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Abstract: Voltage and angle stability of power systems with renewable power supply and the
corresponding region of attraction are analyzed jointly. First, the power system model is derived
that consists of algebraic power network equations and differential power generator equations.
The renewable power generators like photovoltaic inverters or wind turbines are modeled with
first order dynamics. Second, power system stability is analyzed for two kinds of power networks:
high-voltage networks with purely inductive power lines and medium-/low-voltage networks
with homogeneous resistive-inductive power lines. For both cases, decoupling droop controllers
are presented and the stability of this power system including these controllers is analyzed.
The analysis is based on contraction arguments that have been used before to prove consensus
in multi-agent system. However, due to the particular structure of the power system model,
conventional contraction arguments have to be adapted for this analysis.
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1. INTRODUCTION

The interconnection of neighboring power systems has led
to improved system security and economy of operation.
These benefits have been recognized from the beginning,
and thus interconnections have grown continuously. The
result are very large systems of enormous complexity
(Kundur, 1993). For example, the synchronous grid of
Continental Europe covers most countries of Continental
Europe as well as some countries in Africa and Asia.
The massive integration of fluctuating renewable energy
sources like wind and solar power into these power systems
lead to new challenges for power system analysis and
design, cf. Schaber et al. (2012). This integration of renew-
able sources and the vulnerability of critical infrastructures
like power grids to natural disasters and terrorist attacks
has brought up the idea of a microgrid. A microgrid is an
integrated energy system consisting of distributed energy
resources (DER) and multiple electrical loads operating
as a single, autonomous grid. It can be operated either in
parallel to or “islanded” from the existing utility power
grid. Microgrids are usually operated at low or medium
voltage. This has impact to the grid stability and controller
design, as discussed below.

Today, power system analysis is usually based on nonlinear
simulations and – wherever possible – linear analysis
around a stable equilibrium. Controller design for power
systems is often based on experience and verification
in simulations. This design works fine if the worst case
behavior is described accurately by a limited number of
simulations and operation points. However, if the worst
case behavior is more complex, e.g. because of quickly
fluctuating power flows, this design becomes more and
more cumbersome. This becomes particularly challenging
if large amounts of renewable and fluctuating energy
sources like wind and solar power are supplying the power
system because, in this case, the power generation and
power flows can change abruptly. Therefore, it is desirable
to use analytical conditions instead of simulations for
power system analysis and design.

In this paper, we provide analytical conditions on the
voltage and angle stability reserve of a power system with
renewable generation, i.e. the stability and the region of at-
traction of its steady state. First, the power system model

is derived. It consists of first order power generator mod-
els that describe renewable generators like photovoltaic
(PV) and wind turbines (WT), and battery storage (BS)
that are connected to the grid via converters. The gen-
erators are controlled by proportional droop controllers.
The power network is modeled by highly nonlinear static
equations that describe the relation between the voltage
amplitude and phase at each bus (node) on the one hand
and the active and reactive power supply and consumption
at each bus (node) on the other hand. We derive these
equations for both high-voltage (HV) power networks with
purely inductive power lines and medium-/low-voltage
(MV/LV) power networks with resistive-inductive power
lines. At each bus, exactly one generator is connected
to the grid. The resulting model has two states for each
bus, voltage amplitude and phase, and a quite complex
nested interconnection between the states of each buses.
The derivation and suitable re-writing of this model is
one contribution of this paper. In the second part of the
paper, we determine the steady state of this power system
as well as its stability and region of attraction for both HV
and MV/LV networks. The proof is based on a contraction
argument similar to Lin (2006). Yet, previous results have
to be suitably adapted in order to be applied to the nested
interconnection of the power system. This is the main
contribution of this paper.

Angle stability analysis of power systems has been de-
scribed, e.g., in Dörfler and Bullo (2012b); Münz and
Romeres (2013); Schiffer et al. (2013a). Voltage stability
has been analyzed among others in Dib et al. (2009a,b)
based on detailed differential-algebraic power system mod-
els under the assumption that the power system has an
infinitely strong swing bus with predefined voltage ampli-
tude and phase. Here, we do not require such an assump-
tion. To the best of our knowledge, joint voltage and angle
stability analysis conditions have so far only been derived
in Wang et al. (2013); Schiffer et al. (2013b). Yet, both
publications do not provide a region of attraction. Up to
date, the stability reserve, i.e. the region of attraction, is
determined numerically for specific power system param-
eters, see Sauer and Pai (2006) for an overview. Here, we
provide an analytical condition on the region of attraction.
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We first describe and explain the appropriate power sys-
tem model in Section 2. Then, we derive conditions for
stability and the region of attraction for HV power systems
in Section 3. Finally, we extend these results to MV/LV
power systems in Section 4. The paper is concluded in
Section 5.

