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Abstract: This paper analyzes finite dimensional linear time-invariant systems with observation
of a delay, where that delay satisfies a particular implicit relation with the state variables,
rendering the entire problem nonlinear. The objective is to retrieve the state variables from the
measured delay. The first contribution involves the direct inversion of the delay, the second is
the design of a finite dimensional observer, and the third presents properties of the delay - state
relation. Realistic examples treat vehicles with ultrasonic position sensors.
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1. INTRODUCTION

This paper revisits the ”soft landing” problem, posed in
Walther [2007]. The problem is one where the dynamics is
linear and finite dimensional, but the observed quantity
(either directly or indirectly) is a delay, which is itself
dependent on the present and the delayed state. In the
simple version of the soft landing problem, the dynamics
are given by a second order system with state variables
position, x and velocity v. The objective is to obtain
an estimate of the full system state from these delay
observations (the “delay-inversion”). For instance, if a
robot is to avoid hitting a wall, x is the distance to this wall
(in a one-dimensional configuration space), and v the rate
of change. The state vector ξ = [x, v]⊤ satisfies in this case
simple Newtonian dynamics ẋ = v, v̇ = u. If the problem
is one of soft landing, say on the ocean floor, the second
state equation should include the relevant viscous friction:
v̇ = −kv+u. In both cases, a sound wave is used to detect
the position. As the speed of sound is finite, this means
that only some past position can be measured. Precisely
how far in the past depends again on the state itself. That
is where the convoluted implicit relation between output
and state-dependent delay appears, rendering the problem
more difficult (e.g., see Hartung et al. [2006]), even in
toy systems (Verriest [2012, 2013]). Moreover the state-
dependent delay model leads to inconsistencies if the rate
of change of the delay exceeds 1, as expounded in Verriest
[2010, 2011].
In Ahmed and Verriest [2013] the Newtonian system with
observation model γτ(t) = x(t) + x(t − τ(t)), where γ is
the speed of sound, was studied. An asymptotic estimate
was provided by a new type of observer (using ”delay-
injection”). This observer is itself a system with time-
varying delay, for which only sufficient conditions for

⋆ This work was made possible through the RIP programme of the
Mathematisches Forschunginstitüt Oberwolfach, Germany, March
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convergence are easily obtained. In this paper we will
show that direct inversion of the delay (i.e., the map from
delay τ to output (position x) is possible in a certain
subinterval. We also provide an observer which does not
involve delayed dynamics, hence is finite dimensional and
easier to implement. Thus motivated, a general version of
this problem is posed and solved.

2. THE GENERAL PROBLEM

Let the dynamics be given by the finite dimensional system

ξ̇ = Aξ + bu, y = cξ, (1)

where ξ ∈ Rn is the state and u and y are respectively
a scalar input and output signal. However, the output is
not directly measured. Only an indirect observation of y,
given by the convolution

τ(t) =
N−1∑
k=0

aky(t− kτ(t)), (2)

and parameterized by the vector a = [a1, . . . , aN ]⊤ is
available. This may be written more compactly with the
implicit form τ(t) = a⊤Y (t, τ(t)). where Y (t, τ(t))⊤ =
[y(t), y(t− τ), . . . , y(t− (N − 1)τ)].
The observability question is now: Can one retrieve the
state ξ(t) from knowledge of the past history of the delay
τ(t) and the applied input, u(t)? If so, we will say that the
system Σ = (A, b, c) is state-observable from the delay.

3. INVERSION OF THE DELAY

Similar to the derivation of the observer for a linear system
as for instance described in Kailath [1980], apply successive
differentiation of the output, τ :
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τ(t) =
N−1∑
k=0

akcξ(t− kτ(t))

τ̇(t) =
N−1∑
k=0

ak [cAξ(t− kτ(t)) + cbu(t− kτ(t))] (1− kτ̇(t)),

etc. These equations can be streamlined in matrix form.
Let T denote the vector of successive derivatives of τ , and
define for each k = 0, 1, . . . , N −1, the vector U(t−kτ) by

T (t) =


τ
τ̇
τ̈
...

