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Abstract: In this paper, the second-order sliding mode super-twisting controller is applied
to distributed tracking problem. The distributed tracking is ensured by the proposed controller
after a finite-time transient. The controller ensures the exact tracking of leader’s position in spite
of external disturbances acting on each follower. The corresponding conditions for the distributed
tracking and for the simultaneous consensus are studied. Simulations show the workability of
the proposed method.

1. INTRODUCTION

1.1 State of the art

The multivehicle cooperative control has received a sig-
nificant attention from the control society during the last
twenty years (see, Ren and Beard [2008] and Bullo et al.
[2009]). The main motivation behind cooperative control
is that a group of agents behave in a collaborative way to
reach a common objective, the last finds applications in
several disciplines and not only on robotics.

The relation among the agents is modeled as a network
and the analysis of their interaction can be made using
an algebraic graph. This approach provides the possibility
to use mathematical tools such as the graph Laplacian
matrix to study the flow of information. Moreover, the
graph Laplacian matrix provides the opportunity to use
its properties to design the control law that ensures the
desired distributed behavior.

A particular challenging problem is known as consensus
tracking (consensus with a leader). In this problem a group
of followers tracks the position of a leader using only
local interactions. The solution to this problem has been
studied using different approaches, to name some of them:
In Hong et al. [2008] was presented a distributed tracking
algorithm that combines the use of distributed observers,
to estimate the velocity of the followers. A Proportional-
Derivative-like algorithm is proposed in Ren [2010] for the
directed network topology. Nonetheless, these algorithms
provides asymptotic tracking and they are very sensitive
to disturbances.

Robust control techniques such as sliding mode controllers
(see Utkin [1992], Pisano [2012], Shtessel et al. [2013])
have been successfully applied to consensus and forma-
tion control. Their main properties such as insensitiv-
ity to matched disturbances and finite time convergence
have been used to solve the consensus tracking problem.
Conventional sliding mode controllers have been success-
fully applied to solve the distributed tracking problem.
In Rao and Goshe [2010], the consensus amongst first

order dynamics is obtained by means of first order sliding
mode controllers. This technique is also applied in Rao
and Ghose [2011] to ensure the finite time consensus for
formation, swarm and pursuing. In Cao and Ren [2012]
the conventional sliding-mode controllers are applied to
guarantee finite time convergence of a consensus protocol
for distributed tracking and distributed swarm. Even when
the aforementioned techniques are successful in provid-
ing the finite time tracking, the control signal contains
high-frequency components that are harmful for the most
mechanical systems. Besides, the trajectory of the agents
contain discontinuities due the high-frequency control. In
Mirkin et al. [2012], the distributed tracking problem is
approached from an adaptive point of view. In this case,
the chattering effect is diminished by the adaptive gains of
a first order sliding mode, and the asymptotic tracking is
achieved for nonlinear delayed systems. Nonetheless that
the chattering is almost eliminated, with the exception of
some isolated periods of time, the distributed tracking is
reached asymptotically.

To overcome the drawback associated to the chattering
effect, the high-order sliding mode controllers have been
successfully applied to reduce its harmful effects (see, for
example, Levant [2003]).

High-order sliding mode techniques have been applied to
consensus tracking problem. In Rao and Ghose [2011] a
sliding surface of a conventional sliding mode is designed to
ensure tracking for high-order dynamics, this application
correspond to a high-relative degree sliding surface in a
conventional sliding mode controller. In Galzi and Shtessel
[2006] is addressed the flight formation problem using
the super-twisting controller. In this article, the super-
twisting controller was applied to ensure tracking of an
exogenous command signal that enforces the formation of
multiple UAV’s. Despite its robustness, the last mentioned
application does not corresponds to a distributed tracking
algorithm. Finally, in the recent work by Pilloni et al.
[2013], the sliding-mode twisting controller is applied for
the consensus of a network of perturbed double integra-
tors.
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Even when the higher-order sliding mode controllers have
been applied to solve the leader tracking problem, none
of these techniques have studied the distributed tracking
problem from a consensus perspective using the second
order sliding mode techniques, this is the aim of this work.

