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Abstract: We consider a congestion game with two types of agents to describe the traffic flow
on a road at various time intervals in each day. The first type of agents (cars) maximize a utility
which is determined by a sum of a penalty for using the road at a time other than their preferred
time interval, the average velocity of the traffic flow, and the congestion tax. The second type
of agents (trucks or heavy-duty vehicles) can benefit from using the road together with other
second-type agents. This is because the trucks can form platoons to save fuel through reducing
the air drag force. We study a Nash equilibrium of this game to study the interaction between
the traffic flow and the platooning incentives. We prove that the introduced congestion game
does not admit a potential function unless we devise an appropriate congestion taxing policy.
We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategic
Nash equilibrium of this congestion game. Lastly, we demonstrate the developed results on a
numerical example using data from a highway segment in Stockholm.
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1. INTRODUCTION

Transportation of people and products is widely known
to be a considerable source of air pollution (Mitra and
Mazumdar, 2007; Fuglestvedt et al., 2008). For instance,
a recent study (Fuglestvedt et al., 2008) shows that the
transportation has contributed to approximately 15% of
the total man-made carbon-dioxide since preindustrial era
and also suggests that it will be responsible for roughly
16% of the carbon-emission over the next century. To
overcome these problems, there have been many studies
focused on proposing more efficient transportation meth-
ods. For instance, an experimental study (Alam et al.,
2010) reports that two identical trucks can achieve 4.7%-
7.7% reduction in the fuel consumption (depending on the
distance between them) when platooning at 70 km/h. The
phenomenon is primarily due to reduced air drag force
when forming platoons. Therefore, in future, when most
of the trucks are equipped with platooning devices, we can
achieve a much higher fuel efficiency. However, there are
many practical obstacles for platooning. For instance, a
centralized decision-maker to coordinate the trucks would
be very complex (and hence, difficult to implement in a
large-scale setup). Additionally, the trucks are not on the
road at the same time because they are owned by different
strategic entities that are trying maximizing their profits
or prefer not to share their costumers’ private information.
This motivates the use of a game theoretic framework for
studying the traffic flow and its implications on the trucks’
decision to use the road at the same time for increasing the
possibility of forming platoons.
In this paper, we use an atomic congestion game with
two types of agents to model the traffic flow on a road
at certain time intervals. The term atomic is used here to
emphasize the fact that we do not work with a continuum
? The work was supported by the Swedish Research Council, the
Knut and Alice Wallenberg Foundation, and VINNOVA through the
iQFleet project.

of players or fractional flows when modeling the traffic
flow (Schmeidler, 1973). The utility of the first type of
agents, which would not benefit significantly from moving
together (e.g., ordinary cars and trucks without platooning
equipment), is modeled by a sum of a penalty for deviating
from the time interval on which they prefer to use the
road, the average velocity of the traffic flow at that time,
and the congestion tax. In addition to these terms, the
second type of agents (e.g., trucks or other heavy-duty
vehicles with platooning equipment) benefit from using
the road at the same time as their peers. Note that
this platooning incentive is indeed proportional to the
average velocity of the traffic flow since these agents cannot
benefit much at low velocities (Alam et al., 2010). We
show that this congestion game is a potential game under
appropriate congestion taxes for the first type of agents
or platooning subsidies for the second type of agents.
This would guarantee that the congestion game admits
at least one pure strategy Nash equilibrium (Monderer
and Shapley, 1996). Then, we use joint strategy fictitious
play (Marden et al., 2009) and average strategy fictitious
play (Xiao et al., 2013) to learn a pure strategy Nash
equilibrium of this game. To prove the convergence of
the average strategy fictitious play, we adapt parts of the
proofs presented in (Xiao et al., 2013).
There have been many studies in traffic flow analysis
and network routing using congestion games (Xiao et al.,
2013; Levinson, 2005; Christodoulou and Koutsoupias,
2005; Correa et al., 2005; Rosenthal, 1973b,a). The authors
in (Xiao et al., 2013) proposed a model that inspired the
congestion game that we are considering in this paper.
However, we study a congestion game, where a group of
agents would benefit from using the road at the same time
as each other, to study the interaction between the traffic
flow and the platooning incentives. This platooning con-
gestion game was considered from a practical perspective
in (Farokhi and Johansson, 2013), to motivate the mod-
eling assumptions and to extract appropriate simulation
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parameters using real traffic data. In this paper, we follow
a theoretical approach to show the existence of a pure
strategy Nash equilibrium and to prove the convergence
of the learning algorithms.
The reminder of the paper is organized as follows. In Sec-
tion 2, we introduce the described congestion game with
two types of agents to model the traffic flow. We present
conditions for the existence of a potential function for the
introduced congestion game in Section 3. In Section 4, we
introduce the joint strategy fictitious play and the average
strategy fictitious play to learn a Nash equilibrium of
the congestion game. Finally, we illustrate the developed
results on a numerical example in Section 5 and conclude
the paper in Section 6.

1.1 Notation

Let R, Z, and N denote the sets of real, integer, natural
numbers, respectively. Furthermore, let N0 = N∪ {0}. We
define JNK = {1, . . . , N} for any N ∈ N. All the other
sets are denoted by calligraphic letters such as R. We
use |R| to denote the cardinality of R. Finally, we define
the characteristic function 1x=y (1x≥y) to be equal one
whenever x = y (x ≥ y) holds true and zero otherwise.