2. POWER SYSTEMS MODELING

2.1 Single Power Line Model

The power line between bus (or node) i and j is described
by a concentrated parameter model containing a series
interconnection of a resistance rij = rji and an inductance
lij = lji. The capacitors at each end of the power line are
neglected here. This is possible if either the power lines are
short or if they are considered as concentrated capacitors
at each bus, e.g. Kundur (1993); Sauer and Pai (2006).

We concentrate here on voltage and angle stability but not
on fast subtransients in the power grid. Therefore, we ne-
glect transients in the power lines and assume that voltages
and currents are roughly sinosoidal with approximately
nominal frequency. Under this assumption, all voltages
and currents can be described in a rotating frame that
rotates with the nominal grid frequency fN , e.g. 50 Hz
or 60 Hz. Hence, all voltages ui are parameterized fully
by their amplitude ui and their phase θi. This allows to
describe the static power line model in the complex domain
with a constant complex impedance zji = zij = rij +

ω0lij = rij + xij = zije
φij , where 2 = −1, ω0 =

2πfN , xij = ω0lij = xji > 0, zij > 0, φij ∈ [0, π2 ]. The

voltages at bus i and j are ui = uie
θi and uj = uje

θj ,
where ui, uj , θi, θj are time-varying quantities.

The apparent, active, and reactive power, sij , pij , qij , fed
into the power line at the end i is

sij = pij + qij = uii
∗
ij = ui

(
ui − uj
zij

)∗
= ui

ui − uje−(θj−θi)

rji − xji

=
(rji + xji)ui
r2ji + x2ji

(ui − uj(cos θij +  sin θij)) .

where θij = θi − θj . We separate the apparent power into
active and reactive power and obtain

pij =
ui

r2ij + x2ij
(rij(ui − uj cos θij) + xijuj sin θij) , (1)

qij =
ui

r2ij + x2ij
(xij(ui − uj cos θij)− rijuj sin θij) . (2)

2.2 Power Network Model

We set up a model for a complete power network with N
buses (or nodes). We define a bus set N = {1, . . . , N}. The
set Ni with Ni = |Ni| is the set of all buses j ∈ N that
are connected to bus i by a power line.

The power conservation law implies that all active pi and
all reactive qi power supplied to the power network at one
bus i has to equal the sum of all active and reactive power
leaving this bus to one of its neighbors j ∈ Ni, i.e.

pi =
∑
j∈Ni

pij , qi =
∑
j∈Ni

qij . (3)

Note that
rij

r2
ij
+x2

ij

=
rij
z2
ij

=
cosφij

zij
and

xij

r2
ij
+x2

ij

=
xij

z2
ij

=

sinφij

zij
. Thus, we have with (1) and (2)

(
pi
qi

)
=
∑
j∈Ni

ui
zij

(
sinφij cosφij
− cosφij sinφij

)(
uj sin θij

ui − uj cos θij

)
.

Note that the matrix depending on φij is a rotation
matrix that degenerates into the identity matrix for purely
inductive lines, i.e. with rij = 0 and therefore φji = π

2 .

We introduce the following assumption:

Assumption 1. (Homogeneous power lines). We assume
that the impedances zij , i, j,∈ N , of all power lines of the

power network satisfy zij = zije
φ, zij > 0, φ ∈ [0, π2 ], with

identical angle φ for all lines.

This assumption can be easily justified. If all power lines in
the grid are of the same type, their

rij
xij

ratios are identical,

whereas the actual rij and xij values depend on the power
line length. Hence, all φij are identical but the power line
length may still be different and is reflected in zij .