1.2 Main contribution

In this paper a distributed tracking algorithm to first order
dynamics is proposed. The main features with respect to
the already existent methods are the following:

• The algorithm provides finite-time distributed con-
sensus tracking by means of a differentiable control
law.

• The distributed tracking is reached in spite of distur-
bances.

• The conditions for the simultaneous convergence of
the follower’s position to the leader’s position are
studied.

1.3 Paper structure

Preliminary concepts related to the consensus problem
are presented in Section 2. The problem is stated in
Section 3. Section 4 presents the application of the super-
twisting algorithm to the distributed tracking problem. In
this Section, the conditions for the simultaneous tracking
convergence are studied. Finally, in Section 5 simulations
show the effectiveness of the proposed controller.

2. PRELIMINARIES

In this section the main concepts of graph theory are
introduced (more detail on graph theory can be found in,
for example, Olfati-Saber et al. [2007], Ren and Cao [2011]
and Antonelli [2013]).

Graph theory is useful when it is necessary to model the
interaction among a set of agents. For example, if a set of
agents is equipped with a limited set of sensors, the graph
may be used to represent the connections established by
means of the sensors among each one of the agents.

A graph G = (V , E), is a pair that consists of a set of nodes
V = {v1, ..., vn}, and a set of edges E ⊆ {(i, j) : i, j ∈
V , j 6= i}. The edge (i, j) in the edge set of a directed
graph denotes that the agent j can obtain information
from agent i, but not necessarily the opposite. The graph
G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E . The
quantities |V| and |E| are called order and size of the graph
and represent the number of nodes and number of edges,
respectively. The graph G is also defined as a Network
Topology.

The adjacency matrix A = [aij ] of a directed graph is
defined such that aij is positive weight if (j, i) ∈ E , and
aij = 0 if (j, i) /∈ E . When the elements of the adjacency
matrix are only 0 or 1, then graph is called un-weighted.
The adjacency matrix for an undirected graph is defined
analogously except that aij = aji for all i 6= j because
(j, i) ∈ E implies (i, j) ∈ E .

The degree matrix of G is a diagonal matrix ∆ = ∆(A)
with diagonal elements

∑n
j=1

aij that are row-sums of A.

The graph Laplacian L = [lij ] is an n×n matrix associated
with the G that is defined as L = ∆(A)−A. An important
property of the Laplacian matrix is the following:

Property 1. (see Mesbahi and Egerstedt [2010]). The
scalar zero is always an eigenvalue of L. The vector 1 (a
column vector composed by the constant 1 in all the rows)
is always the corresponding eigenvector, i.e.,

L1 = 0

A path is a sequence of edges in a directed or undirected
graph, i.e., (i1, i2), (i2, i3), ... where ij ∈ V . When there
exist a direct path between every arbitrary pair of nodes
in a graph, it is said that the graph is strongly connected.
A graph is connected, or weakly connected, when there
exist an undirected path connecting every arbitrary pair
of distinct nodes.

The set of neighbors of node i is defined by the set
Ni = {j ∈ V : ai,j 6= 0} = {j ∈ V : (i, j) ∈ E}.

3. PROBLEM STATEMENT

Let us consider that there exist a set of “n”vehicles,
labeled as vehicles (or agents) 1 to n, called followers,
and a vehicle labeled 0 called leader. The position and
velocity of the leader is time variant and it possesses a
bounded acceleration (notice that in any application, this
proposition implies a physical restriction, but this always
exist by nature), it is also assumed that the leader does
not have any information about the followers.

The follower’s first-order kinematics is given by:

ẋi = wi + ui, i = 0, ..., n (1)

where xi is the position of the i-th vehicle and ui is the
control associated to the i-th agent and wi is a differen-
tiable disturbance affecting the dynamics of the vehicle.
Let us consider the set of vertex V = {v0, v1, ..., vn} and
a set of edges E which define the network topology. Then
the Graph G = (V , E) is used to modeling the interaction
among the followers and the leader.

The following assumptions are made on the system dy-
namics, the disturbances and the network topology.

