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Abstract: This paper investigates the optimal estimation problem for networked control
systems, where the control packets are randomly dropped without acknowledgement to the
estimator. Most existing results for this setup are concerned with the design of controller,
while the optimal estimation and its performance evaluation have not been fully studied. This
paper shows, unlike many other cases such as intermittent observations or TCP-like systems,
the system state follows a Gaussian mixture distribution with exponentially increasing terms.
The optimal estimation is obtained by Gaussian sum filtering, while the computation is time-
consuming. By constructing an auxiliary estimator, a fast and stable filtering algorithm is
proposed to improve computational efficiency.
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1. INTRODUCTION

In Networked Control Systems (NCSs), the information
among sensors, controllers, and actuators is exchanged via
networks. Due to various reasons, e.g., channel congestion,
delay, signal degradation, etc., packet loss may occur in the
information transmission. Usually, packet loss is modeled
as an i.i.d. Bernoulli process or a Markov chain. Obser-
vation packets lost in sensor-to-estimator (S/E) channel
are called intermittent observations, and packets of control
signal dropped in controller-to-actuator (C/A) channel are
named intermittent inputs. In addition, when intermittent
inputs occur, two different fundamental protocols, that is,
TCP-like and UDP-like, are introduced. TCP-like means
that there is an acknowledgement (ACK) that informs the
estimator whether the actuator has successfully received
input packets or not, see Fig. 1, while in UDP-like case
no acknowledgement (NACK) of reception is available to
estimator. In this paper we focus on the Bernoulli packet
loss case. To facilitate the problem formulation, we use
“the S/E case” to denote the case where packet loss oc-
curs in the S/E channel, and “the C/A(ACK) case” to
denote the case where control packets are dropped with
ACK, and “the S/E+C/A(ACK) case” to denote both.
Similar notions apply to no acknowledgement (NACK),
and related scenarios can be defined in a similar way.
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Fig. 1. NCSs with packet loss in C/A channel without
acknowledgement. The blocks P, S, E, C and A denote
the plant, sensor, estimator, controller and actuator,
respectively. The symbol

⊗

indicates that there is no
acknowledgement from actuator to estimator.

For the S/E case, in Sinopoli et al. (2004), it was pointed
out that for an unstable system there exists a critical
data arrival rate which determines the convergence of
expectation of error covariance. Thereafter, the case of
multiple packet dropouts was investigated in Sun et al.
(2008) by an innovation analysis approach. Smith and
Seiler (2003) developed a jump linear filter, which is
more effective than standard time-varying Kalman filter
(TVKF). The work on the Markov packet loss case can
be found in Huang and Dey (2007); You et al. (2011) and
the references therein. Although the estimation problems
have been thoroughly investigated for the S/E case, these
results cannot be applied directly to the C/A case.
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For the C/A(ACK) case, when the ACK is available to
estimator, the TVKF is still in effect for the optimal esti-
mation (Imer et al. (2006)). For the C/A(NACK) case, in
Schenato et al. (2007), the optimal control was investigat-
ed. It has been showed that without ACK the computation
of the optimal control requires a nonlinear optimization,
and the separation principle does not hold. While for the
estimation issue we concerns, due to no acknowledgment
from actuator to the estimator, the system can be viewed
as Markov jump system with unknown jump mode. It was
suggested in Costa et al. (2006) that the optimal filtering
requires solving a bank of Kalman filters and its compu-
tation is time-consuming. To address the computational
complexity, various suboptimal filtering algorithms and
schemes have been proposed. These suboptimal filtering al-
gorithms include the detection estimation (DE) algorithms
(Tugnait (1982)), the generalized pseudo Bayes (GPB)
algorithm (Jaffer and Gupta (1971)), and the interacting
multiple model (IMM) algorithm (Blom and Bar-Shalom
(1988)) and so on. As pointed out in Li and Bar-Shalom
(1993) their performance and stability are usually uncer-
tain and should be evaluated by Monte Carlo simulation
method. In Epstein et al. (2007), the system setup is
similar to that used in this paper. Epstein developed an
estimation scheme consisting of a state estimator and a
mode observer to recover the fate of control packet for the
C/A(NACK) case. This method was extended by Blind in
Blind and Allgower (2009) to solve the estimation prob-
lem for the S/E+C/A(NACK) case. While this scheme
requires some additional assumptions for the system and
control signals, the optimality of the estimation is not
always guaranteed. So far for the C/A(NACK) case, the
framework of the optimal filtering has been known, but due
to the complex structure of the optimal estimation, most
literatures focus on the suboptimal filtering algorithms.
Consequently, the analytic characterization of the optimal
estimation, to our knowledge, has rarely been presented,
and the stability of these suboptimal filtering algorithms
is usually uncertain.