With this assumption, we obtain(
pi
qi

)
=
(

sinφ cosφ
− cosφ sinφ

) ∑
j∈Ni

ui
zij

(
uj sin θij

ui − uj cos θij

)
. (4)

2.3 Droop Controlled Power Converters

All generated power is supplied to the network with
converters, e.g. photovoltaic inverters, wind turbine with
full converter, or battery inverters. In order to achieve
stability, several converters are grid forming inverters
as described below. Non-grid-forming converters can be
modeled in a similar way but are left out here for page
restrictions.

Grid forming converters provide a defined voltage ui to
the grid depending on active power pi and reactive power
qi measurements. For a three phase power system, we
may assume instantaneous but noisy active and reactive
power measurements. The voltage amplitude ui and angle
θi are determined by proportional controllers, called droop
controllers,

θ̇i = ω0 − kpi(pi − pi0) (5)

ui = ui0 − kqi(qi − qi0), (6)

where pi0, pi0, and ui0 are the predefined active and
reactive power and voltage set-points of node i and ω0
is the nominal frequency of the power network. The droop
parameters kpi and kqi are all strictly positive.

The voltage phase following (5) has some filtering prop-
erty to active power measurements noise. For the voltage
amplitude, we add an additional first-order low-pass filter
to damp reactive power measurement noise and obtain

u̇i = −k̃qi ((ui − ui0) + kqi(qi − qi0)) . (7)

After all, we have θ̇i
1

k̃qi
u̇i

 =
(

ω0
−(ui − ui0)

)
−Ki

(
pi − pi0
qi − qi0

)
, (8)

where Ki = diag(kpi, kqi). Later on, we will also use a
non-diagonal droop matrix Ki

Ki =
(
kpi 0
0 kqi

)(
sinφ − cosφ
cosφ sinφ

)
, (9)

for some rotation angle φ.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9076



2.4 Passive Loads

Passive loads are modeled as active and/or reactive power
consumption. First of all, all loads 1 that are connected
to buses without generators are shifted to buses with
generators using Kron reduction techniques, see for ex-
ample Dörfler and Bullo (2012a). As a consequence, there
is a generator at each bus of the reduced power system.
Then, the loads at bus i are modeled by subtracting the
corresponding active and reactive power consumption from
the value pi0, qi0 of the generator at this bus in (8). For ease
of notation, we do not introduce an additional parameter
for pi0, qi0 but stick to these parameters having in mind
that they also include local passive loads.

2.5 Power System Modeling

Connecting (4) and (8), we obtain the power system model(
θ̇i
u̇i

)
=

(
ω0

−k̃qi(ui − ui0)

)
+

(
1 0
0 k̃qi

)
Ki

((
pi0
qi0

)
−
∑
j∈Ni

ui
zij

(
sinφ cosφ
− cosφ sinφ

)(
uj sin θij

ui − uj cos θij

) , (10)

that is analyzed in the rest of the paper. A similar model
is investigated in Wang et al. (2013).

3. STABILITY ANALYSIS OF HV POWER SYSTEM

We consider here first the simpler case with purely induc-
tive power lines, i.e. rij = 0 for all i, j and therefore φ = π

2 .
This simplification will be relaxed in Section 4. In this case,
the power system model (10) simplifies to(

θ̇i
u̇i

)
=

(
ω0

−k̃qi(ui − ui0)

)
+

(
1 0
0 k̃qi

)
Ki

×

(pi0
qi0

)
−
∑
j∈Ni

ui
zij

(
uj sin θij

ui − uj cos θij

) . (11)

Note that the phase dynamics show some Kuramoto-like
behavior for constant voltages ui, uj . Moreover, the voltage
dynamics show some contracting behavior for constant
phase differences θij . The main challenge here is to prove
that the coupled dynamics also converge to a steady state.

3.1 Transformation to Steady State

First, we investigate the steady states of the power grid
model (11). We start our investigation with the phase dy-
namics. Therefore, we introduce the following coordinate
transformation

θi(t) = Ωt+ ϑ∗i + ϑi(t), (12)

where Ω is the steady state frequency, i.e. limt→∞ θ̇i(t) =
Ω, and ϑ∗i describes the relative steady state phase differ-
ences, i.e. limt→∞(θi − θj) = ϑ∗i − ϑ∗j . These limits exist
under the conditions following later on.