Assumption 1. The leader’s acceleration is bounded, i.e.,

||ẍ0|| ≤ γ+

20

Assumption 2. The disturbance is a differentiable signal
with bounded first-order derivative, i.e.,

||ẇi|| ≤ γ+

1

Assumption 3. The graph Laplacian matrix L, corre-
sponding to G, has a single zero eigenvalue.

It is important to remark that Assumption 3 is not restric-
tive. This condition holds, for example, for a connected
network (a network in which exists a directed path be-
tween each node and the leader). A Graph that contains
a spanning tree also possess this property.

For the sake of simplicity, in the results presented here
it is considered only the scalar (one-dimensional) case.
However, the extension of the proposed methodology for
the m-dimensional case is straightforward by using the
Kronecker product.

The aim of this paper is to design a distributed consensus
controller under a fixed network topology, that provides an
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exact tracking of the leader in the presence of disturbances
in the followers. It is desired that the control signal be
differentiable.

The super-twisting algorithm Levant [1993] plays an im-
portant role in the proposed distributed consensus algo-
rithm. Differential equations are understood in the Filip-
pov’s sense (see Filippov [1988]) in order to provide for
the possibility to use discontinuous signals in controls.
Filippov solutions coincide with the usual solutions, when
the right-hand sides are Lipschitzian. It is assumed also
that all considered inputs allow the existence of solutions
and their extension to the whole semi-axis t ≥ 0.

4. DISTRIBUTED CONSENSUS TRACKING

Let model the interaction among the followers, excluding
all the information of the leader x0, as a reduced Graph.
To do that, let the adjacency matrix among the followers
be defined as Af and its corresponding graph Laplacian
as Lf . Let the matrix M be defined as M = Lf +
diag{a10, a20, ..., an0}.

In order to obtain distributed consensus, the control signal
is proposed as:

ui =−β1

∣

∣

∣

∣

∣

∣

n
∑

j=0

aij(xi − xj)

∣

∣

∣

∣

∣

∣

1/2

sign





n
∑

j=0

aij(xi − xj)



+ vi

(2)

v̇i =−β2sign





n
∑

j=0

aij(xi − xj)



 (3)

where β1, β2 > 0 are scalar constants designed such that:

(1) The matrix Γ̄ is defined as:

Γ̄ =

[

−
1

2
β1M

1

2
M

M(γ+
20

+ γ+
1 )− β2In 0

]

,

is positive semidefinite.
(2) The Lyapunov equation:

Γ̄TP + P Γ̄ = −Q (4)

has a solution for positive definite matrices P = PT >
0 and Q = QT > 0.

The following Theorem summarizes the main result:

Theorem 1. Suppose that the graph G satisfies Assump-
tion 3. The application of the distributed control (2)-(3) in
the followers kinematics (1) ensures that after a finite-time
transient xi → x0. In particular, xi = x0 in a finite-time.

Under conditions of Theorem 1, the proposed controller
ensures the finite time convergence of the followers’s tra-
jectories to the position of the leader. However, the satis-
faction of Assumption 3 does not guarantees the simulta-
neous convergence of all the agents to the leader’s position.

With this aim, the following corollary is introduced using
the reduced order Graph Gf corresponding to all the
followers without the information of the leader.

Corollary 2. If in addition to the conditions of Theorem 1
the corresponding induced graph to the subset of vertices

Vf = {v1, ..., vn} is strongly connected, then the followers
converge simultaneously to the leader’s position.

5. EXAMPLE

5.1 Distributed tracking

Consider a set of five followers and a leader. The followers
and the leader are connected according to the following
graph:

G = (V , E)

where

V = {v0, v1, v2, v3, v4, v5}

E = {(0, 5), (5, 4), (4, 2), (2, 3), (3, 2), (2, 1)}

The corresponding topology is presented in Fig. 1.

Fig. 1. Network topology for distributed tracking.

The adjacency matrix for the followers is given by the
following matrix:

A =















0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0















The Graph Laplacian associated to the network shown in
Figure 1 has associated the following eigenvalues:

λ1 = 1, λ2 = 0.3820, λ3 = 2.6180, λ4 = 1, λ5 = 1,

λ6 = 0.

