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Abstract: The pipeline pressure of blast furnace gas (BFG) system in steel industry provides effective 

information for the energy scheduling operations. However, due to the complexity of the byproduct gas 

pipeline network and the large fluctuations of the gas flow, it is rather difficult to establish an accurate 

prediction model for the pipeline pressure. Additionally, the quantitative reliability of the prediction 

accuracy is the key concerns of energy scheduling workers since there are always a variety of 

uncertainties in industrial process. In this study, an echo state network (ESN) modelling with output 

feedback is proposed to predict the BFG pipeline pressure. Given the gas flows data and the pressures 

sampled from the sensors are generally accompanied with noise, a Bayesian framework for the prediction 

intervals (PIs) is designed, which can quantify the input and output noises. To verify the effectiveness of 

the proposed method, a number of prediction experiments coming from industrial data are conducted here. 

And, the experimental results indicate that the proposed approach has a satisfactory performance on PIs 

for the pipeline pressure. 
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1. INTRODUCTION 

The pipeline pressure of BFG is one of the most important 

evaluation indexes for real time energy scheduling operations 

in steel industry. And, the accurate prediction for the pipeline 

pressure can provide effective information for the energy 

scheduling with low risks. However, the pipeline pressure is 

usually unstable due to the variation of the byproduct gas 

flow. Currently, a few of researches on the prediction of gas 

pipeline pressure were carried out based on point-oriented 

mode, which were however lack of the reliability analysis 

and any indications of the accuracy, see e.g. Zhu and Leis 

(2012),Taware and Brown (1999). Nevertheless, since the 

industrial data is sparse and the data collection processes are 

always accompanied with uncertainties, the energy 

scheduling workers paid more attentions on not only the 

predicted results but also the reliability analysis of prediction, 

which is rather difficult to be quantified by point-oriented 

prediction. A prediction interval comprised of the upper and 

lower bounds with a confidence probability can provide 

general point-oriented predictive values with the 

supplementary indication of their accuracy (Khosravi et al., 

2011). Furthermore, the prediction interval can illustrate the 

range that the targets may appear with a confidence level. 

As for the existing PIs construction methods, a large number 

of them were built on the numerical characteristics analyses 

of the predicted distribution, such as the delta (Chryssolouris 

et al., 1996), the MVE (mean-variance estimation) (Nix and 

Weigend, 1994), the bootstrap (Heskes, 1997) and the 

Bayesian techniques, see e.g. Sheng et al. (2013), Lauret et al. 

(2008), Zhang and Luh (2005). It was feasible for the delta 

and the MVE to construct PIs based on the assumption of the 

distribution of noise, where the noise variance was viewed as 

a constant for the delta method, and the MVE assumed that 

the noise was normally distributed around the true mean of 

the targets. The unreasonable assumptions made the two 

methods generate low-quality PIs, see e.g. Chryssolouris et al. 

(1996), Nix and Weigend (1994). Bootstrap method must be 

combined with a network ensemble for PIs, so its 

performance depends on the accuracy of many neural 

networks. It was frequently that one of these networks was 

rather biased, and then an inaccurate estimation had to be 

created, see e.g. Khosravi et al. (2011), Heskes (1997). 

Besides, the Bayesian method for PIs construction was based 

on a strong mathematical foundation, which typically had a 

better generalization than some other networks (Sheng et al., 

2013). However, Bayesian learning technique is also 

computationally intensive in modeling stage due to the 

calculation of the Hessian matrix (Lauret et al., 2008). 

Echo state network (ESN), a recurrent neural network (RNN), 

had been proposed for prediction, in which its advantage lies 

in that the input weights, the internal weights and the 

feedback weights are fixed before training, and only the 

output weights are required to be determined (Jaeger, 2004). 

