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Abstract: This paper addresses the control-rate versus quantizer-resolution trade-off in
networked control. The case presented considers the situation where the bit rate between
controller and plant is constrained to a fixed number of bits per unit of time and an
underlying fixed fast sampling rate is deployed to take measurements. However, a variable
control update rate can be used between the controller and the plant. Inspired by the
practical problem of inner loop power control in WCDMA, we assume the plant is an
integrator. This assumption covers more general plants when fast sampling is used. Also, a
restricted architecture in which linear filters are used for the encoder/decoder is considered
and a quantizer with linear feedback is deployed. These choices give maximal insights into
the underlying problem. It is shown that, in this case, it is best to use one bit per sample, in
which case, the control update frequency is equal to the bit rate.

Keywords: Communication Control Application, Linear Control Systems, Network
Control, Minimum Variance Control, Quantization, Sampling Rates

1. INTRODUCTION

Control theory has traditionally ignored communica-
tion constraints but the recent developments in net-
worked control systems, and the problems arising there
from, have inspired considerable interest in the inter-
play between communication and control (Wong and
Brockett, 1997; Antsaklis and Baillieul, 2004). A major
focus in this literature has been on the effect of network
constraints on performance and stability; typical con-
straints are limits on (average) data rate, random delays
and lost packets. There has been important progress in
several areas. Data rate constraints have been inves-
tigated in Nair and Evans (2004); Nair et al. (2007);
Savkin (2006); Tatikonda and Mitter (2004) while the
effect of packet loss and random delays has been stud-
ied in Ling and Lemmon (2004); Schenato et al. (2007);
Seiler and Sengupta (2005) and Lian et al. (2003) re-
spectively. A signal to noise ratio formulation of the
problem has also been explored (see e.g. Goodwin et al.
(2010)). A key recent result establishes necessary and
sufficient conditions on the average channel data rate
that ensures closed-loop stability; see Nair et al. (2007)
and the many references therein.

A discrete time formulation, in which the sampling
frequency (in both uplink and downlink) is a-priori
fixed, has typically been adopted in the networked
control literature. This formulation is well matched to

problems where physical constraints dictate the rate at
which samples can be taken and control updates sent,
rather than the number of bits that can be transmitted.
In this paper, an alternative point of view is taken. The
assumption is that the constraint is on the bit rate in the
communication channel between controller and plant
rather than the control update rate. A related problem
is discussed in Fulton et al. (1997) in connection with
Kalman Filtering for speech coders. However, the con-
clusions are different from those presented here since
the problem is posed differently. Also note that 1 bit
digital to analogue converters are commonly used in
consumer electronics Smith (1999) but, again, this is
for different reasons. To the best of authors knowledge,
the question posed here has not been considered pre-
viously in the networked control literature. We believe
that the results obtained are both surprising and of prac-
tical relevance.

A general treatment of this question has been carried
out in a recent paper (Goodwin et al., 2014). However,
because of the complexity of the general problem, the
final design is necessarily simulation based. The cur-
rent paper considers a simplified case where the plant
is assumed to be an integrator. In practice this also cov-
ers more general systems when fast sampling is used
since all continuous systems of relative degree one act
(locally) as a pure integrator under fast sampling- see
Åström and Wittenmark (1997); Åström et al. (1984)
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for further discussion. In this case, the design is rela-
tively simple and further insights into the problem are
obtained.

The control channel (between controller and plant) bit
rate is the product of the number of bits per unit of
time and the update frequency. Since p bits per sample
permits 2p quantization levels, a higher value for p re-
duces the quantization error but also reduces the update
frequency and, therefore, the ability of the controller to
reduce the effect of disturbances. This decomposition
of the bit rate into the product of bits per sample and
control update frequency results in an obvious trade-off
and leads to the question: “What is the best allocation
of a given bit rate into the number of bits per sample
and the number of control updates per second?” This
paper addresses this question. Because the control up-
date frequency has to be chosen, the underlying system
is modelled using the smallest possible update period
i.e. the inverse of the control channel bit rate.

The work described in the current paper was originally
motivated by the problem of inner loop power control
in WCDMA mobile communications (Cea and Good-
win, 2011, 2013). In this system the output is sampled
without quantization at period ∆1 = 0.667[msec]. A
control command is also sent from the controller (in
the base station) to the user equipment every ∆1 =
0.667[msec] but is quantized to 1 bit. The plant is a pure
integrator (since the user equipment simply treats the
incoming control commands as increments in power).
It would be possible to keep the same control channel
bit rate but to send control commands every p samples
and to deploy a p bit quantizer. Preliminary simulations
carried out by the current authors suggests that the use
of 1 bit is actually optimal. The current paper substan-
tiates this choice.