2. PROBLEM SETUP

Consider an atomic congestion game composed of two type
of agents, where each agent must choose from a finite
action set R = {r1, r2, . . . , rR} for some R ∈ N. In this set,
entries ri, i ∈ JRK, denote non-overlapping time intervals
of the day that a vehicle can choose to use a road. Let
{zi}Ni=1 and {xi}Mi=1 denote the actions of the agents of
the first type and the second type, respectively. In the rest
of the paper, for the sake of brevity, we name the agents
of the first type cars and the agents of the second type
trucks.
Car i ∈ JNK maximizes its utility described by

Ui(zi, z−i, x) = ξci (zi, T
c
i ) + vzi(z, x) + pci (z, x), (1)

where ξci : R × R → R determines the penalty for using
the road at time zi instead of its preferred time interval
T c
i ∈ R, pci (z, x) is a potential congestion taxing 1 policy

for using the road at interval zi, and vzi(z, x) describes
the average velocity of the traffic at that time. Follow-
ing (Farokhi and Johansson, 2013; Xiao et al., 2013), in
the rest of the paper, we assume that the average velocity
at each interval is an affine 2 function of the number of
vehicles (both cars and trucks) that are using the road at
that time interval, that is, vr(z, x) = anr(z, x) + b, where

nr(z, x) =
∑N
`=1 1{z`=r} +

∑M
`=1 1{x`=r} for any r ∈ R.

Note that the choice of the penalty functions ξci , i ∈ JNK,
does not change the mathematical results presented in the
paper (as the proofs do not rely on any special structure for
them). However, various choices for this penalty can model
the drivers’ behavior. Following (Xiao et al., 2013), one
possible choice for this function is ξci (zi, T

c
i ) = αc

i |zi − T c
i |

with scalar αc
i < 0. This specific function shows that

car i prefers to use the road on time and gets penal-
ized symmetrically by deviating from it (i.e., it does not

1 Note that if pci (z, x) < 0, this term is a tax (since it reduces the
utility of car i). However, if pci (z, x) > 0, this terms is a subsidy (since
it increases its utility). In what follows, we use these terms to make
sure that the overall game is a potential game. These taxes can also
be used to enforce a socially optimal behavior. For instance, we can
use mechanism design (see Jackson, 2003, for a survey) to optimize
the combined fuel consumption as a socially preferable action.
2 The affine relationship between the number of the vehicles on the
road and the average velocity is explored and validated using real
traffic data from Stockholm in (Farokhi and Johansson, 2013).

matter if the car uses the road earlier or later than T c
i ).

Additionally, upon increasing |αc
i |, the car becomes less

flexible in changing its decision. Another example for this
function could be ξci (zi, T

c
i ) = αc

i max(zi − T c
i , 0), where

αc
i < 0. Using this penalty function, car i can arrive earlier

without incurring any additional cost but it gets penalized
for using the road at a later time. For the simulation results
in Section 5, we use the first mapping for all the vehicles.
Similarly, truck j ∈ JMK maximizes its utility

Vj(xj , x−j , z) = ξtj(xj , T
t
j ) + vxj

(z, x) + ptj(z, x)

+ βvxj (z, x)g(mxj (x)),
(2)

where ptj(z, x) denotes a potential congestion taxing policy

for using road at interval xj , ξ
t
j(xj , T

t
j ) determines the

penalty for using the road at an interval other its preferred
one, and βvxj

(z, x)g(mxj
(x)) characterizes the benefit for

traveling at the same time as the other trucks. Let g :
JMK → R be a non-decreasing mapping and mr(x) =∑M
`=1 1{x`=r} denote the number of trucks on interval

r. This extra term can be motivated by the fact that
whenever there are several trucks on the road at the same
time interval, they can potentially form platoons to save
fuel. Note that this term is a function of the average
velocity of the flow as trucks cannot save a significant
amount of fuel when platooning at low velocities (Alam
et al., 2010). Hence, although the trucks prefer to travel
at the same time, they also want to avoid the congested
time intervals. The function g : JMK → R describes the
dependency of the fuel saving to the number of trucks at
a given time interval. In the rest of this paper, we assume
that this function is identity; i.e., g(mxj

(x)) = mxj
(x).

Another example for this function could be g(mxj (x)) =
mxj

(x)1mxj
(x)≥τ , which shows that the trucks do not

benefit from traveling at the same time unless they reach
a critical number τ .
Now, we are ready to define a congestion game with
two types of players using normal-form representation of
strategic games; see (Gibbons, 1992).

Definition 1. (Car–Truck Congestion Game): A
car–truck congestion game is defined as a tuple G =
((R)N+M

i=1 ; ((Ui)
N
i=1, (Vj)

M
j=1)), that is, a combination of

N + M players with action space (R)N+M
i=1 and utilities

((Ui)
N
i=1, (Vj)

M
j=1)).

A pure strategy Nash equilibrium for a car–truck conges-
tion game is a pair (z, x) ∈ RN ×RM such that

Ui(zi, z−i, x) ≥ Ui(z′i, z−i, x), ∀z′i ∈ R, i ∈ JNK,
Vj(xj , x−j , z) ≥ Vj(x′j , x−j , z), ∀x′j ∈ R, j ∈ JMK.

To prove the existence of a pure strategy Nash equilib-
rium or to use various learning algorithms for finding an
equilibrium, we focus on a subclass of games, namely,
potential games (Monderer and Shapley, 1996). A car–
truck congestion game is a potential game with potential
function Φ : RN ×RM → R if

Φ(x, zi, z−i)− Φ(x, z′i, z−i)

= Ui(zi, z−i, x)− Ui(z′i, z−i, x), ∀i ∈ JNK,
Φ(xj , x−j , z)− Φ(x′j , x−j , z)

= Vj(xj , x−j , z)− Vj(x′j , x−j , z), ∀j ∈ JMK.