Combining with the Bayesian learning technique, ESN can 

reduce the computational cost for the Hessian matrix because 

the output equation of ESN is linear. The existing Bayesian 

ESNs, see e.g. Sheng et al. (2013), Liu et al. (2012), Han and 

Mu (2010), mainly used for time series prediction may not be 

suitable for multiple factor relationship regression, because 

the input uncertainties levels associated with each factor are 

different. Furthermore, the output feedback uncertainty was 

not considered in the above studies, which is however 

necessary for practical problems.  
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In this study, an ESN model with output feedback is 

proposed for an industrial prediction. Since the industrial data 

generally contain noises, the output feedback uncertainty and 

the input uncertainties were considered for PIs construction 

by using the Bayesian framework, where the PIs contributed 

by the output feedback uncertainty are derived first, and then 

the total PIs are established based on the uncertainties of the 

input and the output feedback. To verify the quality of the 

proposed method, a pipeline pressure prediction of the BFG 

system is studied here, and the prediction experiments are 

conducted based on the industrial data. And, the results 

indicate that the proposed approach has a satisfactory 

performance on PIs for the pipeline pressure.  

2. PROBLEM STATEMENT 

BFG system is the one of the most important energy systems 

in steel industry, which consists of the blast furnaces, the gas 

tanks, the transportation pipelines and a series of gas users. 

Taking a certain steel plant as an example, the structure of the 

BFG system can be illustrated as Figure 1, in which four blast 

furnaces viewed as the generation units provide the gas into 

the pipeline network, and the consumption users primarily 

include coke oven, hot rolling, cold rolling, chemical product 

recovery, boilers, power plant, etc.. Besides, a part of gas is 

stored in the gas tanks which are regarded as a storage device. 

In practice, the scheduling of BFG system can be carried out 

by the prediction of a number of variables, such as the gas 

flow, the gas tank level or the pipeline pressure of some 

locations. In Figure 1, the locations marked by ovals are the 

most concern points, seeing the outlet pressure of the gas 

tanks and those of the blast furnaces. Since the pipeline 

pressures are affected by the previous status and the flows of 

the other locations, the pressure estimation of these key 

locations has to consider the influence factor uncertainties 

(input) and the uncertainties of previous status of the location 

(output feedback).  

 

#1,2 Coke oven

#3,4 Coke oven

#5,6 Coke oven
#1,2,3 Power station

CCPP

#1 Gas tank

#1 Synthesizing unit

#2 Synthesizing unit

Low pressure boiler

Hot rolling

Cold rolling

#1 Blast furnace #2 Blast furnace #3 Blast furnace #4 Blast furnace

Rough rolling 

#4 Power generator

#2 Gas tank

Radiation tower

 

Fig.1 Pipeline structure of the BFG system in steel industry 

3. BAYESIAN ECHO STATE NETWORK REGRESSION 

WITH UNCERTAINTIES 

3.1 Prediction model based on echo state network 

A typical ESN contains the input layer, the reservoir and the 

output layer (Jaeger, 2002a). And, an ESN with output 

feedback can be formulated as 

1 1( )in back

k k k kf y   x W u Wx W                     (1) 

1 1( ( , , ))out out

k k k k k k kt y n f y n    W u x         (2) 

where ku is the exogenous input with dimensionality m , 

kx is the internal states with dimensionality N , and ky is 

the output. ,( )in in N m

i jW  W denotes the input weights, 

,( ) N N

i jW  W  denotes the internal weights of the 

neurons in the reservoir. To provide proper memorization 

capabilities, W  should be sparse whose connectivity level 

ranges from 1%~5% and its spectral radius should be less 

than 1. 
1

,( )back back N

i jW  W denotes the output feedback 

weights, and 
1 ( 1)

,( )out out m N

i jW    W  denotes the output 

weights. f and
outf  are the activation functions of internal 

neurons and output neurons, respectively. kn  is independent 

white Gaussian noise sequences reflecting the output 

uncertainty. 

Here, kt  is the noisy output and ky is the output of the ESN. 

Given the output feedback is the prior output of the ESN, the 

feedback uncertainty should be considered in this study. 

As for the input uncertainties, one can assume a random 

vector kz  as the noisy input, i.e., 

( , )k k kfz u ε                                              (3) 
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where ku  is the hidden input, and kε  is a random noise 

vector, independent of ku . Because the gas flow in the 

locations of the pipeline network are accompanied with 

different level of noise, the covariance of kε can be denoted 

as  2 2 2

1 2, , , mdiag   Σ . 