A pragmatic view of network control in which linear
filters are utilized for the encoder/decoder pair is taken.
The single input single output case is considered and
a quantizer with linear feedback is deployed to assign
the control signal to the available bits. The analysis
is restricted to open loop LTI stable systems. Subject
to the above constraints, a design procedure in which,
for each choice for the number of bits in the quan-
tizer, the optimal controller, encoder/decoder, quantizer
feedback and quantizer step size are chosen. Then, the
optimal number of bits/sample is chosen. It is shown,
surprisingly in our view, that one bit per sample is best.
Consequently a sampling rate equal to the available bit
rate is best. This choice corresponds to implementing
the control law using a scaled sign function.

The layout of the remainder of the paper is as follows:
Section 2 describes the class of models of interest.
Section 3 presents the quantizer model, Section 4 de-
scribes the system structure and gives details of the fil-
ter design. Section 5 specializes the analysis to the case
where the plant is an integrator. Section 6 describes
the final closed loop system. Section 7 presents per-
formance comparisons under a further simplifying as-
sumption. Section 8 present performance comparisons

without simplifying assumptions. Section 9 concludes
the paper.

2. A CLASS OF MODELS

The work presented in this paper is based on the fol-
lowing assumptions:

A.1 The bit rate of the control channel (between con-
troller and plant ) is restricted to K bits/second so
that ∆1 = 1/K seconds is the smallest possible
control update period.

A.2 The output of the system is sampled at fixed period
∆1.

A.3 The controller is located near the plant output
and no quantization of the output measurements
occurs.

A.4 An appropriate anti-aliasing filter is used at the
output.

For the minimal sample period ∆1, the system can be
described in innovations form (Anderson and Moore,
1979)

xk+1 =Axk +Būk +Kεk (1)

yk =Cxk + εk (2)

where xk ∈ Rn, ūk ∈ R1, yk ∈ R1, εk ∈ R1

are the state, plant input, plant output and innovations
sequence respectively.

Furthermore, assume that the discrete transfer function
C(zI −A)−1B has relative degree d+ 1 < n. Hence,

CAiB = 0 ∀ i = 0, 1, . . . , d− 1 (3)

CAdB 6= 0 (4)

The model (1), (2) can equivalently be expressed in the
form of a stochastic ARMA model (Goodwin and Sin,
1984) as follows:

A(z)yk = B(z)ūk + C(z)εk (5)
where z is the forward shift operator and

B(z)/A(z) =C(zI −A)−1B = P (z) (6)

C(z)/A(z) = 1 + C(zI −A)−1K = N(z) (7)

Here,

A(z) = 1 + a1z
−1 + · · ·+ anz

−n (8)

B(z) = z−d−1B̄(z) (9)

B̄(z) = b0 + b1z
−1 + · · ·+ bn−1z

−n+1; (10)

b0 6= 0

C(z) = 1 + c1z
−1 + · · ·+ cnz

−n (11)

The following additional assumptions are introduced:

A.5 The discrete time transfer function from u to y is
stable and minimum phase.

A.6 A uniform-interval-nearest-neighbour quantizer with
2p levels is deployed 1 .

1 The use of non uniform quantizers is discussed in Section 3.
2
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Fig. 1. Proposed three degree of freedom architecture.

A.7 All bits used in the quantizer are communicated
over a serial link supporting K bits/second.

A.8 The communication channel is error free.

Note that a quantizer which allocates p bits/sample
introduces a transmission delay of period ∆p = p∆1

between controller and plant since the channel only
allows 1 bit to be communicated in period ∆1.
Remark 1. Note that the model (5) incorporates the
usual model deployed in process control of a single lag
plus pure delay as a special case. 2

Remark 2. Assumption A.5 allows one to use Mini-
mum Variance Control (Goodwin and Sin, 1984).

The proposed architecture for the feedback system
is shown in Figure 1. In this figure, a superscript p
denotes either a downsampled signal with period p∆1

or a system that operates at period p∆1. To implement
effective control over the bit rate limited network, a
multi-degree of freedom architecture is employed, see
Figure 1. This architecture has the following degrees
of freedom: Cp1 (a controller which is driven by an
unquantized signal with sample period ∆1 and which
outputs a quantized control every pth sample of the
input), (1 + Lp) and (1 + Lp)

−1 (the channel coder
and decoder), and Hp (providing feedback around the
quantizer). For realizability, Lp andHp are constrained
to be strictly proper. To motivate this three degree
of freedom controller, note that Cp1 has the role of
mitigating the effect of the process noise, ε, on the
output y, Lp has the role of reducing the variance of
the input to the quantizer which, in turn, allows one to
minimize the variance of the quantization ‘noise’ and
Hp has the role of reducing the effect of the resultant
quantization errors on the output y.