With these definitions in hand, we are ready to present the
results of the paper.
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3. EXISTENCE OF POTENTIAL FUNCTION

Atomic congestion games with one type of agents (corre-
sponding to the case where M = 0 or N = 0) are known
to admit a potential functions even without imposing
congestion taxes (Xiao et al., 2013; Roughgarden, 2007).
In this section, however, we show that this property does
not hold for car–truck congestion games unless we devise
an appropriate taxing scheme.

3.1 Necessary Conditions

Let Φ : RN ×RM → R be a given mapping. We can define

∆xj→x′
j
Φ(x, z) = Φ(x, z)− Φ(x′, z)

∆zi→z′iΦ(x, z) = Φ(x, z)− Φ(x, z′),

where x′ = (x′j , x−j) and z′ = (z′i, z−i). Using simple
algebra, we can show that the operators commute, i.e.,

∆zi→z′i∆xj→x′
j
Φ(x, z) = ∆xj→x′

j
∆zi→z′iΦ(x, z).

Now, we are ready to prove the following useful result.

Proposition 1. A car–truck congestion game admits a
potential function only if

∆xi→x′
j
∆zi→z′iVj(z, x) = ∆zi→z′i∆xi→x′

j
Ui(z, x),

for all i ∈ JNK and j ∈ JMK.

Proof: Let Φ(x, z) be a potential function for the con-
gestion game. Then, it must satisfy

∆xj→x′
j
Vj(x, z) = ∆xj→x′

j
Φ(x, z). (3)

Let x′ = (x′j , x−j) and z′ = (z′i, z−i). Again, when noting
that Φ(x, z) is a potential function, we get

Φ(x, z) = Φ(x, z′) + ∆zi→z′iUi(z, x) (4a)

Φ(x′, z) = Φ(x′, z′) + ∆zi→z′iUi(z, x
′) (4b)

Substituting (4) into (3) results in

∆xj→x′
j
Vj(x, z)=Φ(x, z)− Φ(x′, z)

=∆xj→x′
j
Φ(x, z′)

+ ∆zi→z′iUi(z, x)−∆zi→z′iUi(z, x
′)

=∆xj→x′
j
Φ(x, z′)+∆zi→z′i∆xi→x′

j
Ui(z, x)

=∆xj→x′
j
Vj(x, z

′)+∆zi→z′i∆xi→x′
j
Ui(z, x),

where the last equality follows from the definition of the
potential function. Therefore, the identity in the statement
of the proposition follows.

This proposition shows that it might not be possible to
find a potential functions for car–truck congestion games.

Corollary 2. Let pci (z, x) = 0 for i ∈ JNK and ptj(z, x) =
0 for j ∈ JMK. A car–truck congestion game admits a
potential function only if β = 0.

Proof: First, we prove the identity in (5) by simple
algebraic manipulations. Similarly, we can show that

∆zi→z′i∆xi→x′
j
Ui(z, x)

= a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i

− 1x′
j
=zi ].

Therefore, following Proposition 1, the car–truck conges-
tion game admits a potential function only if

β[1xj=z′i
1x′

j
=zi − 1xj=zi1x′

j
=z′

i
]

[1− 1zj=z′i ][g(mxj (x)) + g(mx′
j
(x′))] = 0

for all x, z and x′j , z
′
i. This is only possible if β = 0.

Potential games have many desirable attributes. For in-
stance, these games always admit at least one pure strat-
egy Nash equilibrium. In addition, many learning algo-
rithms, such as, joint strategy fictitious play, are known to
converge to a pure strategy Nash equilibrium for potential
games. Given these important properties, a natural ques-
tion that comes to mind is that whether it is possible to
guarantee the existence of a potential function by imposing
appropriate congestion taxes. We answer this question in
the next subsection.

3.2 Imposing Congestion Taxes

In this subsection, we propose a taxing and a subsidy
policy that guarantee the existence of a potential function.

Theorem 3. Let each car i ∈ JNK pay the congestion tax

pci (z, x) = aβ

mzi
(x)∑

`=1

g(`), (6)

for using the road at time interval zi. Then, the car–truck
congestion game is a potential game with the potential
function

Φ(x, z) =

N∑
i=1

ξci (zi, T
c
i ) +

M∑
j=1

ξtj(xj , T
t
j )

+

R∑
r=1

nr(x,z)∑
k=1

(ak + b)− aβ
R∑
r=1

mr(x)∑
`=1

`−1∑
k=1

g(k)

+

R∑
r=1

β(anr(x, z) + b)

mr(x)∑
`=1

g(`).

Furthermore, this game admits at least one pure strategy
Nash equilibrium.

Proof: See (Farokhi and Johansson, 2013).

Remark 1. Note the tax pci (z, x) grows quadratically
with the number of the trucks that are using the road at
that time interval if the mapping g : JMK → R is a linear
function. Therefore, the congestion tax policy pci (z, x) in
Theorem 3 forces the cars to avoid the time intervals that
the trucks use to travel together.

Instead of taxing the cars, we can also introduce a pla-
tooning subsidy for the trucks to get a potential game.

Theorem 4. Let each truck j ∈ JMK receive the subsidy

ptj(x, z) = β(v0 − (anxj (z, x) + b))mxj (x), (7)

for a given v0 ∈ R. Then, the car–truck congestion game
is a potential game with the potential function

Ψ(x, z) =

N∑
i=1

ξci (zi, T
c
i ) +

M∑
j=1

ξtj(xj , T
t
j )

+

R∑
r=1

nr(x,z)∑
k=1

(ak + b) + βv0

R∑
r=1

mr(x)∑
`=1

g(`).

