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Abstract: This paper is a preliminary study that deals with time-optimal control of a batch
membrane diafiltration processes where fouling of the equipped membrane is pronounced. We
account for the membrane fouling by its dynamic model where the pore blocking mechanism
applies. It is assumed that due to the deposit of foulants, the radius of membrane pores decreases
and the part of membrane surface becomes unavailable for the filtration. We apply Pontryagin’s
minimum principle to solve the time-optimal control problem in an analytical fashion. It is
found that the analytical approach enables to fix the control structure into sequence of arcs. It
is further shown that once the sequence of control arcs is fixed, the optimal solution is determined
by identification of switching times between the control arcs using a simple numerical technique.
The method is demonstrated by its application to some of the most commonly used models of
diafiltration processes.

Keywords: diafiltration, optimal control, limiting flux, Pontryagin’s minimum principle,
membrane fouling, pore blocking model

1. INTRODUCTION

Diafiltration (DF) is a unique membrane process for sepa-
ration of two or more solutes in a solution. It found many
applications in pharmaceutical, chemical and biotechno-
logical industry (Jönsson and Träg̊ardh, 1990). The gov-
erning principle of separation is based on the molecular size
differences of the solutes which pass through the perm-
selective membrane with different rate. The process is
usually designed to increase the concentration of the valu-
able product (high molecular weight component, macro-
solute) and to decrease the concentration of impurities
(low molecular weight components, micro-solutes).

In this work, we study batch DF which operates under
constant pressure and temperature. The control of the
process is achieved via addition of a solute-free solvent
(diluant, normally water) into the system in order to
influence the solutes concentrations and to achieve the
desired separation degree. Several studies show that the
use of different diluant addition profiles may result in
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different operational savings (Foley, 1999). For example,
one can achieve time-optimal separation of the solutes.

There have been several works devoted for optimization
of diluant addition in DF process. These either optimize
the switching times between the arbitrarily predefined
operation modes, such as concentration (C) or constant-
volume diafiltration (CVD) modes (Foley, 1999), or more
sophisticated analytical and numerical approaches are ex-
ploited (Ng et al., 1976; Takači et al., 2009). Our recent
study (Paulen et al., 2012) showed application of Pon-
tryagin’s minimum principle to address the minimum time
problems of common DF processes in completely analytical
way. None of the DF optimization studies mentioned in
this paragraph neither other ones, present currently in the
literature, deal with the membrane fouling phenomena.

Aging of membrane by its fouling stands for one of the ma-
jor obstacles for wider application of membrane separation
technology in the industry. Due to the fouling, operational
expenditures rise as a consequence of membrane replace-
ment and (complete or partial) cleaning (Fane, 1997).
Nonetheless, the use of partially fouled membrane inhibits
the filtration due to the smaller effective membrane area
being available for filtered solution to penetrate. Conse-
quently, processing time increases in batch operations such
as batch DF. This study is motivated by the possibility of
running the batch plant time-optimally in the presence of
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Fig. 1. Schematic representation of a generalized diafiltra-
tion process.

fouling and thus achieving minimum fouling operation of
the batch.

In this work, we consider batch DF process where utilized
membrane provides perfect rejection of macro-solutes and
absolute permeability for micro-solute.We consider fouling
to be present due to the blocking of the membrane pores.
We employ the fouling model developed by Bolton et al.
(2006). The minimum time optimization problem is re-
solved via application of Pontryagin’s minimum principle.

The paper is organized as follows. We briefly explain the
DF process (Section 2), we define the studied optimal
control problem (Section 3), and we provide the definition
of the optimal operation (Section 4). Next, we apply
the results on two case studies from open literature and
we compare the obtained results with traditionally used
control approaches.

2. PROCESS DESCRIPTION

A schematic representation of a general batch DF process
is shown in Fig. 1. The filtered solution consists of solvent
and two solutes, macro-solute and micro-solute. The fil-
tered solution is brought to the membrane from the feed
tank. The membrane is designed to retain the macro-solute
and to allow the micro-solute to pass through. The perme-
ate, that leaves the system at flowrate q, is often found to
be a function of concentrations of both solutes and effective
membrane area. The retentate stream is taken back to the
feed tank. The process control is achieved by adjusting the
flowrate of diluant into the feed tank. The control variable
α is defined as a ratio between the inflow of diluant into
the feed tank and the outflow of the permeate q. There
are several types of control strategies which consist of
sequences of operation modes. These modes differ by the
rate of diluant utilization:

• concentration (C) mode when α = 0,
• variable-volume diafiltration (VVD) when α ∈ (0, 1),
• constant-volume diafiltration (CVD) when α = 1.
• instantaneous pure dilution (D) when α → ∞.

