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Abstract: This paper introduces a new approach to guidance law design using linear quadratic
optimal control theory, minimizing throughout the engagement the variation of the control
input as well as the integral control effort. The guidance law is derived for arbitrary order
missile dynamics and target maneuvers. Explicit results are provided for a first order missile
model and a constant target maneuver. It is shown that in the limiting cases the guidance law
degenerates to either Contrell’s minimum effort law or to a guidance law that enables mitigating
saturation. The performance of the guidance law is analyzed theoretically and demonstrated on
a few simulation cases.

1. INTRODUCTION

Guidance law design has been one of the first applications
of optimal control theory, as it developed in the late six-
ties. One of the first results, and a classical one, see e.g.
Cottrell [1971] was that Proportional Navigation Guidance
(PNG), which was known already thirty years earlier, can
be obtained as a solution of a linear quadratic optimal
control problem. This has stimulated the discovery of an
entire family of guidance laws, that could be called “linear
quadratic” guidance laws, that were obtained as solutions
of different linear quadratic optimal control problems. The
main criticism of the linear quadratic optimal control
approach to guidance law design has been that it does
not provide a maximum bound for the lateral accelera-
tion command. Thus, some studies have also considered
the bounded control variant of the problem (Rusnak and
Levy [1991]). In the context of differential games, Gut-
man [1979], Shima and Shinar [2002] considered explicitly
bounds on the lateral acceleration and obtained bang-bang
type solutions. However, in the typical case, the strate-
gies are arbitrary on a portion of the game space, which
indicates that there is place for further optimization of
the guidance laws. Linear quadratic differential games (see
Ben-Asher and Yaesh [1998] for a detailed exposition) are
not having this disadvantage, but they do not provide any
control on the bound of the commanded acceleration. An
interesting comparison between the bounded control dif-
ferential game, and the linear quadratic differential game
guidance law can be found in Turetsky and Shinar [2003].

In this work we take an entirely different approach that
is based on the following observation. If the target ma-
neuver was known for the entire time interval of guided
flight, then the best strategy to avoid saturation, while
achieving best performance for the pursuer (even zero miss
distance) would be to use constant lateral acceleration,
all throughout the flight. Therefore, the solution that
? This work was supported in part by the Israeli government.

we propose here is to derive the guidance law from a
quadratic criterion that penalizes the difference between
the acceleration command and a constant, in addition to
the penalty on the absolute size of the lateral acceleration.
The result of solving the optimization problem is shown to
be a guidance law of the Augmented PNG type that has
the tendency to require an almost constant acceleration
of the pursuer, as long as the lateral acceleration of the
evader does not change. The proposed methodology gives
the guidance loop designer an additional tuning parameter
that, if chosen judiciously, may improve guidance perfor-
mance while keeping the numerical computations for the
guidance algorithm relatively simple.

The proposed guidance law design can also be regarded
as an alternative to the minimum jerk guidance laws
proposed in different versions in recent papers such as
Uchiyama et al. [2005], Jeon et al. [2006], Grinfeld and
Ben-Asher [2014]. In all these papers, the problem was
formulated with the jerk as the input variable. In our ap-
proach, the lateral acceleration remains the input variable,
but it is constrained to keep close to a constant value. In
the extreme case, a constant lateral acceleration imply zero
jerk, so the objective of minimum jerk is attained trivially
in this case. However, in general, the relation between the
approach in this paper and the minimum jerk guidance
laws proposed in the cited papers is not so clear and will
be a matter of future research.

The structure of the paper is as follows. The model used for
deriving the guidance law is presented in Section 2. The
proposed guidance law that we call Minimum Variation
Guidance (MVG) is derived in Section 3. The performance
of the guidance law is analyzed in Section 4. Conclusions
and way ahead are formulated in Section 5.

2. MODELS DERIVATION

As usual, a two dimensional intercept model will be used
for the derivation of the guidance law, under the assump-
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tion that motion of the missile can be separated into two
orthogonal channels. Figure 1 presents a schematic view
of the planar endgame geometry, where XI −OI −ZI is a
Cartesian inertial reference frame. The missile and target
are denoted by the subscripts M and T , respectively.
The speed, normal acceleration, and flight path angles
are denoted by V , a, and γ, respectively, the relative
range between the two vehicles is r, and θ is the angle
between the LOS and the XI axis. The X-axis, aligned
with the LOS used for linearization, is denoted as LOS0.
z is the relative displacement between the target and the
missile normal to this direction. The target and missile
accelerations normal to LOS0 are denoted by aTN and
aMN , respectively; and satisfy aTN = aT cos(γT0 + θ0),
aMN = aM cos(γM0 − θ0).
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Fig. 1. Planar engagement geometry.
Neglecting the gravitational force, the engagement kine-
matics, expressed in a polar coordinate system (r, θ) at-
tached to the missile, is ṙ = Vr and θ̇ = Vθ/r, where the
speed Vr is

Vr = − [VM cos (γM − θ) + VT cos (γT + θ)] (1)

and the speed perpendicular to the LOS is
Vθ = −VM sin (γM − θ) + VT sin (γT + θ) (2)

During the endgame, the target and missile are assumed to
move at a constant speed. The lateral maneuver dynamics
of the target is assumed to be ideal.