3.2 Regression with output feedback uncertainty 

Considering the modeling without output feedback (Wright, 

1999), the predicted distribution ( | , )p t D 
u  can be 

similarly approximated by a Gaussian distribution in terms 

of the marginal distribution 

( | , ) ( | , , ) ( | )out out outp t D p t t p D d     u u W W W  (4) 

where t   denotes the noisy output feedback. 

Assuming that y
 is the output feedback without noise, it is 

possible to linearize ( , , ; )out outf y  
u x W  around t  , then 

one can neglect the second-order terms, i.e.,  

( , , ; ) ( , , ; )out out out out T

t
f y f t t

       u x W u x W h   (5) 

where t y t     ，
T

t
h is the partial derivative of 

( , , ; )out outf y  
u x W  with respect to y

, i.e.,  

 
1

( , , ; ) |   

    cosh( ) cosh( )

T out out

t y y t

T
out out back

y

f y   



  




 



         x

h u x W

W W W x x
 (6) 

where 
out

y
W  is a block matrix of the output weights 

corresponding to y
, and 

out

xW  is a block matrix of the 

output weights corresponding to the internal states. As such, 

using the Bayesian rule, the output distribution is 

  
2

2

( | , , ) ( | , , ) ( | )

                            exp , ,
2

1
                                  ( ) ( )

2

out out

out

T

t

p t t p t y p y t dy

y t

t t dy



 


        

   

  




 




 







u W u W

W u x
 (7) 

where
21 t  . Then, the output distribution can be 

further approximated by a Gaussian distribution  

 
'

21
( | , , ) exp

2

out

t

p t t t
Z





    
   

 
u W                 (8) 

where 
* * ( , , ; )out outt t f t     u x W , 

t
Z   is the normalizing 

constant and  ' 21 1 1 T

t t t
       h h . 

As for the ( | )outp DW  term in (4), one can expand 

  1,2, , .,i i i nD t  u and marginalize over the output 

feedback
iy

, then 

( | ) ( , | , , )out out

i i i i ip D p y t t dy   W W u                   (9) 

Using the Bayesian rule and the conditional independence of 

it  on 
it


given 
iy

, (9) can be re-written as 

( )
( | )

( | )

                 ( | , , ) ( | )

out
out

i i

out

i i i i i i

p
p D

p t t

p t y p y t dy



   



 

W
W

u W

       (10) 

where
2

( ) exp( 2 )out outp  W W ,   is a hyper-

parameter. Based on (10), the posterior distribution of the 

output weights reads as 

 

 

'
22

1

'
22

1

( | ) exp
2 2

                   exp
2 2

N
out out

i

i

n
out

i

i

p D t

t

 

 





 
    

 

 
    

 





W W

W

      (11) 

where  , , ;out out

i i i i it t f t   u x W . Taking (8) and (10) 

into (4), then 

 

 

'
2

'
22

1

1
( | , ) exp

2

               exp
2 2

t

n
out out

i

i

p t D t
Z

t d



 

  



 
   

 

 
    

 





u

u

W W

    (12) 

where tZ u
is the normalizing constant, and  

 
'

22

1

( )
2 2

n
out out

i

i

M t
 



  W W                (13) 

For the prediction distribution, (13) can be linearly 

approximated by the Taylor expanding with respect to 
out

MPW . 

That is,  

1
( ) ( ) ( ) ( )

2

out out out T out

MPM M   W W W A W        (14) 

where 
out out out

MP  W W W   and A  is the Hessian matrix 

of ( )outM W . Taking (14) into (12), a Gaussian 

approximation of the predictive distribution can be obtained. 

  
2

2 1 2 2

, , ;1
( | , ) exp

(2 ) 2

out out

t t

t f t
p t D

  

   

 

 
 
 
 
 

u x W
u  (15) 
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where 
2 ' 1 11 1 (1 )T T T

t t t
    

     g A g h h g A g . 