Optimality of arbitrarily preselected, traditional control
strategies is questionable. Here the goal is to identify the
optimal control strategy which does not necessarily result
in traditionally used combination of modes (e.g. C-CVD).

Considering membrane with perfect rejection to macro-
solute and absolute permeability to micro-solute, the mass

balance for each solute can be written as
dc1
dt

=
c21q

c1,0V0
(1− α), c1(0) = c1,0, (1)

dc2
dt

= −
c1c2q

c1,0V0
α, c2(0) = c2,0, (2)

where c1 and c2 represent the concentration of macro
and micro-solute, respectively, V0 stands for initial volume
of the processed solution, and q(c1, c2, A) denotes the
permeate flowrate such that

q(c1, c2, A) = AJ(c1, c2), (3)

where A represents an effective membrane area and J(·)
stands for the permeate flux subject to unit membrane
area and is generally a function of both concentrations.

In this work, we investigate the process where fouling
of the membrane occurs due to blocking of the mem-
brane pores. This phenomenon was previously reported
by Makardij et al. (1999) to be the main cause of fouling
in ultrafiltration of milk. Blockage of the membrane pores
affects the effective membrane area. We use a model sug-
gested and validated by Bolton et al. (2006) which reads
as follows

dA

dt
= −A0

Kb

q0
q = −

Kb

J0
AJ, A(0) = A0, (4)

where Kb represents the fouling rate and

q0 = q(c1,0, c2,0, A0) = A0J(c1,0, c2,0) = A0J0, (5)

with q0 and J0 being initial fluxes when effective mem-
brane area A0 is available.

3. PROCESS OPTIMIZATION

The objective of the optimization is to find such time-
dependent function α(t) which drives the process from ini-
tial to final concentrations in minimum time. The mathe-
matical formulation of this dynamic optimization problem
is as follows

min
α(t)

∫ tf

0

1 dt, (6a)

s.t.

dc1
dt

=
c21AJ

c1,0V0
(1 − α), c1(0) = c1,0, c1(tf) = c1,f, (6b)

dc2
dt

= −
c1c2AJ

c1,0V0
α, c2(0) = c2,0, c2(tf) = c2,f, (6c)

dA

dt
= −

Kb

J0
AJ, A(0) = A0, (6d)

α ∈ [0,∞). (6e)

This optimization problem can be solved using various
methods of dynamic optimization. As the process equa-
tions are affine in control, the optimal control profile might
exhibit discontinuous behavior with several arcs, input-
saturated and singular ones. Consequently, it is not ad-
visable to use numerical optimal control (hence arbitrary
control discretization) as the possibility of singular arc
might deteriorate the performance of such scheme and the
physical insight w.r.t. the truly optimal process might be
lost.

In case the optimization problem is treated by means of
numerical optimization, a suitable parametrization (piece–
wise polynomial approximation of control profile, in gen-
eral) has to be found out. Resulting problem of nonlinear
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programming (NLP) is then resolved having the knots of
control profile and the time intervals as optimized vari-
ables (Goh and Teo, 1988). In order to avoid these issues,
we make use of Pontryagin’s minimum principle (Pontrya-
gin et al., 1962; Bryson, Jr. and Ho, 1975) to solve the
problem (6) analytically. We can rearrange (6b)–(6d) as

ẋ = f(x) + g(x)α, (7)

where x = (c1, c2, A)
T . The Hamiltonian function can be

then written as

H(x, α,λ) = 1 + fT (x)λ+ gT (x)λα

= H0(x,λ) +Hα(x,λ)α, (8)

where λ = (λ1, λ2, λ3)
T is the vector of adjoint variables

which are defined from

λ̇ = −
∂H

∂x
= −(fx + gxα)λ, (9)

where

fx(x) =
∂fT (x)

∂x
, gx(x) =

∂gT (x)

∂x
. (10)