In this paper, we aim at studying the optimal estimation
in NCSs for the C/A(NACK) case. Firstly we show that
without ACK the probability density functions (pdf) of
system state are presented as Gaussian mixture. Then
the optimal estimator is derived, but the computation is
time-consuming. By constructing an auxiliary estimator,
we develop a stable and efficient suboptimal filtering
algorithm.

The rest of the paper is organized as follows: In Section
2, system and problems are formulated. In Section 3,
the pdf and the optimal estimation of system state is
derived. Then a fast filtering algorithm is proposed in
Section 4. The stability of the proposed filtering algorithm
is investigated in Section 5. A numerical example is used
to illustrate the theoretical analysis in Section 6. The
conclusions are presented in Section 7.

Notations :

• Nx(µ, P ) denotes the Gaussian pdf of the random
variable x with mean µ and covariance P .

• P(·) denotes probability measure.
• p(·) and p(·|·) denote the pdf and the conditional pdf,
respectively.

•
x
E[·], and

x
cov(·) denote probability expectation and

covariance with respect to x, respectively.
• || · || denotes the 2-norm of a vector.
• (·)2 stands for the binary representation, e.g., (101)2 =
5.

2. SYSTEM SETUP

Consider the system,

xk+1 = Axk + γkBuk + ωk

yk = Cxk + υk
(1)

where xk ∈ R
n is the system state, uk ∈ R

q the control
input, and yk ∈ R

p the observation. ωk and υk are zero
mean Gaussian noise with covariance Q ≥ 0 and R > 0,
respectively. γk is an i.i.d. Bernoulli random sequence with
mean γ, which models the packet loss of the C/A channel.
That is, γk = 1 indicates that the control packet uk has
been successfully delivered to actuator, otherwise γk = 0.
The initial state x0 is assumed to be Gaussian with mean
x̄0 and covariance P0.

The system described in (1) without ACK is denoted by
SN , and the one with ACK is denoted by SA. The problem
of estimation for the S/E case has been addressed in
Sinopoli et al. (2004). Here we focus on the estimation for
the C/A(NACK) case. Thus we assume the S/E channel is
free of packet loss. Meanwhile, this paper does not involve
the design of control. Thus in Fig. 1 the arrow from E to C,
usually existing in the closed-loop system, is not presented
here. For the system (1) we make an assumption as follows.
Assumption 1. (A1) The pair (A,Q) is stabilizable, and the
pair (A,C) detectable.

Define the Information set as Ik , {yk, · · · , y1}, and

I0 , φ (empty set). In this paper, the optimality of the
estimation is according to the minimum mean square error
(MMSE) criterion. That is, the optimal estimation is the
one, denoted by x̂k|k, minimizing E[||xk − x̂k|k||

2]. It is
well known (Anderson and Moore (1979)) that the desired
optimal estimation x̂k|k is given by E[xk

∣

∣Ik]. Then denote

x̂k+1|k , E[xk+1

∣

∣Ik] as the state prediction. Denote Pk|k

and Pk+1|k as the estimation and prediction error covari-
ances, respectively. Let p(xk|Ik) and p(xk+1|Ik) stand for
the pdf of xk and xk+1 conditioned on Ik, respectively.