τ (n−1)

 , U(t− kτ) =


u(t− kτ)
u̇(t− kτ)
ü(t− kτ)

...

u(n−1)(t− kτ)


Let the matrix of powers and derivatives of (1 − kτ̇) be
denoted by Tk(τ),

Tk(τ) =


1
0 1− kτ̇
0 −kτ̈ (1− kτ̇)2)
...

...
. . .

0 −kτ (n−1) . . . (1− kτ̇)n−1

 .

Then in compact format:

T (t) =

N−1∑
k=0

ak [Tk(τ)O(Σ)ξ(t− kτ) +T(Σ)U(t− kτ)] ,

where O(Σ) and T(Σ) are respectively the observability
and Toeplitz matrix of the LTI system Σ = (A, b, c).

O(Σ) =


c
cA
cA2

...
cAn−1

 , T(Σ) =


0
cb 0
cAb cb 0
...

. . .
. . .

cAn−2b . . . cb 0

 .

But the solution of the system state equation gives

ξ(t− kτ) = e−Akτ ξ(t)− Jk({u}tt−kτ ),

where Jk(·) denotes the convolution integral. Hence

T (τ) +
N−1∑
k=0

ak
[
TkO(Σ)Jk

(
{u}tt−kτ

)
−T(Σ)U(t− kτ)

]
=

[
N−1∑
k=0

akTkO(Σ) e−Akτ

]
ξ(t). (3)

It follows from (3) that the state, ξ(t), can be retrieved
from the input and delay history if the matrix

O1(Σ, a, τ(t))
def
=

[
N−1∑
k=0

akTkO(Σ) e−Akτ(t)

]
is nonsingular for all t.
Denoting the sum which depends on u simply byA({u}, τ)),
the inversion is

y(t) = cO−1
1 (Σ, a, τ) [T (τ) +A({u}, τ)] .

Theorem 1. Observability of the system Σ with output y
is necessary for state-observability from τ .

Proof: By contradiction using the PBH-test. 2

The above then proves:

Theorem 2. The system Σ is state observable from the
delay τ if the matrix O1(Σ, a, τ(t)) is nonsingular for all t.

In sections 3, 4 and 5, we reconsider the soft-landing
problem in the one-dimensional configuration space (which
corresponds to a second order system) for two realistic
observation models.

4. EXAMPLE 1

Consider a mobile unit (MU) of mass m, moving in a
viscous fluid with friction coefficient α. Let the mass emit
a continuous time-stamped signal s(t). By the latter it is
meant that if the signal s(t) is transmitted at time tx,
and observed at a later time t, after propagating with a
speed γ for a time t− tx, the transmission time tx can be
detected. Consider now the following (passive) problem:
Suppose that the signal s(tx) is emitted by the MU, when
it is at position x(tx) and detected by a stationary observer
located at the origin at time t. Since the signal has traveled
for a distance γ(t−tx) = x(tx), it reveals an earlier position
of the MU to this stationary observer. In this example we
assume that the receiver sits at an impenetrable wall so
that we may assume that x(·) ≥ 0. This could model
the (one-dimensional) vertical motion of a submersible,
with the detector at the bottom of the ocean. Letting
t− tx = τ(t), this gives

x(t− τ(t)) = γτ(t),

which corresponds with a⊤ =
[
0, 1

γ

]
in the general model.

4.1 Exact inversions

It is fairly simple to derive τ(·) from knowledge of x(·). See
Figure 1. Let x(t) be given in [t0, t1], with x(t0) = x(t1) =
0. Consider the point A with coordinates (t, x(t)/γ) on the
graph of x/γ. Construct the line with slope −1 through A,
which intersects the time axis in B, with coordinates (t+
x(t)/γ, 0). The horizontal line through A and the vertical
line through B intersect in C, which has the coordinates
(t + x(t)/γ, x(t)/γ) and lies on the graph of τ . In fact,
if t′ = t + x(t)/γ, then τ(t′) = x(t)/γ, which gives a
parameterized form of the graph of τ . Moreover, if x is
differentiable, then two neighboring points on the graph
of x/γ, say (t, x(t)/γ) and (t+dt, (x(t) + ẋ(t)dt)/γ), map