According to Pontryagin’s minimum principle the optimal
solution to (6) minimizes the Hamiltonian function. Since
Hamiltonian is affine in α, its minimum is attained with α
on its boundaries (bang-bang control) as

α =

{

0 if Hα > 0,

∞ if Hα < 0.
(11)

If Hα = 0 then the Hamiltonian is singular and does not
depend on α. We use the fact that condition Hα = 0
implies the derivatives of Hα w.r.t. time to be equal to
zero. Then we obtain a set of equations linear in λ

Hα(x,λ) = gTλ = 0, (12a)

Ḣα(x,λ) = hTλ = 0, (12b)

Ḧα(x,λ, α) = (hxf − fxh+ (hxg − gxh)α)λ = 0,
(12c)

where

h(x) = gxf − fxg, hx =
∂hT (x)

∂x
. (13)

We will also define

Ji =
∂J

∂ci
, Jij =

∂2J

∂ci∂cj
, i, j = 1, 2. (14)

4. OPTIMAL OPERATION

In this section, we state the main theoretical results and
we define the time-optimal operation of general batch DF
process.

4.1 Optimal Operation without Fouling

Let us first study the optimal operation in the case where
no fouling occurs, i.e. Kb = 0, λ3 = 0. Elimination of
adjoint variables from the conditions (12a) and (12b)
results in the expression for singular surface in the state
space

S(c1, c2) = det(g,h) = J + c1J1 + c2J2 = 0, (15)

and it depends on concentrations only. The corresponding
singular control that keeps the state on singular surface
can be found either by elimination of adjoint variables

from (12) or by differentiation of the singular surface (15)
w.r.t. to time

αsing(c1, c2) =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2

=
c1 (2J1 + c1J11 + c2J12)

∑2
j=1 cj

(

2Jj +
∑2

i=1 ciJij

) . (16)

The optimal operation consists of three arcs and it is
defined by

(1) The control in first step is step is found from

α =

{

0 if S(c1,0, c2,0) > 0,

∞ if S(c1,0, c2,0) < 0.
(17)

It is applied until the condition S(c1, c2) = 0 is met.
(2) In the second step, the state reside on the singular

surface with singular control from (16).
(3) The last step uses again either pure concentration

or dilution mode until the final concentrations are
reached.

The duration of the singular step is fully determined by
the last step and the final conditions on concentrations.
More details on these results can be found in our previous
study (Paulen et al., 2012).

4.2 Optimal Operation with Fouling

When fouling behavior occurs, Kb 6= 0, λ3 6= 0. Therefore,
it is no longer possible to obtain singular state surface from
the conditions (12a) and (12b).

However, the expression for the singular control can still
be derived by elimination of adjoint variables from (12).
This step uses

∣

∣

∣

∣

∣

∣

gT

hT

hxf − fxh+ (hxg − gxh)α

∣

∣

∣

∣

∣

∣

= 0, (18)

which gives

αsing(c1, c2, A) =
L1

L2
−

L3

L2
Kb, (19)

where

L1 =2c1c2J1J2 − c1c2J12J + 2c21J
2
1 − c21J11J, (20)

L2 =2c21J
2
1 + 2c22J

2
2 − c21J11J − c22J22J − 2c1c2J12J,

+ 4c1c2J1J2 (21)

L3 =
V0c1,0J

Ac1J0
(c1J1 + c2J2). (22)

It is straightforward to show that Kb = 0 and (15) reduce
this singular control to (16).

The optimal operation structure remains the same as in
the previous section, i.e. three steps with control on the
boundaries in the first and the last step. The middle
step is characterized by singular control. Note that the
control over all intervals of the three-step control strategy
is completely characterized by PMP. The difference to the
case without fouling is given by the fact that it is not
anymore possible to decide when to switch between the
individual phases. Therefore, we propose here to solve
a small NLP problem that provides the lengths (time
durations) of the first two control intervals. Such NLP
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is very easily solvable with only a few iterations and
converges without difficulties.

5. CASE STUDIES

We apply the theoretical results derived in above section
to study the optimal operation on two case studies. In
order to allow for a fair comparison of the results ob-
tained in both investigated case studies, we assume the
initial effective membrane area to be A0 = 1m2 and we
choose the values of Kb such that these become inversely
proportional to the amount of permeate processed for the
concentration of macro-solute relative to the initial volume
of the processed solution.