As such, the variance of the predictive distribution consists 

of three components. 1) the variance in the distribution over 

the observed targets, 2) an estimation of the output feedback 

uncertainty, and 3) the uncertainty induced by the weights. 

3.3 Regression with input uncertainties 

Given that the input of the ESN is noisy, the predictive 

distribution can be formulated as 

' '( | , ) ( | , , ) ( | )out out outp t D p t t p D d     z z W W W  (16) 

Given the noisy input 
z  and the feedback t  , the output 

distribution can be written as 

'
2

( | , , ) ( | , , ) ( | )

1
              exp ( ) ( ) ( )

2 2

out out

T

p t t p t t p d

t d


        

   



 
     

 





z W z W z u u

z Σ z z
 (17) 

where 
u is the hidden input without noise,     z u z . 

To simplify (17), ( ; )out outf 
u W can be linearly 

approximated by Taylor expansion about 
z , i.e.,  

( ; ) ( ; )out out out out Tf f    zu W z W h z         (18) 

where    z u z  and ( ; ) |T out outf  




z u u z

h u W . 

Furthermore, (17) can be approximated by a Gaussian 

distribution (Bishop, 1995), i.e.,  

 
''

21
( | , , ) exp

2

out

S

p t t t
Z

    
   

 
z W          (19) 

where
''1 1 (1 )T T

t t
      z zh h h Σh  and [ , , ]outt t t       W z x . 

One can consider the
'( | )outp DW term in (16). Expanding 

 '

1,2, , .,i i i nD t  z  and marginalizing over iu , we have 

'( | ) ( , | , )out out

i i i ip D p t d W W u z u               (20) 

Using the Bayesian rule and the conditional independence of 

it on iz given iu , (20) can be re-written as 

' ( )
( | ) ( | , ) ( | )

( | )

out
out out

i i i i i

i i

p
p D p t p d

p t
 

W
W u W u z u

z
 (21) 

Taking (19) and (21) into (16)，a Gaussian approximation 

of the predictive distribution can be obtained  

  
2

2 1 2 2

, ;1
( | , ) exp

(2 ) 2

out out

r r

t f
p t D

 

  

 

 
 
 
 
 

z x W
z  (22) 

where
2 '' 11 T

r    g A g . 

Then, according to (19), the variance 
2

r of the predictive 

distribution reads as 

2 11 1 T T T

r t t


 
 

   z zh h h Σh g A g                    (23) 

where A is the Hessian matrix of ( )outS W , which is the 

summation of the likelihood and the priori over the weights. 

  
''

2 2

1

( ) , ;
2 2

n
out out out out

i i i

i

S t f
 



  W z x W W  (24) 

It is noticeable from the above formula that compared to the 

previous variance 
2 11 1 T T

t t t
    

  h h g A g , the 

estimate of uncertainty contains an additional term 
T

z zh Σh  

that reflects the contribution of the prediction distribution 

from the variance of the input noise process. Given 
z , the 

total variance of the predictive distribution is known, a 

(1 )% PI can be constructed 

1 2
1

12
1 1 T T T

t t
y z



 
 


  
    

 
z zh h h Σh g A g    (25) 

where 1 ( 2)z  is the 1 ( 2) quantile of a normal 

distribution function with zero mean and unit variance. 

4.  EXPERIMENTS AND ANALYSIS 

To verify the effectiveness of the proposed ESN model with 

output feedback, the gas flow and the pressure data coming 

from the energy data center of a certain plant of China are 

employed for the experiments. We randomly select the 

outlet pressure of #1, 2 gas tank as the validation point.  

The related parameters of the proposed method are listed in 

Table 1. According to Figure 1, the outlet pressure of #1 gas 

tank is relevant to the outlet flows of #2 tank, the generation 

of #2,3 blast furnace, the flow of diffusion tower, the 

consumptions of #1,2,3 power plants, the consumption of #4 

power generator and the consumption of CCPP. Similarly, 

the outlet pressure of #2 tank is relevant to the outlet flow of 

#1 gas tank, the generation of #2,3 blast furnace, the flow of 

diffusion tower, the consumption of #1,2,3 power plant, the 

consumption of #4 power generator and the consumption of 

CCPP. The dimensionality of the reservoir and other 

parameters of the ESN are set according to (Jaeger, 2002b). 