3. THE QUANTIZER

Two types of quantizer are studied, namely a uniform
quantizer and an optimal non-uniform quantizer both
with 2p levels.

Qp[·] denotes the quantization operation and the quan-
tizer errors are given by:

qp = vp −Q[vp] = F pλ [vp] (12)

For a uniform quantizer with 2p levels and steps λ,
F pλ [·] takes the form

F pλ [v] =


v + (2p+ 1)λ ∀v ∈ (−∞,−2λ(2p−1 − 1)]
v + (2i− 1)λ ∀v ∈ (−2λj,−2λ(j − 1)]
v − (2i− 1)λ ∀v ∈ (2λ(j − 1), 2λj]
v − (2p+ 1)λ ∀v ∈ [2λ(2p−1 − 1),∞)

(13)
where j = 1, 2, . . . , 2p−1 − 1.
Lemma 1. Say that the input to the quantizer is scaled
by a factor α, then the error function is also scaled by
the same factor 2 For all (p, λ) ∈ I≥1 × R≥0

F pαλ(αv) = αF pλ (v) (14)
for all α ∈ R≥0.

Proof. From equation (13),

F pαλ(αv) , α[v − (2j + 1)λ],

αv ∈ [2(j − 1)αλ, 2jαλ],

j = 1, 2, . . . , 2p−1 − 1

, α[v − (2p+ 1)λ], (15)

αv ∈ [2αλ(2p−1 − 1),∞)

A similar procedure can be used for negative values of
v. Hence,

F pαλ(αv) = αF pλ (v) (16)
for all α ∈ R≥0. 2

The next question is how to design the quantizer step
λ = λp. Say that the quantizer step is chosen, for each
p, so as to minimize the mean square quantization error
(Vp). The best choice for λp depends upon the proba-
bility distribution of the signal being quantized. Table
1 gives the optimal uniform quantizer (UQ) spacing
λ0p and associated mean square error (V 0

p : UQ MSE)
for the special case when input to the quantizer is zero
mean gaussian 3 with unit variance. Table I also gives
the mean square errors (NUQ MSE) when an optimal
non uniform quantizer is used based on a minimal dis-
tortion design (Gersho and M.Gray, 1992).

The results in Table 1 show that the use of an optimal
non-uniform quantizer leads to only marginal changes
in the mean square quantization error for the case of a
gaussian input. Hence, the use of a uniform quantizer
is emphasized in the sequel.

2 This result is used later to simplify the presentation of results.
3 This restriction is removed later. However, this assumption is used
in Theorem 1.

3
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p 1 2 3 4

λ0p 0.80 0.50 0.295 0.17
V 0
p : UQ M.S.E 0.363 0.119 0.0374 0.0116
NUQ M.S.E. 0.363 0.117 0.0345 0.0095

Table 1. λ0p and V 0
p uniform quantizer, and

M.S.E with non-uniform quantizer vs p
when Var{σp2} = 1

4. PERFORMANCE CRITERIA AND DESIGN
GUIDELINES

At sample time k = `p, ` ∈ Z+, the controller has
knowledge of past outputs (sampled at period ∆1), i.e.
y`p, y`p−1, y`p−2 . . . . The controller then generates an
input signal up` . This input signal is held for p samples.
The fast sampled input is denoted uk and u`p+i =
up` , i = 0, 1, . . . , p− 1.

After filtering by (1+Lp) the control is quantized to 2p

levels which leads to a p bit representation. It takes p∆1

seconds to transmit these p bits over the communication
channel to the plant input. On arrival, the signal is
passed through (1 + Lp)−1 , then a series to parallel
conversion is applied followed by D/A conversion. This
process produces an analogue signal constrained to
the same 2p levels. This is then passed through a p
sample hold so that the plant input, ūk, is constant for
p successive samples. During this period, the next p
bits are received, allowing the next plant input to be
reconstructed, and so on.

In the above description, the total delay between sam-
ple time, k = `p, and the first time that the resultant
control, up`p, effects the output of the plant is (d+p+1)
samples. Thus, u`p effects the output at sample `p+p+
d+1, . . . , `p+p+d+p, and so on. The focus is on the
output over the period `p+p+d+ i; i = 1, . . . , p. The
variance at the end point of the above period is used as
the performance criteria:

JE(p) = E
{
y2(`p+p+d+p)

}
(17)

5. PLANT AS AN INTEGRATOR

The case when the plant is an integrator contains all
of the key features of the general case 4 but has the
advantage of clarity of exposition. The core conclusion
regarding the efficiency of p = 1 is clear in this case.