The lateral maneuver dynamic of the missile is assumed
to be represented by arbitrary order linear equations

ẋM = AMxM + BMuM (3)

γ̇M = aM/VM (4)
where

aM = CMxM + dMuM (5)

and xM is the state vector of the interceptor’s internal
state variables with dim(xM ) = n.

The derivation of the guidance laws in this paper will be
performed based on a linearized model around collision
triangle trajectories.

The state vector of the linearized problem is
x =

[
z ż xTM

]T
(6)

where z is the relative displacement perpendicular to the
initial line-of-sight. The equations of motion are

ẋ =

{
ẋ1 = x2
ẋ2 = aT cos(γT0 + θ0) − aM cos(γM0 − θ0)
ẋM = AMxM + BMuM

(7)

The matrix form of the equation set is therefore
ẋ = Ax + BuM + CaT (8)

where

A =

[
Ak A12

[0]n×2 AM

]
, B =

[
0

−dM cos(γM0 − θ0)
BM

]
,

C =

[
0

cos(γT0 + θ0)
[0]n×1

]
, (9)

and
Ak =

[
0 1
0 0

]
, A12 =

[
[0]1×n

−CM cos(γM0 − θ0)

]
, (10)

with [0] denoting a matrix of zeros with appropriate di-
mensions. In the neighbourhood of a collision triangle
the closing speed Vr is approximately constant and the
interception time, given by tf = −r0/Vr can be assumed
fixed. For the guidance law implementation we approxi-
mate time-to-go by

tgo = −r/Vr (11)

3. DERIVATION OF THE MINIMUM VARIATION
GUIDANCE LAW

Based on the linear intercept model derived in the previous
section, the guidance law design problem is to determine
the input uM in such a way that the miss distance is zero

z(tf ) = 0, (12)

where tf is the time duration of the intercept. We are
assuming here full information, so that the target acceler-
ation and the initial condition of the intercept are both
known. Also, we assume in the sequel that the target
acceleration aT is constant.

A popular way to derive a guidance law is to optimize the
quadratic criterion

Js(x(0), uM (·)) =
1

2

ˆ tf
0

u2M (t)dt, (13)

such as e.g. Ben-Asher and Yaesh [1998], leading to the
Minimum Effort Guidance Law. In fact, it is well-known
that for a missile with ideal dynamics, the optimal guid-
ance law according to this criterion is the Augmented
Proportional Navigation (Garber [1968])

uM = 3Vcλ̇+
3

2
aT .

The Minimum Variation Guidance law, that we propose
here, is obtained by changing the quadratic criterion (13)
to become

J(x(0), uM (·), ξ) =
1

2

ˆ tf
0

[(uM (t) − ξ)2 + ρu2M (t)]dt. (14)

Here ρ ≥ 0 is a fixed constant, whereas the minimum
is taken with respect to uM (·) and ξ ∈ R. In fact, the
approach can be extended without any complication to the
case that ρ is time varying and there might be advantage
in doing so, however we will not follow this extension here.

To solve this optimal control problem it is advantageous
to perform in (8) the well-known Zero Effort Miss distance
transformation

Z(t) =
[

1 0 [0]
](

Φ(tf , t)x(t) +

ˆ tf
t

Φ(tf , τ)dτCaT

)
,

where Φ(·, ·) is the transition matrix
Φ(t, τ) = exp(A(t− τ)). (15)
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In fact, Z can be written more explicitly as

Z(t) = z(t) + (tf − t)ż(t)

−
(ˆ tf

t
(tf − σ)CMe

AMσdσ

)
xM (t)

+
(tf − t)2

2
aT cos(γT0 + θ0) (16)

With this change of coordinates
Ż = bM (t)uM , (17)

where

bM (t) =
[

1 0 [0]
]

Φ(tf , t)B, (18)

with the boundary conditions

Z(0) = z(0) + tf ż(0) −(ˆ tf
0

(tf − σ)CMe
AMσdσ

)
xM (0)

+
t2f

2
aT cos(γT0 + θ0), (19)

Z(tf ) = 0.

