g CHO) was provided each time. On
the second day, the protocol-based high-intensity treadmill
exercise was performed after lunch. Overall, CGM values
stayed inside the normal range 66% of the time, between
180-250 mg/dl 29% of the time and above 250 mg/dl 5%
of the time during the closed-loop study. No hypoglycemia
occurred. Whenever a hypoglycemia limit was approached
based on HEA predictions, CHO was provided and GC
rose. Physical activity data from 0000 to 1100 hours were
lost because of technical problems.

Fig. (3) shows the results of a 24 hours period of an open-
loop experiment where insulin amounts were calculated
by the subject. The subject did not infuse insulin for
a snack around 0020 hours and breakfast around 1000
hours. This happens either because subjects think there
is no need for infusion or forget infusing insulin. Around
1630 hours, the subject had exercise and subsequently
hypoglycemia occured. Additional snacks were eaten, but
it took time to rescue GC to normal range, since the snacks
were consumed at a time when the subject was already in
hypoglycemia. After dinner, the subject infused a bolus
at 2020 hours and a correction bolus around 2220 hours.
All bolus amounts were identical even though different
amounts of food were consumed.

Table 1. Performance Comparison. OP: open-loop,
MCL: multivariable closed-loop, IMCL: integrated

multivariable closed-loop

Mean±SD 70-180 mg/dl (%) Hypoglycemia

OP (n=2) 209± 102.8 34.9 Severe
MCL (n=2) 166± 56.1 70.8 Mild
IMCL (n=2) 170± 60.5 63 None

The results of six experiments are summarized in Table
1. The mean value of glucose for open-loop experiments

is higher than other two groups as well as severe hypo-
glycemia episodes (GC≈ 40 mg/dl) were seen at multiple
time points during the open-loop experiments. The proba-
bility of hypoglycemia is decreased with our multivariable
adaptive control algorithm and eliminated with the pro-
posed integrated system.

6. DISCUSSION

A multivariable AP control system that integrated an
HEA was tested as an AP system could prevent hy-
perglycemia after meals and alert for predicted hypo-
glycemia after exercise and during sleep. Clinical ex-
periments showed that this system alarmed when hypo-
glycemia was predicted so that preventive action could be
taken in a timely manner.

As it is seen in Fig. (3) a subject may not always calculate
the appropriate dose of insulin or may even forget to infuse
insulin. This usually causes hyperglycemia. Hypoglycemia
may be caused by incorrect boluses and exercise. The
proposed AP prevented hypoglycemia in our clinical study.

The probability of hypoglycemia is minimized based on
prediction of GC. A snack is suggested to be consumed at
least 25 minutes before the predicted hypoglycemic event
which can prevent most of hypoglycemia. Even though
patient does not attend the suggestion, the controller stops
insulin infusion which prevents further decrease in glucose
levels.

7. CONCLUSIONS

A HEA system integrated into an AP controller was
successful in glucose regulation in patients with type
1 diabetes and in generating early alarms when hypo-
glycemia was predicted. Post-exercise and sleep-induced
hypoglycemia did not occur when such a system was used.
The integrated system is fully adaptive and does not re-
quire any meal or physical activity announcements.
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