The five followers have the following dynamics:

ẋi = wi + ui

For simulation purposes, the disturbances are given by:

wi = b1 sin ((ω1 + b2 sin(ω2t))t) + b3

where the constants b1, b2 ∈ R and ω1, ω2 are positive
scalar given in the following table:

follower b1 b2 b3 ω1 ω2

1 1.6 1 0 1 3
2 1 2 2 1.8 1
3 2 1 0 1.6 0.1
4 2.1 1 0 0.5 1
5 3 1 1 2 0.5

Table 1. Disturbance parameters for simulation purposes.
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It is clear that Assumptions 1, 2 and 3 are satisfied.

The control signal is designed according to (3). All con-
trollers, corresponding to each one of the five followers,
have the same set of parameters given by β2 = 1.1(25)
and β1 = 1.5(25)1/2.

In this simulation the following initial conditions have been
considered: x1(0) = 9, x2(0) = −10, x3(0) = 0, x4(0) =
−8, x5(0) = 2. The leader initial condition is assumed
x0(0) = 0.

Figure 2 shows the convergence of all the followers to the
leader’s value. Notice that in Figure 3 the value of the
leader is reached after a finite time transient, and notice
also that once the leader’s position is reached, the followers
follows the value exactly in spite of the disturbances. In
order to verify the condition for simultaneous convergence,
this topology does not satisfy the conditions of Corollary
2 (notice that the agent 5 and the agent 1 are not strongly
connected), hence the convergence to the leader’s position
is not simultaneous. In Figure 3 the convergence of x5 to
x0 takes place before the rest of the followers.
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Fig. 2. Distributed tracking.
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Fig. 3. Distributed tracking (Zoom).

The disturbances for the followers 2, 3 and 5 are presented
in Figure 4. It is important to remark that the control
signals are differentiable and that does not contain high-

frequency. In Figure 5 the control signals for the dynamics
x2, , x3 and x5 is presented.
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Fig. 4. Disturbances w2, w3, and w5.
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Fig. 5. Control signals u2, u3, and u5.

5.2 Simultaneous convergence

Let us consider the same set of vertex than in the previous
example, but let us consider the new set of edges given by

E2 = {(0, 5), (5, 4), (4, 2), (2, 3), (3, 2), (2, 1), (3, 1), (1, 5)}

Then, a new graph can be defined as:

G2 = (V , E2)

This new set of edges induces a different topology shown
in Figure 6.

Fig. 6. Network topology for simultaneous convergence.

The corresponding adjacency matrix for the graph G2 is
now given by:

A =















0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 1 0 0 0 0















19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1395



This new adjacency matrix satisfies the conditions of
Theorem 1 with eigenvalues in:

λ1 = 2.8668, λ2 = 1.5 + 0.6067i, λ3 = 1.5− 0.6067i,

λ4 = 0.1332, λ5 = 2, λ6 = 0.

Furthermore, it satisfies the conditions of Corollary 2
and the followers are strongly connected. Using the same
control parameters as in the previous example, the dis-
tributed tracking is illustrated in Figure 7, here is shown
the convergence of the followers to the leader’s position. In
Figure 8, the simultaneous convergence of all the followers
to the leader’s position is illustrated. Notice that all the
trajectories converges simultaneously in a finite-time.
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Fig. 7. Distributed tracking with simultaneous conver-
gence.
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Fig. 8. Distributed tracking with simultaneous convergence
(Zoom).

6. CONCLUSIONS

The distributed tracking problem has been solved by
means of the second-order sliding mode super-twisting
controller. The distributed tracking is achieved in a finite
time in spite of disturbances in the follower’s dynamics.
The proposed controller ensures the exact tracking of
leader’s position using a differentiable control law, and

the distributed tracking has been ensured under struc-
tural conditions on the network graph. The conditions for
distributed tracking and for simultaneous consensus have
been studied and illustrated by means of simulations. The
workability of the proposed method has been shown in
simulations.
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