We use (12) to rewrite (11) as(
ϑ̇i
u̇i

)
=

(
ω0 − Ω

−k̃qi(ui − ui0)

)
+

(
1 0
0 k̃qi

)
Ki

1 The Kron reduction is only feasible for constant impedance and
constant current loads. Therefore, we exclude constant power loads
in our setup to avoid algebraic loops. A relaxation of this restriction
is future work.

×

(pi0
qi0

)
−
∑
j∈Ni

ui
zij

(
uj sin(ϑij + ϑ∗ij)

ui − uj cos(ϑij + ϑ∗ij)

) , (13)

where ϑij = ϑi − ϑj and ϑ∗ij = ϑ∗i − ϑ∗j .

We analyze the steady state of these differential equations,
i.e. ϑ̇ = 0, u̇i = 0. In steady state, we have ϑi − ϑj = 0 for
all i, j and the steady state equation simplifies to

0 =

(
ω0 − Ω

−k̃qi(u∗i − ui0)

)
+

(
1 0
0 k̃qi

)
Ki

×

(pi0
qi0

)
−
∑
j∈Ni

u∗i
zij

(
u∗j sinϑ∗ij

u∗i − u∗j cosϑ∗ij

) . (14)

These equations for i ∈ N define the steady state
(Ω, u∗, ϑ∗) of the power grid. For given ω0, u0 = vec(ui0),

p0 = vec(pi0), q0 = vec(qi0), Ki, and k̃q (with vec(χi) the
vector of χi), they provide a set of 2N equations with 2N
unknowns u∗1, . . . , u

∗
N , ϑ

∗
1 − ϑ∗2, ϑ∗2 − ϑ∗3, . . . , ϑ∗N−1 − ϑ∗N ,Ω.

We assume now that ω0, u0, p0, q0,Ki, and k̃q are chosen
such that a solution of (14) exists. The existence of such a
solution is obviously a necessary condition for the existence
of a stable power grid behavior. Then, we define the
following bounds

∆ϑ∗ = max
i,j
|ϑ∗i − ϑ∗j | = ‖BTϑ∗‖∞, (15)

∆u∗ = max
i,j
|u∗i − u∗j | = ‖BTu∗‖∞, (16)

where B is the incidence matrix of the power network
topology and ϑ∗ = vec(ϑ∗i ), u

∗ = vec(u∗i ). Clearly, both

∆ϑ∗ and ∆u∗ depend on ω0, u0, p0, q0,Ki, and k̃q.

We subtract (14) from (13) and obtain with ũi = ui − u∗i(
ϑ̇i
˙̃ui

)
=

(
0

−k̃qiũi

)
−
(

1 0
0 k̃qi

)
Ki

∑
j∈Ni

1

zij

×
(

uiuj sin(ϑij + ϑ∗ij)− u∗i u∗j sin(ϑ∗ij)
u2i − u∗2i − uiuj cos(ϑij + ϑ∗ij) + u∗i u

∗
j cos(ϑ∗ij)

)
=

(
0

−k̃qiũi

)
−
(

1 0
0 k̃qi

)
Ki

∑
j∈Ni

1

zij

×
[(

(uiũj + u∗j ũi) sin(ϑij + ϑ∗ij)
(ui + u∗i )ũi − (uiũj + u∗j ũi) cos(ϑij + ϑ∗ij)

)
+

(
u∗i u

∗
j

(
sin(ϑij + ϑ∗ij)− sin(ϑ∗ij)

)
−u∗i u∗j

(
cos(ϑij + ϑ∗ij)− cos(ϑ∗ij)

))] , (17)

where we use u2i − u∗2i = (ui + u∗i )ũi and uiuj − u∗i u∗j =
uiũj + u∗j ũi.

Note that the phase dynamics of (17) consist of a locally
passive coupling term sin(ϑij + ϑ∗ij) − sin(ϑ∗ij) with con-
stant gain u∗i u

∗
j and another term (uiũj + u∗j ũi) sin(ϑij +

ϑ∗ij) that has to be dominated by the coupling. The

voltage dynamics consist of damping terms k̃qiũi, (ui +
u∗i )ũi, and other terms (uiũj + u∗j ũi) cos(ϑij + ϑ∗ij) and

u∗i u
∗
j

(
cos(ϑij + ϑ∗ij)− cos(ϑ∗ij)

)
that again need to be

dominated.

