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Abstract: Most of the current studies and solutions developed for building temperature control
have been designed independent of the occupant feedback. An acceptable temperature range for
the occupancy level is estimated, and control input is designed to maintain temperature within
that range during occupancy hours. In this work we have incorporated active user feedback so as
to minimize the aggregate user discomfort taking into account the total energy cost to design the
optimal control input. The focus is on a multi-zone building, with lumped heat transfer model
based on thermal resistance and capacitance for system analysis. We provide a stability analysis
and establish convergence of the proposed solution to a desired temperature that minimizes the
sum of energy cost and aggregate user discomfort. Simulation results on a four-room example
are presented to demonstrate the performance of the proposed approach and validate the model.
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1. INTRODUCTION

In recent years our quality of living has improved dra-
matically and so has the human comfort level expecta-
tions. All this has lead to an unprecedented rise in the
consumption of energy resources. A large fraction of the
energy consumption comes from its usage in buildings,
both residential and commercial. It has been estimated
that nearly 40% of the total energy consumption in US,
which in turn accounts for 20% of total energy consump-
tion worldwide, can be attributed to the residential and
commercial building usage [Lombard et al. (2008)]. Build-
ing usage also accounts for more than 75% of current
electricity consumption. Hence, one of the most important
components of attaining global energy efficiency is that of
attaining energy efficient operation of buildings. Heating,
ventilation, and air conditioning (HVAC) system is one of
the major energy consumers in buildings. So far, numerous
design and solution approaches have been proposed for the
control of HVAC systems. The approaches taken so far can
be broadly classified into those focusing on optimal energy
usage through variable electricity rates [Sane et al. (2006),
Braun (1990), Henze (2005), Henze et al. (2004)], active
and passive thermal energy storage [Henze (2005), Henze
et al. (2004)], and more recently model predictive control
(MPC) approach exploiting weather forecast information
[Ma et al. (2012), Ma et al. (2011), Kelman et al. (2011),
Ma and Borrelli (2012), Gatsis and Giannakis (2011)].

A building in its entirety is a complex network of hetero-
geneous and inter-connected subsystems. The occupants
of a building constitute an important subsystem, whose
comfort level must be accounted for, in optimizing energy
usage in a building. However, existing approaches treat

the building and its occupants as separate entities. Such a
fragmented approach towards attaining energy efficiency
in buildings will most likely be sub-optimal. An effective
building energy control system must take into account
the feedback of its occupants, and their individual com-
fort levels at the current temperature/heat input settings.
This can be a very challenging task in large commercial
buildings such as schools, libraries, offices etc. which have
a very diverse collection of occupants with different ranges
of preferred temperature. This calls for a control solution
that does not rely on a priori knowledge of the comfortable
temperature ranges/comfort functions of the individual
occupants, but learns them through occupant feedback,
and incorporates such feedback along with energy cost in
controlling building temperature optimally. In this paper
we present an optimal control solution for this problem,
that is developed and analyzed using gradient optimiza-
tion. In our model the feedback of the building occupants
are taken as a periodic input and is used, along with energy
usage considerations, in determining the adjustment to
the control (energy) inputs, which in turn determines the
evolution of the building temperature.

More specifically, in this paper we make the following
contributions. We consider a multi-zone building, and use
a lumped heat transfer model based on thermal resistance
and capacitance for system analysis. We establish con-
vergence of the proposed approach to a desired temper-
ature and energy input equilibrium solution, such that
it minimizes the sum of energy cost and aggregate user
discomfort. Finally, we conduct simulations on a four-room
model to demonstrate the performance of the proposed
solution approach.
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2. SYSTEM MODEL AND CONTROL ALGORITHM

In formulating our building energy control question, we
first need to determine the choice of the building heat
transfer model. In the past researchers have proposed
different models such as the finite element method [Mebee
(2011)], lumped mass and energy transfer model [Riederer
et al. (2002), Wu et al. (2008)], and electrical circuit
analogy with application of graph theory [Boyer et al.
(1996), Fraisse et al. (2002), Xu et al. (2008), Athienitis
et al. (1985)]. There is a tradeoff to be made between com-
putational efficiency and accuracy of room representation
when deciding upon the system model. The electrical anal-
ogy approach to modeling multiple interconnected zones
reduces the heat transfer model to an equivalent electrical
circuit network. The model can be further modified to
include building occupancy, room and heating equipment
dynamics [Athienitis et al. (1985), Chandan (2010)]. In
this paper we take this electrical circuit analogy approach,
and combine it with occupant feedback modeling.

