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Abstract: A new approach for the automatic generation of a dynamic feedforward control
law for nonlinear dynamic systems represented by discrete-time local model networks (LMN) is
proposed. The generic model structure of LMNs offers the opportunity to apply such a general
and automated approach for model inversion, even when the overall model complexity may be
high. LMNs can represent nonlinear dynamic systems of almost arbitrary complexity. Their
generic structure allows the generation of a feedback linearizing input transformation in a
highly automated way. This paper proposes and discusses such an approach for the important
class of LMNs with minimum-phase property. As a subclass of the class of minimum-phase
LMNs, only those without numerator dynamics are considered in this manuscript. By using
the input transformation, which results from feedback linearization, the feedforward control law
is obtained. It can then be applied online for any reference trajectory without pre-planning.
Thus, by representing a nonlinear dynamic system by the generic structure of an LMN and
applying the proposed feedforward control law generation, a dynamic feedforward control for
such a nonlinear system can be found automatically. Finally, the effectiveness of the method is
shown on results for a Wiener model.

Keywords: Nonlinear Systems; Local Model Networks; Feedforward Control; Automatic
Controllers; Feedback Linearization.

1. INTRODUCTION

The automatic generation of models from measured input-
output data is nowadays an established approach in many
engineering disciplines (e.g. Sjoeberg et al. (1995); Murray-
Smith and Johansen (1997); Norgaard et al. (2000); Nelles
(2001); Ljung (2010)). Commonly, such models are used
to simulate the real process for various purposes, such
as emission prediction in internal combustion engines
(Maass et al., 2009), controlling heat exchangers (Novak
and Bobal, 2009) or model predictive control in general
(Townsend and Irwin, 2001), to name but a few. In recent
years, significant research efforts have been made to also
exploit the structure of nonlinear dynamic models in order
to facilitate the design of control systems, Hametner et al.
(2014); Gao (2004). When control tasks are considered,
nonlinear model structures such as local model networks
(LMN) can be used to determine control laws and their pa-
rameters, e.g. Hametner et al. (2013); Hafner et al. (2000).
Often a feedback control strategy is combined with feedfor-
ward control (a so-called two-degree-of-freedom controller)
to improve reference tracking performance. For reasons of
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simplicity, feedforward control is sometimes restricted to a
static system inversion and only steady state input-output
mapping is considered. To obtain a dynamic feedforward
control law, usually some kind of model inversion has to be
performed. Inspired by Silverman (1969), who investigated
invertibility for time varying linear systems, Hirschorn
(1979) extended the basic principles of system inversion
to nonlinear systems. A historical perspective of this wide
field as well as a detailed review of the strongly related
feedback linearization technique is given in Isidori (1995)
or Slotine and Li (1991). When the inversion is intended
for output tracking, the reference trajectory is frequently
assumed to be known in advance. This provides the oppor-
tunity to achieve at least approximate tracking even for
non-minimum-phase systems (Devasia et al., 1996; Getz,
1995). Feedback linearization for discrete-time systems has
been addressed for example by Lee et al. (1987); Monaco
and Normand-Cyrot (1987) or Grizzle (1986).

In this manuscript the fully automated generation of a
nonlinear dynamic feedforward control law is proposed
for a discrete-time LMN. LMNs are a well-established
multiple-model approach for data-driven modelling of
nonlinear systems (e.g. Gregorcic (2004); Hametner and
Jakubek (2011); Nelles (2001)). This model architecture
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interpolates between different local models, each valid in
a certain operating regime which offers a versatile struc-
ture for the identification of nonlinear dynamic systems.
Each operating regime represents a simple model, e.g.
a linear regression model (Murray-Smith and Johansen,
1997), whose parameters are found by identification. Al-
though the complexity of LMNs increases with the amount
of local linear models to form a sophisticated nonlinear
model, the model structure still remains generic. This fact
is beneficially exploited when automatically generating a
dynamic feedforward control law for arbitrarily complex
LMNs. As a first step, the present contribution focuses on
LMNs without numerator dynamics to evade the difficulty
of internal dynamics or non-minimum-phase behavior. Ne-
glecting the numerator dynamics completely is a justifiable
choice for many physical processes. Even though explicit
numerator dynamics are absent, the partitioning has to
be chosen accordingly in order to avoid an additional
excitation through the local affine term (see Section 2).