For an integrator the model linking controller output,
uk, and the plant output yk is as follows (for a p bit
quantizer and when the plant has delay d):

yk+p+d+1 = b0[uk + uk−1 + . . . ]

+[εk+p+d+1 + εk+p+d + . . . ] (18)

Lemma 2. (Design of Cp1E ). Consider a p-sample hold
input implemented as described in Section 3. Then,

(i) The variance of ypl+d+2p is minimized by the
control law:

4 The general case is the subject of a separate paper Goodwin et al.
(2014).

upl =
−1

pb0

(
ypl + b0

(
pup(l−1) + . . .

+rpup(l−2−d̃)

))
(19)

where d̃ =

⌊
d

p

⌋
and rp = d− pd̃.

(ii) The resultant form of ypl+d+2p is
yp(`+2)+d = εp(`+2)+d + · · ·+ εpl+1 (20)

which has variance

JE(p) = E
{
y2p(`+2)+d

}
= (2p+ d)σ2

ε (21)

(iii) The control signal (19) is equivalent to

upl =
−1

b0p
(εpl + · · ·+ εp(l−1)+1) (22)

which is a white noise sequence having variance:

E {upl} =
1

b20p
σ2
ε (23)

Proof. The design is obtained by using a minimum
variance controller. The details have been omitted. 2

Next consider the design of Lp. Recall that the goal
when designing Lp is to minimize the variance (due to
{εk}) of the signal appearing at the input of the quan-
tizer. Also recall from (iii) of Lemma 2 that, using the
controller, Cp1E , upl is a white noise sequence (which
has minimal variance). Hence one can immediately
conclude:
Lemma 3. The optimal choice for Lp is

Lp = 0 (24)

Proof. Note that (23) is a direct consequence of the use
of the minimum variance control law. 2

Next consider the design of Hp. This is particularly
simple when d = 0.
Lemma 4. (Design of Hp). Based on the working hy-
pothesis that qp is a white noise sequence and setting
d = 0, then the variance of y`p+2p, due to the effect of
qp, is minimized by the choice

Hp =
z−p

1 + z−p
(25)

Proof. Iterating the model, and noting that u`p is held
constant over p samples yields
y(`+2)p = y`p+pb0ū(`+1)p+pb0ū`p+ε̄(`+1)p+ε̄(`+2)p

(26)
where ū`p is the past input and

ε̄`p =

p−1∑
i=0

ε`p+i (27)

Now, from Figure 1 and equation (12) we see that
ū(`+1)p = u`p + (1−Hp)q`p (28)

Hence
z2py`p = y`p+(1+z−p)pb0ū(`+1)p+z2p(1+z−p)ε̄`p

(29)

4
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z2py`p = y`p + (1 + z−p)pb0(u`p + (1−Hp)q`p)

+z2p(1 + z−p)ε̄`p (30)

From Lemma (2), the minimum variance control law
takes the form:

(1 + z−p)b0pu`p = −y`p (31)

Substituting (31) into (30) yields
z2py`p = pb0(1 + z−p)(1−Hp)q`p+ z2p(1 + z−p)ε̄`p

(32)
Hence the variance of y(`+2)p due to q`p (under the
working hypothesis that it is a white sequence) is
minimized by the choice

(1 + z−p)(1−Hp) = 1, or Hp =
z−p

1 + z−p
(33)

2

6. THE FINAL CLOSED LOOP

The various components are brought together to evalu-
ate the performance. In the process, the optimal quan-
tizer is designed for each p. It is important to note
that here we no longer make the working hypothesis
that qp is a white noise sequence but, instead, model it
correctly as being the result of the quantization process.
For simplicity of presentation the delay is chosen to be
zero (d = 0).

Note that the design described above ensures that

y(`+2)p =

2p∑
i=1

ε`p+i + pb0q`p; l = 0, 1, . . . (34)

This result holds true no matter how one models q`p.
Also note that

q`p = Fλp(vp) (35)
where Fλp(·) is the error function of the quantizer, as
discussed in Section 3.
Lemma 5. An important consequence of the choice of
minimum variance control is that the output variance
can be decomposed as:

E
{
y2(`+2)p

}
= E

{[
yε(`+2)p

]2}
+ E

{[
yq(`+2)p

]2}
(36)

where l = 0, 1, . . . , and yε(`+2)p describes the output
due to the direct effect of ε and yq(`+2)p describes the
output due to the indirect effect of ε via qp.