3.2 Contraction Analysis

Now, we prove the convergence of the power system (17),
i.e. limt→∞ ϑij = 0 and limt→∞ ũi = 0, for suitable initial
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Fig. 1. Exemplary set Ξ (18) and exemplary subsystem
state (ũi, ϑi)

T with corresponding subsets ũi < |ũj |,
ϑij < 0, and ũi > |ũj | ∩ ϑij > 0.

conditions and under suitable conditions on the parame-
ters k̃qi > 0, kpi > 0, kqi > 0, zij = zji > 0, u∗i > 0, u∗j >
0, ϑ∗ij , where the last parameters are actually derived from
the steady state equation (14). The proof is based on a
contraction analysis, e.g. Lin (2006). Contraction analysis
typically considers time-varying hyper-rectangles in the
state space aligned with coordinate axis that contain all
states of all subsystems. Then, contraction arguments are
used to prove that this rectangle is positively invariant and
eventually contracts to a single point. Here, it is not clear
how to show contraction of a rectangular set in the ũi, ϑi
state space because of the complicated non-contracting
terms in (17). Instead of a rectangular set, we propose to
use a diamond shape convex set Ξ(κ, t) depending on the
parameter κ > 0 and defined by two inequality constraints

Ξ(t) =

{
(x1, x2) ∈ R2 : x2 ≤ −

1

κ
|x1|+ c+(t),

and x2 ≥
1

κ
|x1| − c−(t)

}
, (18)

where c+(t), c−(t) are defined as

c+(t) = max
i

(ϑi(t) +
1

κ
|ũi(t)|) (19)

c−(t) = min
i

(ϑi(t)−
1

κ
|ũi(t)|). (20)

This set Ξ is illustrated in Figure 1.

Note that Ξ(t) contains the states ϑi(t), ũi(t) of all agents
for any time t. Therefore, we have

|ϑi(t)− ϑj(t)| ≤ c+(t)− c−(t), (21)

|ũi(t)− ũj(t)| ≤ κ(c+(t)− c−(t)), (22)

|ũi(t)| ≤
κ

2
(c+(t)− c−(t)), (23)

for all i, j and all t ≥ 0. Below, we provide conditions such
that Ξ is non-increasing, i.e. Ξ defines a positively invariant
set. Moreover, we show that Ξ contracts to a single point,
i.e. limt→∞(c+(t)− c−(t)) = 0.

Vector Flow on the Boundary of Ξ In order to prove
that Ξ is positively invariant, we show that the vector field(
ϑ̇i ˙̃ui

)T
on the boundary ∂Ξ of Ξ is pointing towards

the interior of the diamond. As the boundary ∂Ξ is not
smooth, we have to investigate the four boundary parts
individually. Due to page limitations, we only describe here
the upper right boundary. The other three boundaries can
be derived similarly.

In all cases, we consider the following inner product(
1

1

±κ

)(
ϑ̇i
˙̃ui

)
, (24)

where the sign in front of κ is positive on the upper right
and lower left boundary and negative on the upper left and
lower right boundary, respectively. This inner product has
to be negative in the upper boundaries and positive on the

lower boundaries. With k∗qi =
k̃qi
κ kqi, we compute(

1
1

κ

)(
ϑ̇i
˙̃ui

)
= − k̃qi

κ
ũi −

∑
j∈Ni

1

zij

(
kpi k

∗
qi

)
×
[(

(uiũj + u∗j ũi) sin(ϑij + ϑ∗ij)
(ui + u∗i )ũi − (uiũj + u∗j ũi) cos(ϑij + ϑ∗ij)

)
+

(
u∗i u

∗
j

(
sin(ϑij + ϑ∗ij)− sin(ϑ∗ij)

)
−u∗i u∗j

(
cos(ϑij + ϑ∗ij)− cos(ϑ∗ij)

))]
= − k̃qi

κ
ũi −

∑
j∈Ni

1

zij

[
k∗qi(ui + u∗i )ũi

−
(
k∗qi cos(ϑij + ϑ∗ij)− kpi sin(ϑij + ϑ∗ij)

)
× (uiũj + u∗j ũi)

+
[
kpi(sin(ϑij + ϑ∗ij)− sin(ϑ∗ij))

−k∗qi(cos(ϑij + ϑ∗ij)− cos(ϑ∗ij))
]
u∗i u

∗
j

]
.