Fig. 1. Constructing τ(·) from x(·)
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Fig. 2. Non-unique τ(·) if ẋ < −1.

to (t + x(t)/γ, x(t)/γ) = (t′, τ(t′)) and (t + dt + (x(t) +
ẋ(t) dt)/γ) = (t′ + dt′, τ(t′) + τ̇(t′)dt′). This implies

τ̇(t′) =
ẋ(t)

γ + ẋ(t)
. (4)

Imposing the causality constraint τ̇ < 1, see Verriest
[2011], implies then a constraint on the feasible functions
x, namely ẋ > −γ. Indeed, it can be seen that when this
constraint is violated, a unique τ cannot be constructed.
See Figure 2. For t ≥ 1, two compatible delay values occur.

The observation problem is actually the reverse of the
above. It is desired to reconstruct x from observations of
the delay τ . For this the previous graphical construction
can be inverted. Let the delay τ(·) be specified and strictly
positive in the interval (t0, t1), and assume it satisfies the
causality constraint. Then for t0 ≤ t ≤ t1, the parameter-
ized point (t−τ(t), γτ(t)) lies on the graph of x (Figure 3).
Point A has coordinates (t, τ(t)). The line AB has slope 1,
so that B has coordinates (t−τ(t), 0). The vertical through
B intersects the horizontal through A to give C with
coordinates (t−τ(t), τ(t)). The length of BD is γ times the
length of BC, thus D has coordinates (t− τ(t), γτ(t)) and
therefore lies on the graph of x. Finally, note that x(·) can
only be determined in the interval (t0 − τ(t0), t1 − τ(t1)).

4.2 Analyticity

Theorem 3. In (4): x is analytic ⇔ τ is analytic.

Proof: (1.) If τ(·) is analytic, then t − τ(t) is analytic.
Suppose that x were not analytic, then x(t − τ(t)) would
also not be analytic, contradicting analyticity of γτ(t).

Fig. 3. Construction of x from τ (for γ = 1.2).

(2.) If x(·) is analytic, then let x(t′) = τ(t), t′ = t− τ(t).
Thus t = t′ + 1

γx(t
′), so that t is an analytic function of

t′. Since τ(t(t′)) = 1
γx(t

′) is an analytic function of t′, and

t(t′) is analytic it must follow that τ(·) is analytic. The
latter follows by contradiction: Suppose that τ(·) were not
analytic, then τ(t(t′)) = 1

γx(t
′) is not analytic. 2

Note that x is generated by a finite dimensional linear time
invariant ODE. Hence if the driving force u is an analytic
function of time, so will be x, and by the theorem therefore
also the delay τ .

4.3 State observability from the delay

Let’s temporarily leave this delay model, and see how the
state equations generate the observations in this model.
With the state defined as ξ = [x, v]⊤, where x is position
and v the velocity, the state space realization is given by

A =

[
0 1
0 −α

]
, b =

[
0

1/m

]
, c = [ 1, 0 ].

Let’s first look at the dynamics without the delay, assum-
ing that the position is directly observed: y(t) = x(t).
The observability matrix O(A, c) = I, and thus

x(t) = y(t), v(t) = ẏ(t),

irrespective the applied force u. In fact, by taking a second
derivative of the observation, the unknown input can be
found by differentiation:

u(t) = m (ÿ(t) + αẏ(t)) .

Thus the state as well as the input are observable from
y. Note that this delay-free case corresponds to the limit
of a model where the speed of the MU is much smaller
than the propagation speed of the signal (γ = c). Indeed,
x(t− τ(t)) ≈ x(t)− ẋ(t)τ(t), and thus

x(t) ≈ c

(
1 +

ẋ(t)

c

)
τ(t) ≈ cτ(t).

With the delay incorporated in the model, it is easily seen
from (1) and (2) that

x(t− τ(t)) = γτ(t)

v(t− τ(t)) = γ
τ̇(t)

1− τ̇(t)
.

Hence, only past values of the state can be detected. Since
τ(t) is detected it is known precisely at which past time
these state values are known. The dynamical equations
also yield the input value from

u(t− τ(t)) = m (v̇(t− τ(t)) + αv(t− τ(t))) .