Obviously, neither LMNs nor feedback linearization are a
conceptual novelty. Both concepts have already been in-
troduced several decades ago and are well established ever
since. However, combining both ideas offers the opportu-
nity to provide a substantial tool for dynamic feedforward
control. Numerous applications in various branches of the
industry benefit of the presented approach as merely ade-
quate measured input-output data are required to identify
a model (i.e. an LMN) of almost any arbitrary nonlinear
dynamic process. To automatically obtain a feedforward
control law for this process, the LMN is represented in
discrete-time state-space form, which is then transformed
into a feedback linearized normal representation. To deter-
mine the required feedforward input value for the desired
reference trajectory, an input transformation is utilized.
Therein the current and past model outputs are replaced
by the desired reference values. Additionally, the resulting
feedforward control law can be implemented online, thus
no trajectory pre-planning is required. The application of
the presented approach generally leads to good results
concerning tracking performance. In the results section,
the effectiveness of the approach is demonstrated on a
Wiener model.

Feedforward control of LMNs has been considered in litera-
ture before. Karer et al. (2011) applied feedforward control
to a dynamic hybrid fuzzy model of a batch reactor with
both discrete and continuous states. Therein the partition-
ing considers the output only and the validity functions
are triangular. In the present contribution also the input
can be used as a dimension of the partition space, which
is an important prerequisite for the partitioning of many
nonlinearities. In addition, a hierarchical discriminant tree
yields the validity functions instead of utilizing fuzzy rules.
Nentwig and Mercorelli (2008) proposed an algorithm for
a combined analytical/numerical inversion of a static fuzzy
neural network applied to a throttle valve control. In
contrast, the presented approach in this paper also holds
for dynamic LMNs and in addition directly incorporates
nonlinear validity functions into the automatic feedforward
control law generation.

Subsequently, the generic model structure of LMNs is
shortly reviewed in Section 2. Feedback linearization in
general, its application to the LMN and the resulting

feedforward control law is demonstrated in Section 3.
Results for the Wiener model are given in Section 4.

2. LOCAL MODEL NETWORKS

The architecture of dynamic local model networks is
depicted in Fig. 1. First, an ordered set for the indices
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Fig. 1. Architecture of a local model network

of the local models is defined:

I = (i ∈ N | 1 ≤ i ≤ I) (1)

where I denotes the number of local linear models. LMNs
with external dynamics have an input vector r(k), usually
called regressor, with past inputs and outputs according
to Fig. 1:

r(k) = [u(k −M) ŷ(k −N ) 1] , r(k) ∈ R
1×O (2)

where O denotes the dimension of the regressor vector.
The sets for the orders M of the used time delays of the
inputs and for the feedback output orders N may be user
defined. The system order is denoted by N = max(N ) and
the maximum time shift of the input by M = max(M).
The number of elements of the sets M and N is referred
to as |M| and |N |, respectively. Thus, O = |M|+ |N |+1
holds.

From Fig. 1 it becomes obvious that the input vector r̃(k)
of the validity functions ΦI(r̃(k)), which spans the so-
called partition space, can be chosen differently from the
input vector r(k) of the local models:

r̃(k) =
[

u(k − M̃) ŷ(k − Ñ )
]

, r̃(k) ∈ R
1×Õ. (3)

The sets M̃ and Ñ are usually subsets of M and N . They
are also user defined.

The scalar local model outputs

ŷi(k) = r(k)θi ∀ I (4)

with the local parameter vector θi ∈ R
O×1 containing the

local parameters b
(i)
M

of the input, the local parameters

a
(i)
N of the autoregressive part and the local affine term

c(i) of model i

θT
i =

[

b
(i)
M a

(i)
N c(i)

]

∀ I (5)

are used subsequently to form the global model output
ŷ(k) by weighted aggregation, see Fig. 1:
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ŷ(k) =
∑

I

Φi(r̃(k))ŷi(k). (6)

The validity functions, which are found by a hierarchical
discriminant tree (Jakubek and Hametner, 2009), are
constrained to form a partition of unity

∑

I

Φi = 1 (7)

0 ≤ Φi ≤ 1, ∀ I. (8)

To ensure its minimum-phase property, two restrictions
are imposed on the LMN. First, no numerator dynamics
are considered, thus the limit |M| = 1 holds. Additionally,
either no partitioning using the input is taken into account
(i.e. M̃ is the empty set) or the order of the input used
in the partition space must be chosen equally to the input
order in the regressor (i.e. M̃ = M). Otherwise two effects

could occur. On the one hand, when M̃ 6= M, a nonlinear
term containing different orders of the input appears in
the numerator. On the other hand, an excitation by the
local affine term in combination with the validity functions
would be possible, which acts as an additional input
∑

I
Φi(r̃(k))c

(i) containing a different order of the input
in r̃(k) than in the regressor itself. As the minimum-
phase behavior would not be guaranteed anymore in either
of these cases, only systems which fulfill |M| = 1 and

M̃ = M if input partitioning is used, are considered
subsequently.