The initial value of hyper-parameters and
'' is set as 5 

and 50, respectively. The optimal process of hyper-

parameters can be found in literature (Lauret, Fock, 

&Randrianarivony, 2008). For outlet pressure prediction of 

#1 gas tank, the final values of hyper-parameters  and 
'' are optimized as 14.4587 and 103.8986, respectively. 

And, for those of #2 gas tank, the values of  and 
'' are 

19.5674 and 112.6395, respectively. 
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Table 1 The parameters of the proposed model 

Parameters value 

Reservoir dimensionality 200 

Sparse degree of the internal weights 0.02 

Spectral radius of the internal weights 0.8 

The number of training samples 1000 

Initial value of   5.0 

Initial value of 
''  50.0 

Fig.2 shows the results of the proposed method, the 

predicted pressures of #1 and #2 gas tanks, respectively. It 

can be seen that the proposed method exhibits a good 

performance with a prediction length 30min. And, the 

constructed PIs can provide some indicated information 

about the reliability of the prediction accuracy and present 

the possible interval that the targets located.  

 

(a) 

 

(b) 

Fig. 2 The predicted pressure for #1 and #2 gas tank 

Fig.3 shows a clearer illustration of PIs based on the 

proposed method with the confidence level 95%, in which 

the red square are used to represent the targeted values and 

the vertical lines denote the PIs. It is evident that the target 

values can be basically covered by the constructed PIs. The 

results in Fig.3 indicate that the proposed model is effective 

for the PIs construction of the outlet pressures of the gas 

tanks. 
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(b) 

Fig.3 PIs for the pressure of #1 and #2 gas tank 

Furthermore, to quantitatively evaluate the performance, 

statistical results are also reported in Table 2. In order to 

guarantee the indication of the statistics, the PIs construction 

is repeated by 50 times. Here, the root mean square error 

(RMSE) is used to measure the prediction quality, 

2

1

( )
n

i i

i

RMSE Y F n


                       (26) 

where n is the number of predicted data points, Yi is the 

observation, and Fi is the predicted value. Although the 

RMSE of the pressure prediction surpasses 200 (Pa), the 

accuracy can completely meet the demands of the energy 

scheduling with consideration of the pressure order of 

7000~8000 (Pa). Besides, the PI coverage probability (PICP) 

and the mean PI width (MPIW) are further adopted here. 

1

testn

i test

i

PICP c n


                         (27) 

1

( )
testn

i i test

i

MPIW U L n


                  (28) 

where ic equals to 1 when the target is placed in the interval 

range; otherwise, ic equals to 0. iU is the upper bound, and 
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iL is the lower bound; and , CWC that gives concerns to 

both the PICP and MPIW is a more comprehensive index, 

see 

(1 ( )exp( ( )))CWC MPIW PICP PICP       (29) 

where ( )PICP is given by 

0,     

1,     .

PICP

PICP







 


 

From Table 2, it is apparently that the PI coverage 

probability of the pressures is superior to 95%. In this case, 

when the variable   in (29) is set to 95%, the value of 

CWC is equal to that of MPIW. That is to say, the PI 

coverage probability based on an acceptable interval width 

can meet the practical requirements. The last row in Table 2 

shows the computational cost (CC) of the proposed method, 

which indicates that the computing efficiency is acceptable 

compared to the prediction horizen. To sum up, the proposed 

approach obtains a satisfactory performance on PIs for the 

pipeline pressure. 

Table 2 Statistical analysis of the PIs for pipeline 

pressure 

Index 
Pipeline pressure 

of #1 gas tank 

Pipeline pressure 

of #2 gas tank 

RMSE (10Pa) 22.5253 20.7134 

PICP 1.0 0.9667 

MPIW 104.4642 98.8186 

CWC 104.4642 98.8186 

CC (s) 3.65 2.47 

5. CONCLUSIONS 

The real-time prediction of BFG pipeline pressure in steel 

industry is a very significant issue on the energy scheduling 

task. An echo state network with output feedback is 

established in this study, where the reliability and the 

possible predicted ranges are quantitatively presented by 

using a Bayesian framework. Since the industrial data is 

always with noise, the input noise and the feedback noise are 

considered in the proposed model for PIs contribution. To 

verify the effectiveness of the proposed method, a series of 

experiments with the data coming from the practical 

database is conducted here, and the results indicate that the 

proposed approach has a satisfactory performance on the PIs 

construction of the pipeline pressure. 