The chain rule gives

d

dt
v(t− τ(t)) = v̇(t− τ(t)) (1− τ̇(t)). (5)

But the he left hand side of (5) is

d

dt

γ ˙τ(t)

1− ˙τ(t)
=

γτ̈

1− τ̇
+

γτ̇ τ̈

(1− τ̇)2
=

γτ̈

(1− τ̇)2

So: v̇(t− τ(t)) = γτ̈
(1−τ̇)3 , and
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u(t− τ(t)) =mγ
τ̈(t) + ατ̇(t)(1− τ̇(t))2

(1− τ̇(t))3
.

If the input force, u(t), is known for t ≥ 0, but not the
initial state, then at time t > 0, the state [x(t−τ(t)), v(t−
τ(t)]⊤ is detected. This can be integrated forward to get

x(t) = x(t− τ(t)) +
1

2m

∫ t

t−τ(t)

(t− s) e−α(t−s) u(s) ds

= γτ(t) +
1

2m

∫ t

t−τ(t)

(t− s) e−α(t−s) u(s) ds

v(t) = v(t− τ(t)) +
1

m

∫ t

t−τ(t)

e−α(t−s) u(s) ds

= γ
τ̇(t)

1− τ̇(t)
+

1

m

∫ t

t−τ(t)

e−α(t−s) u(s) ds.

Since τ(t) is measured without error, τ̇(t) is known, and
the above integrals are computable at time t.

4.4 A Finite dimensional asymptotic observer

In practical situations, measurements cannot be perfect.
Hence the observed τ(t) may be imbedded in a wildly fluc-
tuating perturbation w(t), which may be deterministically
or stochastically modeled. In either case differentiation
is impractical. The way out is then to use a dynamic
observer. Since the dynamic model is finite dimensional,
the basic simulator with delay error injection is

ξ̇(t) = η(t) + ℓx(τ(t)− τ̂(t)) (6)

η̇(t) =−αη(t) +
1

m
u(t− τ(t)) + ℓv(τ(t)− τ̂(t)), (7)

where

τ̂(t) =
1

γ
ξ(t). (8)

Note however that it is necessary to drive this observer
with the delayed input. Subtracting these equations from
the delayed dynamical model, evaluated at t − τ(t), and
setting [

x̃(t− τ(t))
ṽ(t− τ(t))

]
=

[
x(t− τ(t))
v(t− τ(t))

]
−
[
ξ(t)
η(t)

]
,

we get the error model

˙̃x = ṽ − ℓx
γ
x̃, ˙̃v = −αṽ − ℓv

γ
x̃,

evaluated at t − τ(t). Hence if the observer gain ℓ =
[ℓx, ℓv]

⊤ is chosen so that the observer dynamical matrix −ℓx
γ

1

−α− ℓv
γ

0

 ,

which has characteristic polynomial, s2 + ℓx
γ s + α + ℓv

γ ,

is Hurwitz, the error will converge to zero. Consequently,
the observer (6,7) is an asymptotic estimator of the past
state, [x̂(t − τ(t)), v̂(t − τ(t))] = [ξ(t), η(t)]. A prediction
step then completes the observer for the present state

x̂(t) = ξ(t) +
1

2m

∫ t

t−τ(t)

(t− s) e−α(t−s) u(s) ds

v̂(t) = η(t) +
1

m

∫ t

t−τ(t)

e−α(t−s) u(s) ds.

The error goes also asymptotically to zero if u(·) is per-
fectly known. In the other case, bounds are easily obtained
for the integrals in the above expression.

5. EXAMPLE 2

Consider now the system from Example 1, but with the
sonar device (transmitter and receiver) located on the
mobile unit (MU). This corresponds to the special case

a⊤ =
[
1
γ ,

1
γ

]
. Consider thus

x(t) + x(t− τ(t)) = γτ(t). (9)

Without any knowledge of the dynamics involved, what
can now be inferred from the observation model (9)?

5.1 Causality

First consider the simple limiting case: τ(t) = t − t0, for
some t ∈ (t1, t2) with t1 ≥ t0 in order to maintain causality.
Substitution in equation (9) leads to

x(t) = −x(t0) + γ(t− t0), t ∈ (t1, t2).