Furthermore, this game admits at least one pure strategy
Nash equilibrium.

Proof: Let us start with trucks. Note that with the
introduced tax policy, the utility of truck j is equal

Vj(xj , x−j , z)=ξtj(xj , T
t
j )+vxj

(z, x)+βv0g(mxj
(x)).

Let us define x′ = (x′j , x−j). If xj = x′j , the result trivially
holds. Therefore, without loss of generality, we consider
the case where xj 6= x′j . In what follows, we examine
each term in the cost function separately. First, we define
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∆xi→x′
j
∆zi→z′iVj(z, x) = ∆xi→x′

j
∆zi→z′i

(
ξtj(xj , T

t
j ) + vxj (z, x) + βvxj (z, x)g(mxj (x))

)
= ∆xi→x′

j
∆zi→z′i

(
vxj

(z, x) + βvxj
(z, x)g(mxj

(x))
)

= ∆xi→x′
j

(
vxj

(z, x)− vxj
(z′, x) + βvxj

(z, x)g(mxj
(x))− βvxj

(z′, x)g(mxj
(x))

)
= ∆xi→x′

j

(
a[1xj=zi − 1xj=z′i

][1− βg(mxj (x))]
)

= a[1xj=zi − 1xj=z′i
][1− βg(mxj (x))]− a[1x′

j
=zi − 1x′

j
=z′

i
][1− βg(mx′

j
(x′))]

= a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i

− 1x′
j
=zi ]

− aβ[1xj=zi − 1xj=z′i
]g(mxj

(x)) + aβ[1x′
j
=zi − 1x′

j
=z′

i
]g(mx′

j
(x′))

= a[1xj=zi + 1x′
j
=z′

i
− 1xj=z′i

− 1x′
j
=zi ]

+ aβ[1xj=z′i
1x′

j
=zi − 1xj=zi1x′

j
=z′

i
][1− 1zj=z′i ][g(mxj

(x)) + g(mx′
j
(x′))]

(5)

Ψ1(x, z) =
∑N
i=1 ξ

c
i (zi, T

c
i ) +

∑M
j=1 ξ

t
j(xj , T

t
j ). Now, it is

easy to see that

Ψ1(x, z)−Ψ1(x′, z) = ξtj(xj , T
t
j )− ξtj(x′j , T t

j ).

Second, we define Ψ2(x, z) =
∑R
r=1

∑nr(x,z)
k=1 (ak + b). For

this term, we can show that

Ψ2(x, z)−Ψ2(x′, z)=

R∑
r=1

nr(x,z)∑
k=1

(ak + b)−
R∑
r=1

nr(x
′,z)∑

k=1

(ak + b)

=

nxj
(x,z)∑
k=1

(ak + b)+

nx′
j
(x,z)∑
k=1

(ak + b)

−
nxj

(x′,z)∑
k=1

(ak + b)−

nx′
j
(x′,z)∑
k=1

(ak + b),

where the second equality holds because of the fact that
nr(x, z) = nr(x

′, z) for all r 6= xj , x
′
j . Noticing that

nxj
(x′, z) = nxj

(x, z) − 1 and nx′
j
(x, z) = nx′

j
(x′, z) − 1,

we know that

Ψ2(x, z)−Ψ2(x′, z) = (anxj (z, x) + b)− (anx′
j
(z, x′) + b).

Finally, we define Ψ3(x, z) =
∑R
r=1

∑mr(x)
`=1 g(`). In this

case, we can show that

Ψ3(x, z)−Ψ3(x′, z) =

R∑
r=1

mr(x)∑
`=1

g(`)−
R∑
r=1

mr(x
′)∑

`=1

g(`)

=

mxj
(x)∑

`=1

g(`) +

mx′
j
(x)∑

`=1

g(`)

−
mxj

(x′)∑
`=1

g(`)−

mx′
j
(x′)∑

`=1

g(`)

=g(mxj
(x))− g(mx′

j
(x′)).

Therefore, we get

Ψ(x, z)−Ψ(x′, z) =Ψ1(x, z)−Ψ1(x′, z)

+ Ψ2(x, z)−Ψ2(x′, z)

+ βv0(Ψ3(x, z)−Ψ3(x′, z))

=ξtj(xj , T
t
j )− ξtj(x′j , T t

j )

+ vxj
(x, z)− vx′

j
(x′, z)

+ βv0(g(mxj
(x))− g(mx′

j
(x′)))

=Vj(xj , x−j , z)− Vj(x′j , x−j , z).
The proof for cars follows the same line of reasoning.

Remark 2. Note that if v0 is greater than the average
velocity of the flow, the trucks get paid to use the road at

Algorithm 1 Joint strategy fictitious play for learning a Nash
equilibrium.