We model a building as a collection of interconnected
zones, and use a lumped heat transfer model for modeling
its energy/temperature dynamics. In the lumped heat
transfer model, the walls are modeled as an RC network
resulting in the standard 3R2C model [Fraisse et al.
(2002)] where each zone is modeled as a thermal capacitor.
Heat flow modeling is based on temperature difference
and thermal resistance: Q = ∆T/R, where ∆T is the
temperature difference, R is the thermal resistance and
Q is the heat transferred across the resistance.

The heat flow and thermal capacitance model can be
written for all the thermal capacitors in the system, with
Ti as the temperature of the ith capacitor. Consider the
system to have n thermal capacitors and l thermal resis-
tors. With additional sources of heat input such as ambient
environment, we can write the overall heat transfer model
of the system with m zones as [Mukherjee et al. (2012)]:

CṪ = −DR−1DTT +B0T∞ +Bu+Bw, (1)

where T ∈ Rn is the temperature vector (representing the
temperature of the thermal capacitors from 3R2C model)
and u ∈ Rm is the heat input vector for the model.
Note that (T, u) are each functions of time (T (t), u(t))

and accordingly Ṫ = dT
dt . Positive values of u correspond

to heating the system and negative values correspond to
cooling. In the above equation, C ∈ Rn×n consists of
the wall capacitances and is a diagonal positive definite
matrix; R ∈ Rl×l consists of the link thermal resistances
and is a positive definite matrix. Also, D ∈ Rn×l is the
incidence matrix and is of full row rank [Lombard et al.
(2008)], and B0 = −DR−1dT0 ∈ Rn is a column vector with
non-zero elements as the thermal conductances of nodes
connected to the ambient. Further, T∞ is the ambient
temperature, w ∈ Rm is the environmental heat input into
each zone, and B ∈ Rn×m is the input matrix. In this study
we neglect the environmental heat input and so our model
equation (1) reduces to:

CṪ = −DR−1DTT +B0T∞ +Bu. (2)

In our model, the zones are picked such that each of
them has a heating/cooling unit, which in turn implies
that B is of full row rank. Also, since matrix D is of
full row rank the product DR−1DT is a positive definite

matrix. Further to model the active user feedback through
human mediation, temperature regulation is done for the
zones that are occupied and are also directly affected by
heating/cooling devices. The vector of zone temperatures,
denoted by y (which is a function of T ) can be expressed
as,

y = BTT. (3)

Our overall minimization objective (overall cost) is the
sum of two terms: (i) energy cost (i.e, cost of heat-
ing/cooling), and (ii) aggregate discomfort cost of the
occupants. The energy cost (i) is expressed as 1

2u
TΓu,

where Γ is a positive definite matrix. Let Sj denote the
set of all occupants in zone j, and ρ =

∑m
j=1 |Sj | be

the total number of occupants. Also let Gs denote the
(convex) discomfort function of occupant s. Then the
aggregate occupant discomfort cost (ii) is expressed as∑m
j=1

∑
s∈Sj

Gs(yj(T )), where yj(T ) = [BTT ]j(from (3))

denotes the jth element of y, or the temperature of zone
j. Our minimization objective is thus expressed as,

U(u, T ) =
1

2
uTΓu+ γ

m∑
j=1

∑
s∈Sj

Gs(yj(T )). (4)

In (4), γ is a scalar constant that defines the relative
weight provided to the aggregate occupant discomfort, as
compared to the energy cost.

Assuming a constant ambient temperature T∞, and using
equilibrium condition (setting Ṫ = 0 in (2)) we obtain:

T = h(u) = (DR−1DT )−1(B0T∞ +Bu). (5)

Let the control input u be updated once every ∆ time
units, and be expressed as:

uk+1 = uk − ηΘ(u, T ), (6)

where Θ(u, T ) is based on the occupant comfort feedback,
current system temperature, and energy cost (the exact
form of Θ(u, T ) will be defined later in this section). Also,
η in the above equation is a scalar that can be loosely
interpreted as the “feedback gain” of the system and
represents the constant “step size” of a gradient descent
algorithm (see the discussion below).