Γ = 1−
c1,0
c1,f

. (23)

5.1 Diafiltration at Limiting Flux

We consider a membrane plant which operates under lim-
iting flux conditions which is the common model in mem-
brane separation (Aimar and Field, 1992). The permeate
flux is given by

J(c1) = k ln
clim
c1

, (24)

where k is the mass transfer coefficient and clim represent
the limiting concentration for of macro-product. This
example was treated in Jelemenský et al. (2013) without
the pore blocking model. In this example we demonstrate
the time-optimal operation on the case when clim =
319mol/m3, k = 0.0172m/h. The goal is to process
100L of solution from initial point c1,0 = 10mol/m3,
c2,0 = 100mol/m3 to final point c1,f = 100mol/m3,
c2,f = 1mol/m3.

The initial and final concentrations determine the first and
the third step of the optimal control. In the first step
we use concentration mode (α = 0). NLP problem will
provide time interval length and optimal concentration
of the macro-solute to switch to singular surface. As the
last step is characterized by dilution mode (α → ∞), the
optimal concentration to switch from the singular arc is
fully determined from the final concentrations. The ratio
of the concentrations at time of the switch should be equal
the ratio of their final values. The optimal control in the
singular arc (19) has the following form

αsing(c1, A) = 1−
V0c1, 0
Ac1J0






1−

2

ln
c1
clim

+ 2






Kb. (25)

If there is no fouling (Kb = 0) then the singular control is
equal to one.

In Fig. 2 we show the time-optimal operation for different
values of fouling rate. The top figure plots state trajec-
tories. We start at initial concentrations of both solutes
(green circle) and finish at the red cross. The bottom figure
shows the corresponding optimal control. We can observe
that by increasing the value of fouling rate the processing
time is increased. This behavior was expected as increased
fouling decreases the effective membrane area.

Table 1 summarizes the comparison of final time in case of
minimum time and traditionally used operation for differ-
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Fig. 2. Concentration state diagram and optimal control
profiles for DF at limiting flux conditions with differ-
ent fouling rates.

Table 1. Time-optimal operation of DF under
limiting flux conditions compared with tradi-
tionally used operation with different values of

fouling rate.

Kb[10
−4 s−1] minimum time tf [h] C-CVD tf [h] ∆[%]

0Γ 4.32 4.35 0.61
0.3Γ 5.01 5.06 1.05
0.6Γ 6.02 6.14 2.05
0.9Γ 7.68 8.06 4.73

ent values of fouling rates. The traditionally used opera-
tion consists of concentration mode followed by constant-
volume diafiltration mode (C-CVD) where the switching
from C to CVD operation is performed at c1 = c1,f. We
can observe that in all cases the minimum time and tradi-
tionally used operation have similar final processing time,
however, the difference (∆) increases with the increase of
Kb. In this case we can conclude that for small values of
the fouling rate it is not necessary to use advanced control
strategy but instead we can use the traditional operation.

Further we can also compare the optimal operations from
Section 4.1 where model assumes no fouling. Clearly, this
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strategy would be suboptimal but has an advantage that
no NLP needs to be solved. We used the largest considered
fouling rate Kb = 0.9Γ. The final processing time is 7.79 h
whereas the optimal operation is 7.68 h (difference 1.41%).
It is questionable in this case whether the optimal fouling
control will be justified.

5.2 Separation of Lactose from Proteins

Here we consider the separation of lactose (with concen-
tration c2) from proteins (with concentration c1). This
problem was originally formulated in Rajagopalan and
Cheryan (1991) where model of the permeate flux was
obtained experimentally to be

J(c1, c2) = b0 + b1 ln c1 + b2 ln c2
= 63.42− 12.439 ln c1 − 7.836 ln c2. (26)

The goal is to process 100 dL of solution in order to
increase the concentration c1 from c1,0 = 3.3 g/dL to c1,f =
9.04 g/dL and to simultaneously decrease the concentra-
tion of lactose from c2,0 = 5.5 g/dL to c2,f = 0.64 g/dL.
Similarly to the first case study, the initial and final con-
centrations determine the first and the third step of the
optimal control to be concentration (α = 0) and dilution
mode (α → ∞), respectively. Using (19) the control on
singular surface is found to be

αsing(c1, c2, A) =
b1

b1 + b2
−

V0c1,0J

Ac1J0(2b1 + 2b2 + J)
Kb.