ACKNOWLEDGEMENTS 

National Natural Sciences Fundation of China 

(61104157,61034003,61273037), National High-Tech R&D 

Program (2013AA040703), and the Fundamental Research 

Funds of China for the Central Universities (No. 

DUT12ZD214). 

REFERENCES 

Bishop, C. M. (1995). Neural Networks for Pattern 

Recognition. London, U.K.: Oxford Univ. Press. 

Chryssolouris, G., Lee, M., &Ramsey, A. (1996). 

Confidence interval prediction for neural network 

model. IEEE Transactions on neural networks, vol. 7, 

pp. 229-232. 

Han, M., & Mu, D. Y. (2010). Multi-reservoir echo state 

network with sparse Bayesian learning, Adv. Neural 

Networks, pp. 450–456. 

Heskes, T. (1997) Practical confidence and prediction 

intervals. in NeuralInformation Processing Systems, vol. 

9, T. P. M. Mozer and M. Jordan,Eds. Cambridge, MA: 

MIT Press, pp. 176–182. 

Jaeger, H. (2002a). Tutorial on training recurrent neural 

networks, covering BPTT, RTRL, EKF and echo state 

network approach. German National Research Center 

for Information Technology, GMD Rep. 159. 

Jaeger, H. (2002b). Short term memory in echo state 

networks. German National Research Center for 

Information Technology, GMD Report 152. 

Jaeger, H., &Haass, H. (2004). Harnessing nonlinearity: 

predicting chaotic systems and saving energy in 

wireless telecommunication. Science, vol. 304, pp. 78–

80. 

Khosravi, A., Nahavandi, S., Creighton, D., &Atiya, A. F.  

(2011). Comprehensive review of neural network based 

prediction intervals and new advances. IEEE 

Transactions on neural networks, vol. 22, pp. 1341-

1356. 

Lauret, P., Fock, E., &Randrianarivony, R. N. (2008). 

Bayesian neural network approach to short time load 

forecasting. Energy Conversion and Management, vol. 

49, pp. 1156-1166. 

Liu, Y., Liu, Q., Wang, W., Zhao, J., &Leung, H. (2012). 

Data-driven based model for flow prediction of steam 

system, Information Sciences, vol. 193, pp.104-114. 

Nix, D. A., & Weigend, A. S. (1994). Estimating the mean 

and variance of thetarget probability distribution. in 

Proc. IEEE Int. Conf. Neural Netw., vol. 1, pp. 55–60. 

Sheng, C., Zhao, J., Wang, W., & Leung, H. (2013). 

Prediction intervals for a noisy nonlinear time series 

based on a bootstrapping reservoir computing network 

ensemble. IEEE Transactions on neural networks and 

learning systems, vol. 24, pp. 1036-1048. 

Taware, A., &Brown, R. H. (1999). Dynamic linear finite 

element model for pressure prediction in a gas pipeline. 

Proceedings of the 38
th
 IEEE conference on decision 

and control, vol. 4, pp. 3248-3252. 

Wright, W. A. (1999). Bayesian approach to neural-network 

modeling with input uncertainty. IEEE Trans. Neural 

Network, vol. 10, pp. 1261–1270. 

Zhang, L. &Luh, P. B. (2005). Neural network based market 

clearing price prediction and confidence interval 

estimation with an improved extended Kalman filter 

method. IEEE Transactions on power system, vol. 20, 

pp. 59-66. 

Zhu, X., &Leis, B. N. (2012). Evaluation of burst pressure 

prediction models for line pipes. International Journal 

of Pressure Vessels and Piping, vol. 89, pp. 85-97. 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1046