We can now develop a continuous approximation to the
evolution of the control input u, as

u̇ ≈ uk+1 − uk
∆

= − η
∆

Θ(u, T ). (7)

Equations (2) and (7) govern how the system evolves. Time
step ∆ is the interval at which user feedback is solicited
and the control input u is updated. A larger ∆ implies a
slower evolution of u. Then,

∆ =
dt

dτ
=⇒ u̇ =

du

dt
=

1

∆

(du

dτ

)
; Ṫ =

dT

dt
=

1

∆

(dT

dτ

)
.

(8)
Control input equation (7) now becomes:

du

dτ
= −ηΘ(u, T ). (9)

Similarly, equation (2) modeling the temperature evolu-
tion of the building can now be expressed as:

C

∆

dT

dτ
= −DR−1DTT +B0T∞ +Bu. (10)

Define,
J(u) = U(u, h(u)), (11)
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i.e., J(u) is obtained by plugging in T = h(u) from (5)
into (4). The energy cost term in (4) is strictly convex in
u. The aggregate occupant discomfort term is convex in T ,
and therefore convex in u when T is set to h(u), as h(u)
is linear in u. J(u) is thus strictly convex in u and has a
unique optimal solution u∗. Define

T ∗ = h(u∗), (12)

which is also unique by definition. Θ(u, T ), defined earlier,
is expressed using Lyapunov functions V (u) and W (u, T ),
where

V (u) = J(u)− J(u∗); (13)

and
W (u, T ) = (T − h(u))TP (T − h(u)), (14)

P in the above equation is a symmetric positive definite
matrix. We now define a combined Lyapunov function
L(u, T ):

L(u, T ) = (1− α)V (u) + αW (u, T ), (15)

where α satisfies 0 < α < 1. Θ(u, T ) is then obtained as,

Θ(u, T ) = ∇uL(u, T ). (16)

The control input update equation in (9) can now be
expressed as:

du

dτ
=−η(1− α)∇u[J(u)− J(u∗)]

−ηα∇u[(T − h(u))TP (T − h(u))]. (17)

Simplifying further,

du

dτ
=−η(1− α)[Γu+ γY ΛF (u)]

−2ηα[((DR−1DT )−1B)TP (T − h(u))]. (18)

In the above, Y ∈ Rm×m is the Jacobian obtained using
(3) and the equilibrium condition (5), expressed as

Y = (
∂y

∂u
) = BT (DR−1DT )−1B. (19)

Also, Λ ∈ Rm×ρ is the zone-occupant matrix that indicates
which occupants are present in a zone (Λjs = 1 if
s ∈ Sj else 0), and F (u) ∈ Rρ×1 is the “marginal
discomfort” vector of the occupants, obtained by taking
partial derivative of the occupant discomfort function with
respect to y, evaluated at the corresponding equilibrium
temperature h(u) i.e. at y = BTh(u). In other words, the
sth element of F (u), where s ∈ Sj , is obtained as

Fs(u) = (
∂Gs(yj)

∂yj
)

∣∣∣∣∣
yj=[BTh(u)]j

, s ∈ Sj , (20)

where [BTh(u)]j is the jth component of BTh(u).

We assume that Fs(u), the “marginal discomfort” value
of occupant s at the current input u, can be reasonably
estimated from the discomfort feedback of occupant s
at any time. In practice, the occupants may provide the
feedback in some simple form describing their actual level
of discomfort (“I am feeling hot”, “I am feeling very cold”
etc.). This feedback must be processed to estimate the
marginal discomfort (derivative of the actual discomfort
function) for the current input value u. Also note that
an occupant s ∈ Sj will provide a comfort feedback at the
current temperature it experiences, which is [BTT ]j , which
may differ from the equilibriated temperature at which the

feedback is desired [BTh(u)]j . Some adjustments may need
to be made on that count as well, to estimate Fs(u) appro-
priately based on the current discomfort feedback. Note
however, that if the occupant feedback is collected after
long intervals (i.e. ∆ is large), allowing the temperature T
to settle down to h(u) or close to it before the occupant
feedback is collected, this difference may be negligible. In
the analysis and simulation section that follows (Sections
3 and 4, respectively), we assume that the Fs(u) values are
available (estimated perfectly).