Input: p ∈ (0, 1)
Output: (x∗, z∗)
1: for t = 0, 2, . . . do
2: for i = 1, . . . , N do

3: Calculate z′i ∈ arg maxr∈R Ûi(r; t− 1)
4: if Ui(z

′
i, z−i(t−1), x(t−1)) ≤ Ui(zi(t−1), z−i(t−1), x(t−

1)) then
5: zi(t)← zi(t− 1)
6: else
7: With probability 1 − p, zi(t) ← zi(t − 1), otherwise

zi(t)← z′i
8: end if
9: for j = 1, . . . ,M do

10: Calculate x′j ∈ arg maxr∈R V̂j(r; t− 1)

11: if Vj(z(t − 1), x′j , x−j(t − 1)) ≤ Vj(z(t − 1), xj(t −
1), x−j(t− 1)) then

12: xj(t)← xj(t− 1)
13: else
14: With probability 1 − p, xj(t) ← xj(t − 1), otherwise

xj(t)← x′j
15: end if
16: end for
17: end for
18: end for

the same time as their peers. This way the government
incentivizes the trucks to form platoons. This subsidy
is technically the difference of the fuel that the trucks
would have saved if they formed a platoon at the velocity
v0 instead of the actual average velocity of the traffic
flow anr(z, x) + b. Therefore, the trucks would benefit
from traveling together even at low velocities (which is
a scenario where the trucks do not increase their fuel
efficiency significantly through platooning). However, if
v0 is smaller than the average velocity of the flow, we
reduce the extra utility that the trucks would receive from
traveling together (and technically ptj(x, z) becomes a tax
rather than a subsidy). Therefore, it becomes less likely for
the trucks to stick together. To emphasize the fact that we
are willing to pay the trucks rather than taxing them (and
hence, dealing with the first scenario), we call ptj(x, z) a
subsidy.

4. LEARNING A NASH EQUILIBRIUM

In this section, we study the convergence of two learning al-
gorithms, namely, joint strategy fictitious play and average
strategy fictitious play, when used in car-truck congestion
games.

4.1 Joint Strategy Fictitious Play

We start by briefly introducing the learning algorithm and,
then, analyze its convergence.
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4.1.1 Learning Algorithm Assume that the agents follow
the joint strategy fictitious play algorithm (Marden et al.,
2009). To do so, the agents must calculate the empirical
average of their utility given the history of the decisions.
Specifically, at each time step t ∈ N0, car i ∈ JNK should

calculate Ûi(r; t) using the recursive update law

Ûi(r; t) = (1− λt)Ûi(r; t− 1) + λtUi(r, z−i(t), x(t)), (8)

in which Ûi(r;−1) = ξci (r, T
c
i ),∀r ∈ R. In (8), z−i(t) and

x(t) are the actions chosen by all the agents except car i at
time step t. Furthermore, the forgetting factor λt ∈ (0, 1]
shows the extent with which the agents forget the past
in their decision making. In limiting cases, when λt = 1,
the agents are myopic (and only remember the previous
time steps) but, when λt = 1/t, the agents value the
entire history of actions equally. Similarly, at each time
step t ∈ N0, truck j ∈ JMK calculates V̂j(r; t) using the
recursive update law

V̂j(r; t) = (1− λt)V̂j(r; t− 1) + λtVj(r, x−j(t), z(t)), (9)

in which V̂j(r;−1) = ξtj(r, T
t
j ),∀r ∈ R. Now, by following

Algorithm 1, one would expect to extract a Nash equilib-
rium.

4.1.2 Convergence Analysis Noting that with appropri-
ate taxes the car–truck congestion game is a potential
game, we can use the result of (Marden et al., 2009) to
conclude the convergence of the learning algorithm.

Theorem 5. Let the action profile of the agents be gen-
erated by the joint strategy fictitious play in Algorithm 1.
Assume that λt = λ ∈ (0, 1) or λt = 1/t for all t ∈ N.
Then, this action profile almost surely converges to a
pure strategy Nash equilibrium of the car–truck congestion
game, if either the cars pay the congestion tax pci (z, x)
in (6) or the trucks receive the platooning subsidy ptj(x, z)
in (7).

Proof: The proof is a consequence of combining Theo-
rems 2.1 and 3.1 in (Marden et al., 2009) with Theorems 3
and 4.

Note that the joint strategy fictitious play might be re-
strictive in some aspects. For instance, all the agents must
have access to all the individual decisions taken by the
other agents to calculate their average cost function. In the
next section, we adapt the average strategy fictitious play
introduced in (Xiao et al., 2013) as an alternative. This
learning algorithm requires a central node to broadcast
the congestion prediction (i.e., an average of all the players
actions) for all time intervals per day.

4.2 Average Strategy Fictitious Play

We introduce the average strategy fictitious play and study
its convergence by extending parts of the proofs in (Xiao
et al., 2013).

4.2.1 Learning Algorithm Before introducing the learn-
ing algorithm, we have to make the following standing
assumption:

Assumption 1. The congestion tax policies satisfy
• pci (z, x), i ∈ JNK, is only a function of nzi(x, z),mzi(x);
• ptj(x, z), j ∈ JMK, is only a function of nxj

(x, z),mxj
(x).

This assumption means that the congestion tax can only
be a function of the traffic flow rather than the individ-
ual actions of the agents. The congestion taxing policy
that we introduced in the previous section satisfies this
assumption. To emphasize this fact, from now on, we write

Algorithm 2 Average strategy fictitious play for learning a Nash
equilibrium.