Note that if t0 = t1, i.e., τ(t0) = 0, it follows from the
above that also x(t0) = 0.
The limit case can thus only occur when x(·) is a straight
line with slope γ. This is equivalent to τ̇ = 1, this truly
being the limit case for causal behavior.
Let τ(t) ≥ 0 be given in (t0, t1) and assume it satisfies the
causality constraint τ̇(t) < 1. Differentiating (9) gives

ẋ(t) + ẋ(t− τ(t))(1− τ̇(t)) = γτ̇(t).

The causality constraint imposes

τ̇(t) =
ẋ(t) + ẋ(t− τ(t))

γ + ẋ(t− τ(t))
< 1.

For γ + ẋ(t− τ(t)) > 0, this inequality yields

ẋ(t) < γ.

Hence |ẋ| < γ implies consistent (causal) behavior. The
physical meaning is that the MU should not move faster
than the speed of sound.

5.2 Obtaining τ from x.

Consider the forward problem: Determine τ(t), satisfying
(9), from full knowledge of x(t) in the interval (t1, t2). We
shall assume that u is also perfectly known in this case.
From time t′1 on, where t′1 − t1 = τ(t′1), the delay τ(·) is
well defined. Reorganize the equation as

x(θ′) = −x(θ) + γ(θ′ − θ), τ(θ′) = θ′ − θ.

The construction is as follows. From a point (θ,−x(θ))
draw the line with slope γ. This line intersects the curve
x(t) in a point with horizontal coordinate θ′. The delay at
θ′ is then τ(θ′) = θ′ − θ. See Figure 4.

Point B′ has coordinates (t,−x(t)). The line B′C′ has slope
γ, and intersects the curve x(·) in C′, so that C′ has
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Fig. 4. Construction of τ from x (for γ = 2).

coordinates (t′, x(t′)). The vertical through C′ intersects
the time axis in D′. The delay at t′ is then the length
A′D′=E′D′. This creates the point E′ with coordinates
(t′, τ(t′)). Likewise, ABCDE gives the construction for the
first time for which τ can be derived.
An alternative construction (Figure 5) of the same follows
from

t′ − t = τ(t′), x(t′)− γt′ = −x(t)− γt.

Plot the graphs of±x(t)−γt. Let point B have coordinates
(t,−x(t)−γt). The horizontal through B intersects x(s)−
γs in C with coordinates (t′, x(t′)− γt′). The delay at t′ is
therefore τ(t′) = t′ − t.

5.3 Obtaining x from τ

Finally, consider the converse construction of x(t) from
τ(t).
Assume that τ(·) is known in the interval (t0, t1), with
τ(t0) = τ(t1) = 0. As discussed, this implies that x(t0) =
x(t1) = 0, and if τ(t) > 0, for some t ∈ (t0, t1), then
x(t) > 0. Consider figure 6. At time t, the delay τ(t)
is known (point B). The line through B with slope 1,

Fig. 5. Alternative construction of τ from x (for γ = 2).

Fig. 6. Construction of x from τ (for γ = 1.5).

intersects the time axis in point C, determining the time
t− τ(t). It holds that

x(t− τ(t)) + x(t) = γτ(t)

Hence since x(t) ≥ 0, it holds that

x(t− τ(t)) ≤ γτ(t).

Through point A construct the line with slope −γ. This
line intersects the vertical through C in point D. Hence,
it follows that x(t − τ(t)) must be constrained to the
interval CD. Since this construction can be performed for
all t ∈ (t0, t1), an upper bound for x(t), the line xb(t),
is obtained. The same construction holds when τ(t0) and
τ(t1) are nonzero. See Figure 7, for γ = 0.5. In this case
the interval where the upper bound is known differs from
the interval where the delay τ is known.