3. STABILITY ANALYSIS

The system evolution is governed by the set of equations
(10) and (18). The coefficient DR−1DT in (10) is positive
definite which makes the unforced system (with u = 0)
exponentially stable.

Proposition 1. (u, T ) given by equations (10) and (18)
globally asymptotically converges to the equilibrium point
(u∗, T ∗).

Proof: To prove that (10) and (18) drives the system to its
equilibrium point, we show that the combined Lyapunov
function L(u, T ) decreases with time, i.e. dL

dτ < 0, unless

(u, T ) = (u∗, T ∗). We can express dL
dτ as

dL

dτ
= (∇uL)T

du

dτ
+ (∇TL)T

dT

dτ
. (21)

where,

(∇uL)T
du

dτ
= (∇uL)T (−η∇uL) = −η(∇uL)T (∇uL),

(22)
which is < 0 unless ∇uL(u, T ) = 0. Next from (10) and
(13)-(15), we obtain:

(∇TL)T
dT

dτ
= 2∆(P (T − h(u)))T

dT

dτ
= 2∆(T − h(u))T

PT (−C−1DR−1DTT + C−1Bu+ C−1B0T∞).
(23)

This expression can be further simplified to obtain,

(∇TL)T
dT

dτ
= −2∆(T−h(u))T (PC−1DR−1DT )(T−h(u)).

(24)
We wish to choose the matrix P such that PC−1DR−1DT

is positive definite. One selection is to have P = C, which
gives:

(∇TL)T
dT

dτ
= −2∆(T − h(u))T (DR−1DT )(T − h(u)),

(25)
which is < 0 unless T = h(u) since the matrix (DR−1DT )
is positive definite. The matrix C is related to system
parameters (wall capacitance values) whose a priori knowl-
edge is needed. Another choice could be P = I (n × n
identity matrix). Substituting P = I we get,

(∇TL)T
dT

dτ
= −2∆(T −h(u))T (C−1DR−1DT )(T −h(u)).

(26)
It is reasonable to assume that the symmetric part of the
matrix (C−1DR−1DT ) has positive eigenvalues implying
that it is a positive definite matrix. Thus, in this case too,
(∇TL)T dT

dτ is < 0 unless T = h(u). Hence, dL
dτ given by

(21) is < 0 unless ∇uL(u, T ) = 0 and T = h(u), which
is only attained at (u∗, T ∗). The result of Proposition 1
follows from standard Lyapunov stability criteria. 2
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4. SIMULATION

For simulation study we consider a four-room building,
borrowing from an example in [Moore et al. (2011)] and
including heat transfer to the ambient for all rooms. It is
illustrated in Figure 1 below. In the figure, each double

Fig. 1. Four room example model used for simulation. Each
room has occupancy as illustrated in the figure.

headed arrow represents a thermal connection between
the two corresponding sides. The connection between two
rooms through an open door is represented by a single
resistance, and the same through the wall is represented
using 3R2C wall model. We place two users (occupants)
in room 4, and one user each in the other three rooms.
This model of four rooms and eight walls gives us 20
capacitive elements and 27 resistive elements, resulting in
the incidence matrix, D as 20× 27. With the dimensions of
the model as in Figure 1, volumetric heat capacity values
and thermal resistance values as per [Mukherjee et al.
(2012)], we can obtain values for the matrices in equation
(2). Using this information we simulate the model with
ambient temperature at T∞ = 15◦C and ∆ as five minutes.

Figures 2 and 3 demonstrates convergence of our model.
The temperature preference of each user (occupant) is
depicted in Table 1. The simulation is run over a 5 hour
period from 7am to 12pm. The results show that the
temperature and control (heat) input converges to the
desired values.

Table 1. Each user’s temperature preference
with users 4 and 5 in room 4 having a common

preference range.

Low Temperature
Limit (deg C)

High Temperature
Limit (deg C)

User 1 19 23

User 2 18 23

User 3 19 22

User 4 20 24

User 5 20 23

7am 8am 9am 10am 11am 12pm
14

15

16

17

18

19

20

21

22

23

24

25

Time of Day
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Room 1

Room 2

Room 3

Room 4

Fig. 2. Temperature evolution over a 5 hour period for
occupancy as per Figure 1 and user temperature
preference as per Table 1.
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Fig. 3. Heat (control) input for the 5 hour period simula-
tion with uninterrupted occupancy, and user temper-
ature preference as in Table 1.