Input: p ∈ (0, 1)
Output: (x∗, z∗)
1: for t = 1, 2, . . . do
2: for i = 1, . . . , N do
3: Calculate z′i ∈ arg maxr∈R Ũi(r; t− 1)
4: if Ui(z

′
i, z−i(t−1), x(t−1)) ≤ Ui(zi(t−1), z−i(t−1), x(t−

1)) then
5: zi(t)← zi(t− 1)
6: else
7: With probability 1 − p, zi(t) ← zi(t − 1), otherwise

zi(t)← z′i
8: end if
9: for j = 1, . . . ,M do

10: Calculate x′j ∈ arg maxr∈R Ṽj(r; t− 1)

11: if Vj(z(t − 1), x′j , x−j(t − 1)) ≤ Vj(z(t − 1), xj(t −
1), x−j(t− 1)) then

12: xj(t)← xj(t− 1)
13: else
14: With probability 1 − p, xj(t) ← xj(t − 1), otherwise

xj(t)← x′j
15: end if
16: end for
17: end for
18: end for

pci (nzi(x, z),mzi(x)) and ptj(nxj (x, z),mxj (x)) with some
abuse of notation.
To initialize the algorithm, we let the agents to pick an
arbitrary action from the set R at the first time step. We
assume that there exists a central node 3 that can observe
the traffic flow at each time interval. This central node
uses the following recursive update laws to calculate the
average number of the cars and trucks in each time interval

n̄cr(t) = (1− λ)n̄cr(t− 1) + λ

N∑
`=1

1{z`(t)=r},

n̄tr(t) = (1− λ)n̄tr(t− 1) + λ

M∑
`=1

1{x`(t)=r},

with n̄cr(0) =
∑N
`=1 1{z`(0)=r} and n̄tr(0) =

∑M
`=1 1{x`(0)=r}

for all r ∈ R. The superscripts c and t show that the afore-
mentioned property is related to the cars or the trucks,
respectively. In these recursive update laws, we should
choose the forgetting factor λ ∈ (0, 1) to capture the extent
with which we value the congestion information from the
past. We can think of the numbers n̄cr(t) and n̄tr(t) as the
forecasts that the central node (e.g., the department of
transportation, the radio station, etc) announces on a day-
to-day basis about the traffic flow for each time interval
of the day. These values have a memory to remember the
congestion in earlier days and get updated based on the
actual observation of the traffic flow every midnight.
Additionally, car i ∈ JNK and truck j ∈ JMK also keep
track of the average number of times that they have chosen
any r ∈ R following the recursive update laws

w̄c
r,i(t) = (1− λ)w̄c

r,i(t− 1) + λ1{zi(t)=r},

w̄t
r,j(t) = (1− λ)w̄t

r,j(t− 1) + λ1{xj(t)=r},

with w̄c
r,i(0) = 1{zi(0)=r} and w̄t

r,j(0) = 1{xj(0)=r} for all
r ∈ R. Finally, for all i ∈ JNK and j ∈ JMK, we define
the new “average” cost functions in (10a)-(10b). Now, if

3 This central node is assumed to be a not-for-profit organization.
Therefore, it is not trying to optimize its income or loss (i.e., the
summation of the received taxes or the distributed subsidies) and,
hence, it would not strategically deviate from the intended algorithm.
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Ṽj(r; t) =[a(n̄cr(t) + n̄tr(t)− w̄t
r,j(t) + 1) + b] + β[a(n̄cr(t) + n̄tr(t)− w̄t

r,j(t) + 1) + b]g(n̄tr(t)− w̄t
r,j(t) + 1)

+ ξtj(r, T
t
j ) + ptj(n̄

c
r(t) + n̄tr(t)− w̄t

r,j(t) + 1, n̄tr(t)− w̄t
r,j(t) + 1), (10a)

Ũi(r; t) =ξci (r, T
c
i ) + [a(n̄cr(t) + n̄tr(t)− w̄c

r,i(t) + 1) + b] + pci (n̄
c
r(t) + n̄tr(t)− w̄c

r,i(t) + 1, n̄tr(t)). (10b)

we follow Algorithm 2, we expect to converge to a Nash
equilibrium under some mild conditions.

4.2.2 Convergence Analysis First, we need to prove
an intermediate lemma which shows that if Algorithm 2
reaches a Nash equilibrium, it stays there forever.

Lemma 6. Let each truck j ∈ JMK receive the subsidy

ptj(x, z) = β(v0 − (anxj (z, x) + b))mxj (x),

for a given v0 ∈ R. If x(t) and z(t), generated by
Algorithm 2, is a pure strategy Nash equilibrium, and
zi(t) ∈ arg maxr∈R Ũi(r; t− 1) for all i ∈ JNK and xj(t) ∈
arg maxr∈R Ṽj(r; t − 1) for all j ∈ JMK, then x(t′) = x(t)
and z(t′) = z(t) for all t′ ≥ t.
Proof: The proof of this lemma follows the same line of
reasoning as in the proof of Proposition 4.2 in (Xiao et al.,
2013). Here, we only prove the results for the trucks as the
proof for the cars is technically the same. First, note that
for all r ∈ R, we get (11a)-(11b). Now, using these update
laws and the proposed subsidy policy, we get

Ṽj(r; t) = ξtj(r, T
t
j ) + a(n̄cr(t) + n̄tr(t)− w̄t

r(t) + 1) + b

+ βv0(n̄tr(t)− w̄t
r,j(t) + 1)

= ξtj(r, T
t
j )

+ a(1− λ)(n̄cr(t− 1) + n̄tr(t− 1)− w̄t
r(t− 1))

+ a(λ(nr(x(t), z(t))− 1{xj(t)=r}) + 1) + b

+ βv0(1− λ)(n̄tr(t− 1)− w̄t
r,j(t− 1))

+ βv0(λ(mr(x(t))− 1{xj(t)=r}) + 1)

= (1− λ)Ṽj(r; t− 1) + λVj(r, x−j(t), z(t)).