(27)
Hence that this boils down to simple VVD operation when
Kb = 0. The switching times to commence and to end the
singular control are again determined by the resolution of
a simple NLP.

In Fig. 3, we show the optimal control strategies for
minimum time operation for different fouling rates (state
diagram in top figure, the respective control actions in
the bottom one). We can observe that the numerically de-
termined singular surface (evolution of the concentrations
under control (27)) is different for different values of block-
ing rate, so we can conclude that it depends significantly
on the value of Kb. Furthermore we can observe that the
increase of this value translates to longer processing time,
as expected.

It can also be observed that the singular control profiles
differ more significantly from any of the traditional op-
eration modes as compared to the profiles obtained in
previous case study. This observation is reflected and quan-
tified in Table 2 which shows the comparison of final times
for minimum time and C-CVD operations with different
values of fouling rate. We can observe that the increased

Table 2. Time-optimal operation of DF for
separation of lactose and proteins compared
with traditionally used operation with different

values of fouling rate.

Kb[10
−4 s−1] minimum time tf [h] C-CVD tf [h] ∆[%]

0Γ 4.49 4.74 5.31
0.3Γ 5.12 5.52 7.26
0.6Γ 6.04 6.81 11.24
0.9Γ 7.52 9.69 22.38
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Fig. 3. Concentration state diagram and optimal control
profiles for separation of lactose from proteins with
different fouling rates.

value of Kb pronounces the differences in obtained pro-
cessing times between minimum time and traditionally
used operation. In this case we can conclude that by using
advanced control strategy we can significantly reduce the
production costs. Moreover, we can claim that with the
increased complexity of the process model the differences
between traditional and optimal control strategies will be
amplified in terms of savings of processing time.

An interesting conclusions can be also made when the
effective membrane area at the end of batch, A(tf), is eval-
uated. This is always found to be larger after performing
the time-optimal control of the batch. As the value of
processing time is closely coupled to the effective mem-
brane area, this phenomenon can be expected. In Fig. 4,
we represent the evolution of effective membrane area in 7
consecutive batches under minimum time and traditional
(C-CVD) control where Kb = 0.6Γ× 10−4 s−1. We assume
the cleaning of the membrane to be done after each batch
and the efficiency of the cleaning to be 95% w.r.t. to the
effective area being available at the beginning of the batch
(taken from (Zhang and Liu, 2002)). We assume that the
membrane life-cycle is 7 batches and the cleaning costs are
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Fig. 4. Reduction of membrane area due to fouling during
7 batches for separation of lactose from proteins.

proportional to the level of fouling of the membrane. When
the costs for cleaning are evaluated over the life-cycle of the
membrane, we find the costs from cleaning the membrane
after performing minimum time operation to be reduced
by 27% in comparison with cleaning the membrane after
traditional used operation being performed. This reveals
additional advantages of using the time-optimal control
strategy.

As in the previous case study, we can compare the pro-
cessing time of the optimal operations from Section 4.1
where the model assumes no fouling. This strategy is found
to be suboptimal but the difference to the truly optimal
operation (given in Section 4.2) is rather small (1.8%) even
when the highest considered fouling rate (Kb = 0.9Γ ×
10−4 s−1) is considered. It is again questionable whether
the optimal fouling control will be justified. This result
has to be viewed in the light of the assumptions made for
the process model, relatively simple flux model structures,
and the sole mechanism of the membrane considered.

6. CONCLUSIONS

In this paper we studied the time-optimal control for diafil-
tration process in the presence of fouling. We formulated
the optimal control problem and we solved this problem for
the general batch DF plant using Pontryagin’s minimum
principle. The sequence of controls arcs was firstly deter-
mined and the simple numerical procedure was proposed
for finding the switching times between the arcs.

We demonstrated the developed theory on two case studies
where we compared the minimum time strategy with the
traditionally used ones. The obtained results indicate that
the traditional operation is sufficient with lower fouling
rates and simple flux models. On the other hand, once
fouling becomes a major issue or when the behavior of the
process gets more complex, advanced control strategy re-
duces the processing time, production costs, and cleaning
costs.

There are several fouling models described in the litera-
ture. This is a preliminary analysis based on a particular
one. Further work will be needed to obtain more general
results.
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