The evolution and convergence of the simulated system is
affected by four major model parameters, feedback gain
(step size) parameter (η), user feedback weight parameter

Table 2. User schedule over a 48 hour period.
+ marks the entry of corresponding user and

− indicates user leaving.

7
am

8
am

9
am

12
to 1
pm

4
pm

5
pm

6
pm

Day
1

(Sim
Start)
U1+

U2+ U3+,
U4+,
U5+

Lunch
Hour

U1− U2− U3−,
U4−,
U5−

Day
2

U3+,
U4+,
U5+

U1+,
U2+

Lunch
Hour

U3−,
U4−,
U5−

U1−,
U2−

Day
3

(Sim
End)
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(γ), trade-off parameter (α) as defined in (15), and heat
cost parameter (Γ). η controls the size of change in u in
each step, and γ signifies the weight given to the penalty
associated with the building occupant discomfort. A higher
γ would result in a high value of control input for a given
user comfort feedback vector. Both η and γ were tuned
to obtain a reasonable trade-off between heat (control)
input and user discomfort level. The scaling parameter
α determines how much weight is provided in moving the
control input u in the gradient direction of J(u); the results
presented in this paper are with low value of α. In this
study we use a time varying heat cost Γ. Once the last user
leaves the building we increase the value of Γ, so that heat
input (energy) is minimized during non-occupant hours.

The results in Figures 2 and 3 with uninterrupted occu-
pancy, do not reflect a typical real world scenario. We
next present simulation results over a 48 hour period with
the occupants moving in and out as per Table 2 schedule.
Room 4 is occupied by two users U4 and U5. Two different
cases are possible in general with multiple users in the
same room: users (U4 and U5) have a common range as in
Table 1, or the users pose a conflicting comfort range as per
Table 3. The temperature and control input for common
range is shown in Figures 4 and 5.

7am 12pm 5pm 10pm 3am 8am 1pm 6pm 11pm 4am 9am
14
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m
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e
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d

e
g
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)

 

 

Room 1

Room 2

Room 3

Room 4

Fig. 4. Temperature profile for the model in Figure 1 over
a 48 hour period with user schedule as per Table 2
and temperature preference as per Table 1

Results for conflicting temperature preference as per Table
3 is captured in Figures 6 and 7. In this scenario since there
is no common comfortable range for both the users of room
4, its not possible to satisfy both the users simultaneously.
Hence, the temperature of room 4 settles between 22◦C
and 23◦C. Since the temperature settles at a much higher
range the overall heat consumed is higher when compared
to the earlier case.

5. CONCLUSION AND FUTURE WORK

In this work we have shown that the building temperature
and energy usage can be controlled effectively through
dynamic feedback from the users (occupants) based on
their comfort levels. Our simulation study showed that
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Fig. 5. Heat input over a 48 hour period with user schedule
as per Table 2 and temperature preferences as shown
in Table 1.
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Fig. 6. Temperature profile with user schedule in Table 2
and temperature preference from Table 3.

with effective tuning of a few parameters, the control
algorithm attains a fast temperature convergence rate with
reasonable energy expenditure.

As discussed at the end of Section 2, our analysis and
simulation study assumes that the derivatives of the occu-
pant discomfort functions at the equilibrated temperature
(h(u), for the current control input u) can be estimated

Table 3. Each user’s range of comfortable tem-
perature. Users 4 and 5 occupying room 4 now

have conflicting temperature preferences.

Low Temperature
Limit (deg C)

High Temperature
Limit (deg C)

User 1 19 23

User 2 18 23

User 3 19 22

User 4 20 22

User 5 23 25
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Fig. 7. Heat input with user schedule following Table 2
and temperature preference in Table 3.

accurately, to be used in the proposed control algorithm.
In practice, occupant feedback will correspond to non-
equilibrated temperatures leading to errors in the imple-
mentation of the proposed control policy. The effect of such
errors on the stability of the control policy could possibly
be studied in the framework of singular perturbation the-
ory [Kokotovic et al. (1986)]. The effect of inaccuracies due
to factors such as discreteness of the occupant’s feedback
or other estimation errors also need to be evaluated. These
research issues are currently under investigation.
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