2.1 State-Space Formulation of LMNs

To apply the feedback linearization technique, the LMN
is described by a (non-minimum-realisation) state-space
system of the form

x(k + 1) = A(Φk)x(k) +B(Φk)u(k) + f(Φk)

ŷ(k) = cTx(k).
(9)

The state vector x ∈ R
(M−1+N)×1 is defined as

x(k) =























u(k −M + 1)
...

u(k − 1)

ŷ(k −N + 1)
...

ŷ(k)























. (10)

Note, that due to the time shifted evaluation of the update
equation for x(k + 1) in (9) (i.e. for ŷ(k + 1) in (6)
respectively), the validity functions are determined using
x̃(k) = r̃(k + 1). Their notation in vector form is

Φk = Φ(x̃(k)) = [Φ1 · · · Φi · · · ΦI ]
T. (11)

The system matrix A(Φk) ∈ R
(M−1+N)×(M−1+N) is time-

variant and contains the time shifts of the input (above
the dashed line) as well as those of the output

A(Φk) =







IM−1 0M−1×N

0N−1×M−1 IN

bT(Φk) aT(Φk)






, (12)

where abbreviations are defined as

Ij = [0j−1×1 Ij−1] , Ij ∈ R
(j−1)×j (13)

Ij =

[

[0j−1×1 Ij−1]
01×j

]

, Ij ∈ R
j×j (14)

for an arbitrary index j with I denoting the identity
matrix.

The last row of (12) contains the parameters bT(Φk) ∈
R

1×(M−1) of the input and of the autoregressive part
aT(Φk) ∈ R

1×N in the form

bT(Φk) = [bM (Φk) · · · b3(Φk) b2(Φk)] (15)

aT(Φk) = [aN (Φk) . . . a1(Φk)] . (16)

Each term in (15) and (16) is found by weighted aggre-
gation of the corresponding local parameter. In addition,
the parameters of those orders, which do not appear in the
original regressor r(k), are set to zero. Thus, the individual
entry bm(Φk) with index {m ∈ N | 2 ≤ m ≤ M} in (15)
and an(Φk) with index {n ∈ N | 1 ≤ n ≤ N} in (16) are
found according to

bm(Φk) =

{

∑

I
Φi(x̃(k)) b

(i)
M+1−m m ∈ M

0 otherwise
(17)

an(Φk) =

{

∑

I
Φi(x̃(k)) a

(i)
N+1−n n ∈ N

0 otherwise
(18)

The input matrix B(Φk) ∈ R
(M−1+N)×1 is defined as

B(Φk) =







0M−2×1

1
0N−1×1

b1(Φk)






. (19)

The term f (Φk) ∈ R
(M−1+N)×1 introduces a validity

function dependent offset term

f(Φk) =

[

0M−2+N×1
∑

I Φi(x̃(k))c
(i)

]

. (20)

The output matrix cT ∈ R
1×(M−1+N) is constant

cT = [01×M−2+N 1] . (21)

3. FEEDFORWARD CONTROL

3.1 Feedback Linearization of Discrete-Time Systems

The input-output linearization problem for a general
discrete-time nonlinear non-affine system

x(k + 1) = F (x(k), u(k))

y(k) = h(x(k))
(22)

is shortly reviewed (adapted from Henson and Seborg
(1997)). The composition of the scalar function h(x) :
R

d×1 → R and the vector function F (x) : Rd×1 → R
d×1

with d describing the system dimension, is defined as:
h◦F (x) = h(F (x)). Higher order compositions are defined

recursively: h◦F j(x) = h◦F j−1(F (x)), where h◦F 0(x) =
h(x). The composition operator plays the same role as
does the Lie derivative in the continuous-time case.

The discrete-time system (22) is said to have relative
degree δ at the point (x0, u0) if:

• ∂
∂u(k)h ◦ F j(x(k), u(k)) = 0 for all (x, u) in a neigh-

borhood of (x0, u0) and all j ≤ δ − 1.