The Hamiltonian function for the problem (17),(19),(14)
is

H(z, λ, uM , t) = pbM (t)uM (20)

−
1

2
[(uM (t) − ξ)2 + ρu2M (t)],

where
−ṗ =

∂H

∂z
= 0,

thus p is constant. uM (t) can be uniquely determined to
maximize the Hamiltonian (20) as

uM (t) =
bM (t)

ρ+ 1
p+

ξ

ρ+ 1
. (21)

Introducing this expresion into (17) and integrating be-
tween 0 and tf , we obtain

0 = Z(tf ) = Z(0) +

´ tf
0 b2M (σ)dσ

ρ+ 1
p+

´ tf
0 bM (σ)dσ

ρ+ 1
ξ

From this, we determine p to be

p = −
ρ+ 1´ tf

0 b2M (σ)dσ
Z(0) −

´ tf
0 bM (σ)dσ´ tf
0 b2M (σ)dσ

ξ.

Using (18) and substituting this expression into (21), we
obtain the optimal guidance command as a function of ξ
in the form

uM (t) = aξ(t)Z(0) + bξ(t)ξ, (22)

where

aξ(t) = −
bM (t)´ tf

0 b2M (σ)dσ
, (23)

bξ(t) =
1

ρ+ 1
(1 −

bM (t)
´ tf
0 bM (σ)dσ´ tf

0 b2M (σ)dσ
). (24)

Introducing the expression (22) into (14), the quadratic
cost function can be written as an algebraic quadratic
function of ξ with a positive leading coefficient and its
minimum with respect to ξ can readily be found to be
attained for

ξopt = (25)

−
(ρ+ 1)

´ tf
o aξ(s)bξ(s)ds−

´ tf
o aξ(s)ds

(ρ+ 1)
´ tf
o b2

ξ
(s)ds− 2

´ tf
o bξ(s)ds+ tf

Z(0)

which can be substituted back in (22) to obtain the optimal
acceleration command as

uM (t) =

[
aξ(t) − bξ(t) (26)

×
(ρ+ 1)

´ tf
o aξ(s)bξ(s)ds−

´ tf
o aξ(s)ds

(ρ+ 1)
´ tf
o b2

ξ
(s)ds− 2

´ tf
o bξ(s)ds+ tf

]
Z(0)

Here, Z(0) can be substituted from equation (19). This
optimal command can be implemented as a guidance law
by writing this acceleration command for the interval [t, tf ]
and as a function of tgo = tf − t:

uM (t) =

[
ā(tgo) − b̄(tgo) (27)

×
(ρ+ 1)

´ tgo
0 ā(s)b̄(s)ds−

´ tgo
0 ā(s)ds

(ρ+ 1)
´ tgo
0 b̄2(s)ds− 2

´ tgo
0 b̄(s)ds+ tgo

]
× (z + tgoż −

(ˆ tgo
0

(tgo − σ)CMe
AMσdσ

)
xM

+
t2go

2
aT ),

where, using the expressions (23), (24), and (18),

ā(t) = −
b̄M (t)´ t

0 b̄
2
M (σ)dσ

, (28)

b̄(t) =
1

ρ+ 1
(1 −

b̄M (t)
´ t
0 b̄M (σ)dσ´ t

0 b̄
2
M (σ)dσ

), (29)

with
b̄M (t) =

[
1 0 0

]
eAtB. (30)

By using the small deviation from the collision triangle
assumption, the displacement z, normal to the initial line-
of-sight, can be approximated by

z ≈ (θ − θ0) r (31)

Differentiating Eq. (31) with respect to time yields

θ̇ =
z(t) + tgoż

−Vrt2go

in the expression (27), the optimal guidance law can be
written in a form reminiscent of the Augmented Propor-
tional Navigation (APN) guidance law:

uM (t) = N(tgo)(−Vr θ̇ (32)

−
1

t2go

(ˆ tgo
0

(tgo − σ)CMe
AMσdσ

)
x+

1

2
aT ),

where

N(tgo) =

[
ā(tgo) − b̄(tgo) (33)

(ρ+ 1)
´ tgo
0 ā(s)b̄(s)ds−

´ tgo
0 ā(s)ds

(ρ+ 1)
´ tgo
0 b̄2(s)ds− 2

´ tgo
0 b̄(s)ds+ tgo

]
t2go.