Therefore, we can prove that

Ṽj(xj(t);t)=(1−λ)Ṽj(xj(t); t− 1)+λVj(xj(t), x−j(t),z(t))

≥(1−λ)Ṽj(r; t− 1)+λVj(r, x−j(t), z(t))

=Ṽj(r; t)

for any r ∈ R, where the inequality is direct consequence
of the fact that the pair x(t) and z(t) is a pure strategy

Nash equilibrium and xj(t) ∈ arg maxr∈R Ṽj(r; t − 1) for

all j ∈ JMK. Thus, xj(t) ∈ arg maxr∈R Ṽj(r; t) and as a
result, we get xj(t + 1) = xj(t) (following Algorithm 2).
Now, using a simple mathematical induction, we can show
xj(t+ k) = xj(t) for all k ∈ N.

Theorem 7. Let the action profile of the agents be gener-
ated by the average strategy fictitious play in Algorithm 2.
Then, this action profile almost surely converges to a
pure strategy Nash equilibrium of the car–truck congestion
game, if the trucks receive the platooning subsidy ptj(x, z)
in (7).

Proof: The proof follows from using Theorem 4 and
Lemma 6 in the proof of Theorem 4.1 in (Xiao et al., 2013).

5. NUMERICAL EXAMPLE

In order to illustrate the developed results, we use a
numerical example with N = 10000 cars and M = 100
trucks. In (Farokhi and Johansson, 2013), a comprehensive

Fig. 1. The dashed black curve shows the northbound E4 highway
between Lilla Essingen and Fredhällstunneln in Stockholm,
Sweden.
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Fig. 2. nr(x(t), z(t)), r ∈ R, versus the iteration number for β =
10−3 when using the joint strategy fictitious play in Algorithm 1.

simulation study on the interactions of the traffic flow and
the platooning incentives can be found. Following (Farokhi
and Johansson, 2013), we know that the affine function
vr(z, x) = anr(z, x)+b, with a = −0.0110 and b = 84.9696,
describes the relationship between the average velocity of
the traffic and the number of the vehicles (both cars and
trucks) for the northbound E4 highway from Lilla Essingen
to the end of Fredhällstunneln in Stockholm, Sweden (see
Figure 1). We divide the time horizon of 7:00am-9:00am
into eight equal non-overlapping intervals of 15 min to
construct the action set R = {1, . . . , 8}. Let T c

i , i ∈ JNK,
and T t

j , j ∈ JMK, be randomly chosen from the setR using
the discrete distribution

P{T = n} =

{
1/6, n = 2, 4,
1/4, n = 3,
1/12, otherwise.

This way, we can model a situation in which the drivers
prefer to use the road between 7:30am-7:45am (i.e., it
corresponds to a rush hour). Finally, let αc

i , i ∈ JNK,
and αt

j , j ∈ JMK, be randomly generated according to
a uniform distribution over [−7.5,−2.5]. In the rest of this
section with the exception of Subsection 5.4, we consider
the case where the cars must pay the congestion tax
described in Theorem 3.
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n̄cr(t) + n̄tr(t)− w̄t
r(t) = (1− λ)n̄cr(t− 1) + λ

N∑
`=1

1{z`(t)=r} + (1− λ)n̄tr(t− 1) + λ

M∑
`=1

1{x`(t)=r}

− (1− λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

= (1− λ)(n̄cr(t− 1) + n̄tr(t− 1)− w̄t
r(t− 1)) + λ(nr(x(t), z(t))− 1{xj(t)=r}), (11a)

n̄tr(t)− w̄t
r,j(t) = (1− λ)n̄tr(t− 1) + λ

M∑
`=1

1{x`(t)=r} − (1− λ)w̄t
r,j(t− 1)− λ1{xj(t)=r}

= (1− λ)(n̄tr(t− 1)− w̄t
r,j(t− 1)) + λ(mr(x(t))− 1{xj(t)=r}). (11b)
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when using the joint strategy fictitious play in Algorithm 1.
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Fig. 4. Number of the vehicles and the average velocity in each time
interval for the case where the drivers neglect the congestion
in their decision making (blue) and for the case where they
implement the learned Nash equilibrium (red).

5.1 Joint Strategy Fictitious Play

Let us start by considering the joint strategy fictitious play
in Algorithm 1 with parameters β = 10−3, p = 0.4, and
λt = 3 × 10−2 for all t ∈ N0. Figure 2 shows the number
of vehicles in each interval versus the iteration number.
Considering the fact that there are |R|N+M ' 109100

various action combinations 4 in this example, the learning
algorithm converges to a pure Nash equilibrium relatively
fast in terms of the number of the iterations. Figure 3
shows the number of trucks in each interval as a function of

4 To put this number into perspective, recall that there are only
around 1080 atoms in the visible universe.
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Fig. 5. Number of the trucks in each time interval for various choices
of the coefficient β.

the iteration number. As we can clearly see, at the learned
equilibrium, thirty trucks use the same time interval to
commute together. Figure 4 shows the number of the
vehicles and the corresponding average velocity in each
time interval. The blue color illustrates the case where the
drivers do not consider the congestion in their decision
making; i.e., zi = T c

i for all i ∈ JNK and xj = T t
j for all

j ∈ JMK. The red color denotes the case where the drivers
implement the learned pure strategy Nash equilibrium.
Evidently, the proposed congestion game increases the
worse-case average velocity of the traffic flow by 12%.

5.2 Effect of the Fuel-Saving Coefficient

Here, we demonstrate the effect of the fuel-saving coef-
ficient β on the behavior of trucks. We perform all the
simulations using the joint strategy fictitious play with
p = 0.4 and λt = 3×10−2 for all t ∈ N0. Figure 5 illustrates
the number of trucks in each time interval at the learned
equilibrium for various choices of β. As we expect, when
β = 0, the trucks are reluctant to commute at the same
interval. However, as we increase the coefficient β, a higher
number of trucks stick together. For β = 4 × 10−3, all
hundred trucks commute during one time interval.