• ∂
∂u(k)h ◦ F δ(x0, u0) 6= 0.
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Thus, by definition of the relative degree all compositions
fulfilling j ≤ δ − 1 are independent of the current input
u(k) and can be written as

h ◦ F j(x(k), u(k)) = h ◦ F j
0(x(k)), 1 ≤ j ≤ δ − 1. (23)

To represent the system (22) in normal form, a diffeo-
morphism [ξT(k),ηT(k)]T = Γ(x(k)) defining the new
coordinates ξ(·) and η(·) is constructed as follows. The
ξ(·) coordinates are chosen as

ξj(k) = h ◦ F j−1
0 (x(k)), 1 ≤ j ≤ δ. (24)

The remaining d − δ variables ηj(k) = Γδ+j(x(k)), 1 ≤
j ≤ d−δ can be chosen arbitrarily such that Γ is invertible
and ∂

∂u(k)Γj ◦ F (x(k), u(k)) = 0. As a result, the system

in normal form is
ξ1(k + 1) = ξ2(k)

ξ2(k + 1) = ξ3(k)

...

ξδ(k + 1) = h ◦ F δ(Γ−1(ξ(k),η(k), u(k))) = v(k)

η(k + 1) = q(ξ(k),η(k))

y(k) = ξ1(k)

(25)

where q(ξ(k),η(k)) represents the unobservable internal
dynamics, which is independent of u(·) by construction:

qj(ξ(k),η(k)) = Γδ+j◦F (Γ−1(ξ(k),η(k))), 1 ≤ j ≤ d−δ.
(26)

The system (25) can be considered as a chain of δ time-
shifts with output y(k) and input v(k). The latter is found
by a nonlinear algebraic equation representing the input
transformation

v(k) = h ◦ F δ(x(k), u(k)). (27)

As in the continuous-time case, for any control law the
unobservable internal dynamics need to be asymptotically
stable to achieve closed-loop stability. The original system
(22) has full relative degree if the relative degree equals the
system order, i.e. δ = d holds, and no internal dynamics
exists.

3.2 Feedback Linearization of Local Model Networks

To determine the relative degree δ of the LMN, its state-
space representation (9) is considered such that the general
system (22) becomes

F (x(k), u(k)) = A(Φk)x(k) +B(Φk)u(k) + f(Φk) (28)

h(x(k)) = cTx(k) = xM−1+N (k). (29)

According to the definition of the relative degree

∂

∂u(k)
h ◦ F j(x(k), u(k)) = 0, ∀j ≤ δ − 1 (30)

must hold. This is fulfilled under two conditions

• bj(Φk) = 0, ∀Φk, ∀j ≤ δ − 1

•
∂Φk+j−1

∂u(k)
= 0 →

∂

∂u(k)
x̃(k+j−1) = 0, ∀j ≤ δ−1

With the definitions x̃(k) = r̃(k + 1) and (3) the second
condition can be reformulated as

j −min(M̃) < 0, ∀j ≤ δ − 1 (31)

Thus, the relative degree δ is determined primarily by
the index of the first non-zero numerator parameter bj
(i.e. bj = 0, ∀j < δ) such that δ = min(M). If input

partitioning is used, additionally δ = min(M̃) must hold
as the minimum-phase assumption was introduced, which
required M̃ = M.

3.3 Feedforward Control Law Generation

Due to its generic model structure, the normal form rep-
resentation (25) of a minimum-phase LMN is readily and
automatically available by applying the system transfor-
mation described in the previous section. For such a nor-
mal system, the implementation of dynamic feedforward
control is straightforward. If the transformed input (27) is
chosen such that v(k) = w(k+δ), where w(·) describes the
desired output trajectory, exact tracking ŷ(k+ δ) = w(k+
δ) can be achieved. The original input u(k) is found by
solving

w(k + δ)− h ◦ F δ(w(k), u(k)) = 0, (32)

where w(·) denotes the state vector x(·) with the values
of ŷ(·) being replaced by the reference values w(·). In case

of input partitioning M̃ = M is required and (32) is an
implicit equation. It is then solved numerically, whereas
in case of output partitioning only, an explicit solution is
possible.

The feedforward control law (32) can be applied online
without the need for an offline trajectory pre-planning,
although for big changes of the reference (e.g. a step
function with a high amplitude compared to the identified
output interval), a high control input may result, which
possibly violates input constraints. The easiest way to
avoid such violations is to incorporate a low-pass filter for
the reference value with appropriate time constant ahead
of the feedforward control.