Proof. The result follows immediately since the mini-
mum variance controller ensures that yε(`+2)p is a func-
tion of ε`p+i; i = 1, . . . , 2p whereas yq(`+2)p is a func-
tion of past values of ε`p+i; i = 0,−1,−2, . . . 2

Also note that from Lemma 2 when d = 0,

E

{[
yε(`+2)p

]2}
= [2p]σ2

ε (37)

Hence, the remaining task is to evaluateE
{[
yq(`+2)p

]2}
.

Lemma 6. Given the design choices described above,
then the sequence of quantization errors, {q`p}, are
related to εk as follows: For l = 0, 1, 2, . . .

v`p =− 1

b0p
ε̄`p − q(`−1)p (38)

q`p = F pλ (vp`) (39)

where ε̄`p =
∑p−1
i=0 ε`p+i.

Proof. One has
z2pypl = pb0qpl + z2p(1 + z−p)ε̄pl (40)

Next using the equation for the control law,
b0p[1 + z−p]u`p = −y`p (41)

Hence
b0p[1+z−p]u`p = −pb0z−2pq`p−(1+z−p)ε̄`p (42)

or

u`p =
−z−2p

1 + z−p
q`p −

1

b0p
ε̄`p (43)

Also, note that the input to the quantizer satisfies.

vpl = upl −Hpqpl

=
−z−2p

1 + z−p
q`p −

z−p

1 + z−p
q`p −

1

b0p
ε̄`p

=−
[
z−2p + z−p

1 + z−p

]
q`p −

1

b0p
ε̄`p

= z−pq`p −
1

b0p
ε̄`p (44)

This completes the proof. 2

Two alternatives are described to evaluate the variance
of yq`p. An approximate approach is considered (see
Theorem 1 below) and an exact analysis is provided
by means of numerical simulation in section 8.

7. PERFORMANCE ANALYSIS: SIMPLIFIED
ANALYSIS

Given that the quantizer is designed optimally one can
anticipate that the quantization errors will be small
relative to ε̄`p. This suggests the following simplifying
assumption:

SA.1 The lower feedback path in equation (44) only
effects the results in a minimal fashion and is
thus removed.

Theorem 1. Based on Lemma 6, Lemma 5 and simpli-
fying assumption SA.1 the output variance is:

E
{
y2(`+2)p

}
= [2p]σ2

ε + V 0
p (45)

Proof. Under simplifying assumption SA.1 the input
to the quantizer becomes the white Gaussian noise
sequence ε̄`p. 2

Under these conditions, one can immediately use Table
1 to compute λ0p and to evaluate the MSE due to
quantization errors (V 0

p ) and the total MSE using (45).
The results are presented in the top 2 lines of Table 2.

5
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Table 2. Experimental output variances for
different values of p using λ0p and λC.L.p .

p 1 2 3 4

λ0p 0.80 0.50 0.295 0.17
(a) 2.36 4.12 6.04 8.01
λC.Lp 0.97 0.553 0.388 0.31
(b) 2.61 4.10 6.03 8.13

(a) ignoring the feedback path and using λ0p.
(b) simulating the system using λC.L.p .

Theorem 1 gives an approximate value for the output
variance of a system using p bits. Then, from Table 1 it
can be seen that 1 bit is the best choice. However, this
has been obtained using simplifying assumption SA.1.

8. PERFORMANCE EVALUATION: MONTE
CARLO SIMULATION

Here, simplifying assumption SA.1 is removed and, in
this case, Monte Carlo techniques are used to simulate
the complete feedback circuit described in Lemma 6.
One can then search numerically for the optimal values
of λp. The results are reported in the third line of
Table 2 as λC.L.p . Next, the total output mean square
error is evaluated as a function of p. The results are
summarized in the last line of Table 2. Table 2 shows
that the approximate analysis of section 7 gives a very
close approximation to the true results. Also, p = 1 is
unequivocally the best choice in all cases. Moreover,
the gap between the results for p = 1 and p = 2 is
almost two to one. Hence, one can anticipate that the
same conclusion (namely that p = 1 is best) is likely to
hold under rather general circumstances.

9. CONCLUSIONS

This paper has studied the scenario where a control
signal is implemented over a bit rate constrained com-
munication channel but when the control update rate
is, otherwise, unconstrained. The special case of fast
sampling has been studied, and it has been shown that
it is best to use 1 bit per sample and hence to choose
the control update rate equal to the inverse of the bit
rate. In separate work, not reported here due to space
limitations, it has been shown that the conclusion that
p = 1 is best holds under quite general conditions.
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