5.3 Robustness of the Joint Strategy Fictitious Play

Let us consider a scenario in which at iteration t = 50, an
unexpected problem, like an accident, drastically decreases
the average velocity during 7:15am-8:00am. To model this
phenomenon, we assume that at t = 50, the average
velocity is given by (anr(x(t), z(t)) + b)/10 at r = 2, 3, 4.
Figure 6 shows the number of the vehicles in each interval
versus the iteration number. Note that the number of the
vehicles that use r = 2, 3, 4 suddenly decreases after the
disruption for a short while but the learning algorithm
recovers fairly fast.
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Fig. 6. nr(x(t), z(t)), r ∈ R, versus the iteration number when an
unexpected behavior (e.g., an accident) disrupt the traffic flow
on the fiftieth iteration.
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10−3 and v0 = 85 when using the average strategy fictitious
play in Algorithm 2.

5.4 Average Strategy Fictitious Play

In this subsection, we use the average strategy fictitious
play in Algorithm 2 with β = 10−3, λ = 3 × 10−2,
and p = 0.4. We also implement the platooning subsidy
in (7) with v0 = 85. Figure 7 illustrates nr(x(t), z(t)), r ∈
R, versus the iteration number. The proposed algorithm
clearly converges to a Nash equilibrium relatively fast.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an atomic congestion game
with two types of agents to model the traffic flow on a
road at certain time intervals. The first type of agents
(cars) optimized its utility that was composed of a penalty
for deviating from its preferred time interval, the average
velocity of the traffic at the time of using the road, and
the congestion tax (or subsidy). However, in addition
to the aforementioned terms, the utility of the second
type of agents (trucks) contained a term for modeling
the potential platooning incentives (because of using the
road at the same time as their peers). We showed that
the introduced congestion game cannot be potential game
unless we devise an appropriate congestion taxing policy.
We used joint strategy fictitious play and average strategy
fictitious play to learn a pure strategy Nash equilibrium
of the introduced congestion game. Finally, we illustrated

the results on a numerical example. As a future work, we
can study the price of anarchy (or the price of stability) to
study the inefficiency of the acquired pure strategy Nash
equilibrium.

ACKNOWLEDGEMENT

The authors would like to thank Wilco Burghout for
kindly providing the traffic data from the E4 highway in
Stockholm. The authors would also like to thank Lihua
Xie and Nan Xiao for initial discussions on the problem
considered in this paper.

REFERENCES

Alam, A., Gattami, A., and Johansson, K.H. (2010).
An experimental study on the fuel reduction potential
of heavy duty vehicle platooning. In Proceedings of
the 13th International IEEE Conference on Intelligent
Transportation Systems, 306–311.

Christodoulou, G. and Koutsoupias, E. (2005). The price
of anarchy of finite congestion games. In Proceedings
of the 37th Annual ACM Symposium on Theory of
Computing, 67–73. ACM.

Correa, J., Schulz, A., and Stier-Moses, N. (2005). On
the inefficiency of equilibria in congestion games. Inte-
ger Programming and Combinatorial Optimization, 171–
177.

Farokhi, F. and Johansson, K.H. (2013). A game-theoretic
framework for studying truck platooning incentives. In
Proceedings of the 16th International IEEE Conference
on Intelligent Transportation Systems, 1253–1260.

Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., and
Skeie, R. (2008). Climate forcing from the transport sec-
tors. Proceedings of the National Academy of Sciences,
105(2), 454–458.

Gibbons, R. (1992). Game Theory for Applied Economists.
Princeton University Press.

Jackson, M.O. (2003). Mechanism theory. In U. Derigs
(ed.), Optimization and Operations Research, Encyclo-
pedia of Life Support Systems. EOLSS Publishers, Ox-
ford, UK.

Levinson, D. (2005). Micro-foundations of congestion and
pricing: A game theory perspective. Transportation
Research Part A: Policy and Practice, 39(7–9), 691–704.

Marden, J.R., Arslan, G., and Shamma, J.S. (2009). Joint
strategy fictitious play with inertia for potential games.
IEEE Transactions on Automatic Control, 54(2), 208–
220.

Mitra, D. and Mazumdar, A. (2007). Pollution control by
reduction of drag on cars and buses through platooning.
International Journal of Environment and Pollution,
30(1), 90–96.

Monderer, D. and Shapley, L. (1996). Potential games.
Games and Economic Behavior, 14(1), 124–143.

Rosenthal, R.W. (1973a). The network equilibrium prob-
lem in integers. Networks, 3(1), 53–59.

Rosenthal, R.W. (1973b). A class of games possessing
pure-strategy Nash equilibria. International Journal of
Game Theory, 2(1), 65–67.

Roughgarden, T. (2007). Routing games. In N. Nisan,
T. Roughgarden, E. Tardos, and V.V. Vazirani (eds.),
Algorithmic game theory. Cambridge University Press.

Schmeidler, D. (1973). Equilibrium points of nonatomic
games. Journal of Statistical Physics, 7(4), 295–300.

Xiao, N., Wang, X., Wongpiromsarn, T., You, K., Xie,
L., Frazzoli, E., and Rus, D. (2013). Average strategy
fictitious play with application to road pricing. In
Proceedings of the American Control Conference, 1923–
1928.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4177