Using trigonometric identities, we obtain k∗qi cos(ϑij +

ϑ∗ij) − kpi sin(ϑij + ϑ∗ij) = k∗i sin(−ϑij − ϑ∗ij + k̃∗i ),where

k∗i =

√
k2pi +

k̃2
qi
k2
qi

κ2 and the sign of k̃∗i = arctan
k̃qikqi
κkpi

depends on the sign of κ. Moreover, we have−k∗qi(cos(ϑij +
ϑ∗ij)− cos(ϑ∗ij)) + kpi(sin(ϑij + ϑ∗ij)− sin(ϑ∗ij))

= 2 sin
ϑij

2 (k∗qi sin(ϑ∗ij +
ϑij

2 ) + kpi cos(ϑ∗ij +
ϑij

2 )) =

2 sin
ϑij

2 k
∗
i cos(ϑ∗ij +

ϑij

2 − k̃
∗
i ).The cosine function

cos(ϑ∗ij +
ϑij

2 − k̃
∗
i ) is positive if

ϑij ∈
(
π − 2|k̃∗i | − 2∆ϑ∗ − ε

)
[−1, 1], (25)

where ∆ϑ∗ is defined in (15) and ε > 0 guarantees that

cos
(
ϑ∗ij +

ϑij

2 − k̃
∗
i

)
> sin ε. This condition is satisfied if

c+(0)− c−(0) ≤ π − 2 arctan
k̃qikqi
|κ|kpi

− 2∆ϑ∗ − ε (26)

holds, see (21). In summary, we have(
1

1

κ

)(
ϑ̇i
˙̃ui

)
= − k̃qi

κ
ũi +

∑
j∈Ni

1

zij

[
−k∗qi(ui + u∗i )ũi

+ k∗i sin
(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj + u∗j ũi)

−2k∗i u
∗
i u
∗
j sin

ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)]
. (27)

Now, we consider the upper right boundary and some
agent i on this boundary with ϑi + 1

κ ũi = c+. The vector

field
(
ϑ̇i ˙̃ui

)T
is pointing toward the interior of Ξ if(

1
1

κ

)(
ϑ̇i
˙̃ui

)
< 0. (28)

In order to prove this, we have to consider the influence
of each j in the summation of all neighbors independently.
We separate Ξ in three subsets depending on the location
of agent i on the boundary and its neighbor j, see Figure 1:
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(i) ũi < |ũj |, (ii) ϑij < 0, and (iii) ũi ≥ |ũj | and ϑij ≥ 0.
Recall that we have an additional information due to the
fact that we consider only the vector flow of agent i on the
upper right boundary, i.e. ũi + κϑi ≥ |ũj |+ κϑj , that can
be rewritten as

−ϑij ≤
ũi − |ũj |

κ
. (29)

3.2.1.1. Case ũi < |ũj | Note that the boundary condi-
tion (29) implies that −ϑij decreases as ũi−|ũj | decreases.
Moreover, ũi < |ũj | implies ϑij > 0. This implies the sinus
in the last summand of (27) can be bounded as

− sin
ϑij
2
≤ sin

(
ũi − |ũj |

2κ

)
≤ sinc

(
c+ − c−

2

)
ũi − |ũj |

2κ
,

where sinc(x) = sin(x)
x . Thus, we have with ε from (26)

−k∗qi(ui+u∗i )ũi+k∗i sin
(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

− 2k∗i u
∗
i u
∗
j sin

ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)
≤ −k∗qi(ui+u∗i )ũi+k∗i sin

(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

+ u∗i u
∗
jk
∗
i sin ε sinc

(
c+ − c−

2

)
ũi − |ũj |

κ

=
[
−k∗qi(ui + u∗i ) + k∗i sin

(
−ϑij − ϑ∗ij + k̃∗i

)
u∗j

+
u∗i u

∗
j

κ
k∗i sin ε sinc

(
c+ − c−

2

)]
ũi

+ k∗i

[
sin
(
−ϑij − ϑ∗ij + k̃∗i

)
ui

−
u∗i u

∗
j

κ
sin ε sinc

(
c+ − c−

2

)
sign(ũj)