4. RESULTS

To demonstrate the effectiveness of the proposed auto-
matic dynamic feedforward control law generation, a third
order stable Wiener process is considered. It consists of
a dynamic linear transfer function G(z) = P (z)/U(z) in
cascade with a static nonlinearity f(p(k)) at the output
with p(k) as the intermediate variable at the output of the
linear part. In the present simulation, G(z) and f(p(k))
have been chosen as

G(z) =
0.6z−3

1− 1.3z−1 + 0.8825z−2 − 0.1325z−3
(33)

y(k) = f(p(k)) = arctan(p(k)). (34)

As the linear transfer function has full relative degree, the
LMN numerator and denumerator orders are chosen as
M = {3} and N = {1, 2, 3, 4}. The partition space is

spanned by r̃(k) = [u(k − 3), ŷ(k − 1)], thus M̃ = {3}
and Ñ = {1}. Identification of an LMN with six local
linear models using an APRB-signal for the excitation in
u(·) yields a model fit of R2 = 98.81% in validation. In
Fig. 2 the identification data are shown and local models
are represented by contour lines of their validity functions.
Those models that are intersected by the equilibrium line
are equilibrium models whereas models number five and
six are off-equilibrium models with unstable local dynam-
ics (Jakubek et al., 2008). As it is the minimum-phase
property only, which has to be guaranteed, feedforward
control can be applied.
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Fig. 2. Contour plot of validity functions, the identification
data (grey dots) and the equilibrium line (dashed line)

For the chosen orders of the LMN the following implicit
feedforward control law results

−w(k + 3) + cTA(Φk+2)A(Φk+1)A(Φk)w(k)+

(a2(Φk+2) + a1(Φk+2)a1(Φk+1)) c(Φk)+

a1(Φk+2)c(Φk+1) + c(Φk+2) + b3(Φk+2)u(k) = 0.

(35)

Note that besides the explicit appearance of u(k) in (35)
also the validity function Φk+2 is a function of u(k). Thus,
in case of input partitioning, a numerical solution to (35)
has to be found, whereas for output partitioning only,
an explicit feedforward control law would result. Subse-
quently, all results are found with feedforward control only,
thus no feedback information is used at all. As reference
trajectory w(·), which is shown as dots in the upper panel
of Fig. 3, a sequence of low-pass filtered steps is considered.
The time constant of the filter is chosen faster than that
of the Wiener model to excite the system sufficiently, but
yet slow enough to ensure an adequately smooth signal.
The reference is congruent to the feedforward controlled
simulation result ŷ(·) of the LMN, which is represented by
a solid line in the upper panel. In the middle panel of Fig.
3 the feedforward control input signal can be seen. Because
of the low-pass filtered appearance of the reference, it re-
mains within the interval of [−3, 3] used for identification,
thus no model extrapolation occurs. Applying this input
signal to the actual Wiener model leads to the system
response yWiener(·) depicted as solid line in the lower panel
of Fig. 3 together with the desired reference as dotted
line. Note, that no delay in the reference tracking occurs.
Slight oscillations appearing around sample 50 and 70 are
caused by model discrepancies only and can be reduced by
using an LMN with a higher fit to represent the non-linear
process more precisely.

To further illustrate the effective operation of the auto-
matically generated feedforward control law, Fig. 4 shows
the result for a different reference trajectory. The reference
w(·) is depicted as dotted line and the feedforward con-
trolled output yWiener(·) of the Wiener model as solid line.
Those intervals where one of the off-equilibrium models
becomes active by more than 1h are shaded in grey. In
the first 225 samples the transitions in the reference are
chosen very smooth. As a result, only slight steady state
deviations occur, which could be eliminated by feedback

Samples

y W
ie
n
e
r(
·)
,
w
(·
)

u
(·
)

w
(·
),

ŷ
(·
)

15 35 55 75 95

15 35 55 75 95

15 35 55 75 95

−1

0

1

−3

0

3

−1

0

1

Fig. 3. Simulation of a sequence of low-pass filtered refer-
ence steps; Upper panel: reference w(·) and LMN sim-
ulation output ŷ(·); middle panel: feedforward input
signal u(·); lower panel: feedforward controlled actual
Wiener model output yWiener(·) in solid and reference
w(·) dotted

control very easily. Starting from sample 226 the transi-
tions are chosen fast as compared to the time constant of
the linear part of the Wiener model. Merely around sample
390 and 430 the nonlinearity is not covered by the LMN
exactly, thus resulting in slight but acceptable oscillations
of the output of the Wiener model.

5. OUTLOOK

In this manuscript an effective but yet simple approach
has been introduced to automatically attain a dynamic
feedforward control law for the generic model structure
of an LMN. In contrast to a static model inversion, a
dynamic feedforward control with an online reference tra-
jectory generation will improve the closed-loop perfor-
mance. Currently the application is restricted to LMNs
without numerator dynamics (i.e. |M| = 1) to evade non-
minimum-phase behavior. In future work, this restriction
will be eliminated by assessing the internal stability before-
hand to indicate whether the LMN is globally minimum-
phase or not. Additionally, input constraints have only
been addressed implicitly by low-pass filtering the desired
reference to avoid excessive reference steps.
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