Two particular cases are of great interest. For a first order
model of the missile dynamics,

AM = −
1

τM
, BM =

1

τM
, CM = 1, DM = 0, (34)
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and the variable x coincides with the missile acceleration
aM that should be available from accelerometer measure-
ments. The navigation constant (33) becomes

N(tgo) =
A(tgo)

B(tgo)
, (35)

A(tgo) = t2goe
tgo
τM

[
−2τM tgo

(
(ρ+ 1)e

tgo
τM − ρ

)
+ (2ρ+ 1)t2goe

tgo
τM + 2τ2M

(
e
tgo
τM − 1

)]
B(tgo) = τ3M tgo

(
e
tgo
τM − 1

)(
(3 + 4ρ)e

tgo
τ
M + ρ

)
+ 2τ2M t

2
goe

tgo
τM

(
(ρ+ 2)e

tgo
τM − 2ρ− 1

)
− 2(ρ+ 1)τM t

3
goe

2tgo
τM +

4ρ+ 3

6
t4goe

2tgo
τM

+ 2τ4M

(
e
tgo
τM − 1

)
2

and the guidance law can be written as

uM (t) = N(tgo)[−Vr θ̇ −
τM

tgo

(
1 −

τM

tgo
(1 − e

− τM
tgo )

)
aM

+
1

2
aT ], (36)

If the missile dynamics is assumed ideal, that is τM → 0,
the navigation constant becomes

N =
6(2ρ+ 1)

4ρ+ 3
. (37)

and does not depend on the time-to-go. The optimal
guidance command is in this case

uM = N(−Vr θ̇ +
1

2
aT ). (38)

Notice that taking the limit ρ→∞ in (37), the navigation
constant for the ideal missile dynamic is N = 3, and
corresponds to the Minimum Effort guidance, whereas for
ρ = 0, the optimal navigation constant is N = 2, leading
to a constant maneuver and a circular path.

4. PERFORMANCE EVALUATION STUDIES

There are many performance evaluation issues that can be
raised about the proposed class of guidance laws. We will
only limit ourselves in this paper to a few of them, leaving
many interesting questions for future work.

4.1 Linear analysis using the Method of Adjoints

The first aspect that we consider in this section is the
effect of the design parameter ρ. For this, we consider
only the linear case, without acceleration saturation, and
we investigate the performance of the guidance law (38),
when applied to a guidance loop of a missile of first order
dynamics described by (3) with (34). For this case, we
use the Method of Adjoints (Zarchan [2002]) to determine
the contribution of the heading error, and of the target
acceleration to the miss distance. Notice that it makes no
sense to analyse the miss distance performance for the case
of the guidance law (36) applied to a first order missile
dynamics model, or the guidance law (38) to a missile

model with ideal dynamics, since these guidance laws were
designed to provide zero miss distance.

The results of the adjoint simulation for the case VM =
1000, and τM = 0.2 are represented in Figures 2a and
2b (different values of these parameters lead to different
absolute values, but the relative aspect of the plots is
unchanged). The parameter ρ was given four values 10−2,
10−1, 1 and 10.

As it is apparent from these figures, there is no uniform
tendency of the performance as ρ is decreased. There are
values of the time of flight for each of the chosen value of
ρ to achieve best performance with respect to the target
maneuver. This indicates that the choice of ρ may not be
trivial, and that presumably a variable ρ over the time
of flight may provide performance improvement. However,
this question will remain for future research.

4.2 Performance analysis with bounded missile acceleration

As the stated motivation for proposing these guidance laws
was to avoid the loss of performance due to limitations on
the missile lateral acceleration, it is natural to examine
how these guidance law perform when the lateral accel-
eration of the missile is not unlimited. In this case, we
use the guidance law (36) that compensates for the first
order missile dynamic. The effect of varying the parameter
ρ is clearly visible in Figure 3. For ρ = 0, the missile
acceleration is approximately constant along the flight,
as expected, and it is only slightly larger than the target
acceleration as can be seen in Figure 3a. As ρ is increased
to 10, the missile acceleration peaks (and saturates) early
in the flight as visible in Figure 3b. Although in the last
case, the miss distance is larger, especially for the slower
missile dynamics τM = 0.3, it is still relatively small
despite the saturation.

An entire different picture is revealed in Figure 4. In
this case, the acceleration was allowed to switch sign in
the middle of the flight (an S-maneuver). The maximum
missile acceleration was allowed in this case to be 700m/s2.
Even so, for ρ = 10, the miss distance is very large for the
larger values of the missile time constant. However, for the
case ρ = 0, the missile achieves good performance and the
lateral acceleration does not saturate.

5. CONCLUSIONS AND FUTURE WORK

We introduced a new class of guidance laws for homing
missiles that does not only attempt to minimize the total
maneuvering effort, but also to reduce the variation of the
lateral acceleration during the intercept. The motivating
idea behind this approach was to obtain high intercept
accuracy even in the case that the maneuverability ad-
vantage of the interceptor with respect to the evader is
minimal. We have shown that the proposed guidance law
design succeeds indeed to deliver better performance in
this respect.
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Fig. 3. Single flight results for different ρ and τM values, for
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aT = 400m/s2.
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Fig. 4. Single flight results for different ρ and τM values,
for aM,max = 700m/s2 and a target maneuver aT =
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