]
ũj ,

where sign(·) is the signum function. As ũi ≥ 0 can be
arbitrarily small compared to ũj > ũi, we impose

u∗ju
∗
i

κ
sin ε sinc

c+ − c−

2
> ui, (30)

which guarantees that the last term including ũj is nega-
tive. We relax this condition using ui = u∗i + ũi and (23)
to

u∗j
κ

sin ε sinc
c+ − c−

2
> 1 +

κ(c+ − c−)

2u∗i
. (31)

With (31), we have

−k∗qi(ui+u∗i )ũi+k∗i sin
(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

− 2k∗i u
∗
i u
∗
j sin

ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)
≤
[
−k∗qi(ui + u∗i ) + k∗i sin

(
−ϑij − ϑ∗ij + k̃∗i

)
u∗j

+
u∗i u

∗
j

κ
k∗i sin ε sinc

(
c+ − c−

2

)]
ũi

≤ −
(
k∗qi(ui + u∗i )−

(
1 +

u∗i
κ

)
u∗jk
∗
i

)
ũi. (32)

We continue with (32) after considering the other cases.

3.2.1.2. Case ϑij < 0 Note that this implies ũi > |ũj |,
see Figure 1. In this case, the last summand of (27) is

positive because of (26) and ϑij < 0. Yet, it is bounded
because of (26) and (29) as

− sin
ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)
≤ sin

ũi − ũj
2κ

≤ ũi − ũj
2κ

.

Thus, we have

−k∗qi(ui+u∗i )ũi+k∗i sin
(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

− 2k∗i u
∗
i u
∗
j sin

ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)
≤ −k∗qi(ui+u∗i )ũi+k∗i sin

(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

+
u∗i u

∗
j

κ
k∗i (ũi − ũj)

≤ −
(
k∗qi(ui + u∗i )− k∗i

(
u∗j + ui +

2u∗i u
∗
j

κ

))
ũi, (33)

because |ũj | ≤ ũi.

3.2.1.3. Case ũi ≥ |ũj | and ϑij ≥ 0 This time, (26)
guarantees that the last summand of (27) is non-positive
because ϑij ≥ 0. Thus, we have

−k∗qi(ui+u∗i )ũi+k∗i sin
(
−ϑij − ϑ∗ij + k̃∗i

)
(uiũj+u∗j ũi)

− 2k∗i u
∗
i u
∗
j sin

ϑij
2

cos

(
ϑ∗ij +

ϑij
2
− k̃∗i

)
≤ −

(
k∗qi(ui + u∗i ) + k∗i (u∗j + ui)

)
ũi, (34)

where we use |ũj | ≤ ũi.

3.2.1.4. Collecting all three cases Summarizing the
three cases (32), (33), and (34), we have(

1
1

κ

)(
ϑ̇i
˙̃ui

)
≤ − k̃qi

κ
ũi −

∑
j∈Ni

1

zij

×

(
k̃qi
κ
kqi(ui + u∗i )− k∗i

(
u∗j + ui +

2u∗i u
∗
j

κ

))
ũi, (35)

given that (26) and (31) hold.

Hence,

(
1

1

κ

)(
ϑ̇i
˙̃ui

)
< 0 holds if for all i ∈ N

k̃qi
κ

(1 +
∑
j∈Ni

kqiu
∗
i

zij
)

>
∑
j∈Ni

1

zij


√
k2pi +

k̃2qik
2
qi

κ2

(
u∗j +

2u∗i u
∗
j

κ

)

+

√
k2pi +

k̃2qik
2
qi

κ2
− k̃qikqi

κ

(
u∗i +

κ

2
(c+ − c−)

) (36)

is satisfied, where we used |ui| ≤ u∗i + κ
2 (c+ − c−).

The same conditions are obtained for the other three
boundaries. They are left out here for page limitations.

Contraction of Ξ Summarizing our calculations up to
this point, we have shown that conditions (26), (31),

and (36) guarantee that the vector field
(
ϑ̇i ˙̃ui

)T
on the

boundary ∂Ξ is directed toward the interior of Ξ. Hence,
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the convex set Ξ is positively invariant. It remains to show
that Ξ is in fact contracting to a single point.