Can one actually obtain the exact values of x from τ?
Consider again Figure 7. In order to determine the value
of x(t) at tA, one needs to know x at time tC . We only know
this value is constrained to the interval CD, but otherwise
we may assume it to be ‘free’. Thus the construction
defines a mapping of x in the interval CA, to x in an
interval starting at AA′, where A′ is the time at which the
parallel to CB intersects the graph of τ . This mapping is
given by

∀θ ∈ (tC , tA),∀x ∈ (0, xb(θ)) : (θ, x) → (θ′,−x+γ(θ′−θ)),

where θ′ is the explicit function, say θ′ = T (θ), associated
with the implicit relation θ′ − θ = τ(θ′). By the implicit
function theorem, this explicit function will exist (and
be unique) if τ̇ ̸= 1. But this is holds in view of the
causality requirement we had imposed on the problem.

Fig. 7. Upper bound for x from τ (for γ = 0.5).
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Fig. 8. A discontinuous candidate for the function x(t).

It follows that many initializations exist which will give a
consistent value for x(t) over the interval. Unless we have
some side information about x, no unique solution can
result. What could such side information be? For the case
of Figure 7, consider the initialization by x(θ) = 0.2 in the
interval (−0.5, 0). This corresponds to the segment AB in
Figure 8, and it gets mapped to A′B′. Although it satisfies
the constraint x(t) < xb(t), this cannot correspond to a
solution of the problem if it is known that x(t) should
be a continuous function, as we get a discontinuity at
zero. Even if we adjust the initial data in the interval
(−0.5, 0) so that the continuation by the above mapping
is continuous, differentiability may fail at zero. But this
requisite side information is precisely what one would get
from a dynamical model for x(t).

The problem is simpler if τ(t0) = 0, and τ(t) is differ-
entiable. A differentiable solution of x(t) is obtained by
differentiating the defining equation. Indeed let ϵ > 0 be
small. Then from

x(t0 + ϵ) + x(t0 + ϵ− τ(t0 + ϵ)) = γτ(t0 + ϵ)

we get

x(t0) + ϵẋ(t0) + x(t0) + (ϵ− τ(t0 + ϵ))ẋ(t0) = γτ(t0 + ϵ).

This yields

ẋ(t0) =
γτ̇(t0)

2− τ̇(t0)
.

5.4 Behavior near a common zero of x and τ .

Without loss of generality let t = 0 be the common zero.
If x(t) has dominant behavior x(t) = atµ for µ > 0 and
a > 0, then substitution in (9) gives

atµ + atµ
(
1− τ(t)

t

)µ

= γτ(t).

Causality imposes τ(t) < t, hence the factor
(
1− τ(t)

t

)
takes values in the interval (0, 1). It follows then that

a

γ
tµ < τ(t) <

2a

γ
tµ.

Conversely, if τ(t) has dominant behavior τ(t) = btν ,
where for causality reasons ν > 1, then

x(t) + x(t− btν) = γbtν

from which a first order Taylor expansion gives the ODE

2x(t)− btν ẋ(t) = γbtν

But this is non-Lipshitz, so a unique solution may not be
inferred. Upon substituting x(t) = atµ, one gets

2atµ − abµtµ+ν−1 = γbtν .

If ν < 2, the left hand side becomes negative and no
conclusion can be drawn from this approximation. But if
ν > 2, then the second term on the left may be neglected
compared to the first, leading to the viable solution a =
γb/2 and µ = ν, thus x(t) behaves as x(t) = γb

2 tν . Finally,
note that a linear increase in both x and τ is compatible.
Indeed, letting τ(t) = bt and x(t) = at in (9) gives at +
a(t− bt) = γbt from which the complementary relations

a =
γb

2− b
, b =

2a

γ + a
(10)

are exact. One can ask again, if as in example 1, analytic
solutions exist

x(t) =
∞∑
i=1

ait
i, τ(t) =

∞∑
i=1

bit
i.

For instance, the second order approximations for x and
τ in the neighborhood of a common zero (placed at t=0),
x(t) = a1t + a2t

2 and τ(t) = b1t + b2t
2 leads again to

2a1 − a1b1 = γb1, i.e., (10) is retrieved and

a2(b
2
1 − 2b1 + 2) = (γ + a1)b2.

More terms can be computed, but the procedure becomes
more convoluted as the accuracy increases. The existence
of analytic solutions implies that the delay-inversion can
be computed iteratively as a matter of principle.

Acknowledgement: The first author is indebted to Prof.
Bernhard Lampe for suggesting this problem.
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