We prove the contraction of Ξ using a Barbalat argument
(Khalil, 2002) for ∆c(t) = c+(t) − c−(t). Note that
limt→∞∆c(t)−∆c(0) =

∫∞
0

∆c(τ)dτ In this case, ċ+(t)−
ċ−(t) is non-positive and the integral is finite because c+−
c− is non-increasing and bounded from below by zero. The
derivative of ċ+− ċ−, i.e. the second derivative of c+− c−,
is bounded because derivatives of ˙̃ui and ϑ̇i are bounded.
Thus, we have limt→∞ ċ+(t) − ċ−(t) = 0. In other words,
as time goes to infinity, the set Ξ stops contracting.

Finally, we have to show that Ξ only stops contracting
if it is a single point. The set Ξ stops contracting if a
subsystem i on the boundary ∂Ξ stays at the boundary,

i.e.

(
1

1

κ

)(
ϑ̇i
˙̃ui

)
= 0 or

(
1 − 1

κ

)(
ϑ̇i
˙̃ui

)
= 0 depending

on the boundary. Going back to Equation (35), we see
that the above equality requires ũi = 0. This means
that the agent, that stays on the boundary, has to satisfy
limt→∞ ũi(t) = 0. If we have another look at (35), we see
that this equality also requires ũj = 0 for all neighboring j
of subsystem i with ũj > ũi = 0. Hence, we may conclude
that limt→∞ ũi(t) = 0 for all i ∈ N . This also implies

limt→∞ ˙̃ui(t) = 0 for all i ∈ N . Replacing ũi = ũj = ˙̃ui = 0
in (17), we obtain 0 =

∑
j∈Ni

1
zij
u∗j (cos(ϑij + ϑ∗ij) −

cos(ϑ∗ij)),which is true for all i ∈ N only if ϑij = 0 for all
i, j ∈ N . This implies limt→∞ ϑij(t) = 0 for all i, j ∈ N .
Hence, Ξ contracts to a single point.

3.3 Main Result

We summarize these derivations in the following theorem

Theorem 2. Given a HV power system (11) with steady
state (14). This steady state is asymptotically attracting
for all initial conditions in Ξ if (26), (31), and (36) hold.

4. STABILITY ANALYSIS OF MV/LV POWER
SYSTEMS

Now, we consider a distribution network with nonzero
resistance, i.e. rij � 0 and 0 ≤ φij � π

2 . We assume
that the power lines are homogenous, i.e. Assumption 1
holds and we have φij = φ for all i, j.

We go back to (4) and suggest to rotate the droop
controller (8) using (9). Such a rotation of the droop
controller has previously been suggested in De Brabandere
et al. (2004) for a single inverter connected to an infinte
bus. Here, we extend this concept to large power systems
with interconnected renewable generation. This way, we
obtain again decoupled dynamics for phase and voltage
and Theorem 2 can directly be extended to this case:

Corollary 3. Given a MV/LV power system (10) with
homogeneous power lines satisfying Assumption 1 and a
power system droop controller (8) with decoupling gain
(9) with steady state given by (14). This steady state is
asymptotically attracting for all initial conditions in Ξ if
Conditions (26), (31), and (36) hold.

5. CONCLUSIONS

We derived a power system model that describes both
voltage and angle dynamics of a power system with con-
verter coupled power generation, which is the case for most
renewable sources. Stability is achieved by standard droop

controllers for purely inductive HV power lines, e.g. in
transmission networks, and by a decoupling droop con-
troller for resistive-inductive MV/LV power lines, e.g. in
distribution networks. The latter is particularly important
for stability analysis and controller design for microgrids.
Stability is proven using a contraction argument used
previously to prove consensus in multi-agent systems. Yet,
previous results had to be suitably adapted in order to
be applicable to the nested interaction between voltage
and angle dynamics. The system setup excluding rotating
masses results in a first order system which enables con-
traction arguments to prove synchronization. This also in-
dicates that the dominance of power electronic converters
in distributed generation does not necessarily deteriorate
grid stability. Future work should focus on the incorpora-
tion of conventional generators with rotating masses that
require at least second order angle dynamics at the buses.
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