For system SA, the prediction error covariance and esti-
mation error covariance, denoted by Sk+1|k and Sk|k re-
spectively, can be calculated by standard Kalman filtering
as follows.

Sk+1|k = ASk|kA
T +Q (2)

Kk+1 = Sk+1|kC
T
(

CSk+1|kC
T +R

)−1
(3)

Sk+1|k+1 = (I −Kk+1C)Sk+1|k(I −Kk+1C)T

+Kk+1RKT
k+1 (4)

with initial condition S0|0 = P0. It is known (Anderson
and Moore (1979)) that under the Assumption (A1), Sk|k

converges.

The aims of this paper are to, for system SN ,

• Find out the pdf of system state and obtain the
optimal estimation;

• Develop a stable and efficient filtering algorithm;
• Analyze the impact of packet loss on estimation.
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Preliminaries:

Let X and b be Gaussian random variables with pdfs
NX(m,P ) and Nb(0,W ), respectively. Let Y = CX + b
where C is a constant matrix. Then

p(Y ) = NY (Cm,CPCT +W ) (5)

p(X |Y ) = NX(m+K(y − Cm), (I −KC)P ) (6)

where K = PCT (CPCT +W )−1.

3. OPTIMAL ESTIMATION OF SYSTEM STATE

In this section, we derive the pdf of xk, that is, p(xk|Ik−1)
and p(xk|Ik), then compute the optimal estimation.

We firstly introduce the presentation of the random events
and its properties. For the packet loss random variable
sequence {γk, . . . , γ0}, an event takes the following form
{γk = θk, . . . , γ0 = θ0} where θj ∈ {0, 1} for 0 ≤ j ≤
k. The probability space denoted by Γk contains 2k+1

possible such events. For each binary-valued sequence
θk , (θk · · · θ0) there is associated with an unique integer

i determined by i = ρ(θk) , (θk · · · θ0)2 + 1. It is easy to
check that the mapping ρ is a bijection. Hence the event
can also be denoted by

Θi
k , {γk = θk, . . . , γ0 = θ0|i = ρ(θk)}, 1 ≤ i ≤ 2k+1.

An useful property of Θi
k+1 is that for 1 ≤ i ≤ 2k+1,

Θi
k+1={γk+1=0,Θi

k} and Θi+2
k+1

k+1
={γk+1=1,Θi

k} (7)

The equation (7) can be checked by using the knowledge
of binary representation.

3.1 Probability density function of xk

By using total probability law, we have

p(xk|Ik−1) =
∑2

k

i=1
p(xk|Θi

k−1, Ik−1)p(Θ
i
k−1|Ik−1) (8a)

p(xk|Ik) =
∑2

k

i=1
p(xk|Θi

k−1, Ik)p(Θ
i
k−1|Ik). (8b)

For each possible event Θi
k, all the four conditional pdfs

in (8) are computed in the following two lemmas.

Lemma 1. The conditional pdfs of xk in (8) are computed
as follows: For 1 ≤ i ≤ 2k,

p(xk|Θ
i
k−1, Ik−1) = Nxk

(mi
k|k−1, Sk|k−1) (9a)

p(xk|Θ
i
k−1, Ik) = Nxk

(mi
k|k, Sk|k) (9b)

with initial condition m1
0|0 = x̄0, where mi

k|k−1
and mi

k|k

evolve as (12). Sk|k−1 and Sk|k are calculated by (2)-(4).

Proof. The proof is to be completed by mathematical
induction. For k=1, it is easy to check that (9) and (12)
hold. Then we suppose that (9) and (12) hold for 1, . . . , k,
and check the case for k+1 with 1 ≤ i ≤ 2k+1. By this
assumption we have p(xk|Θi

k−1, Ik) = Nxk
(mi

k|k, Sk|k),

First consider the case 1 ≤ i ≤ 2k, by (7), we have
Θi

k = {γk = 0,Θi
k−1

}. By using (5),

p(xk+1|Θ
i
k, Ik) = p(Axk + γkuk + ωk|γk = 0,Θi

k−1, Ik)

= Nxk+1
(Ami

k|k, ASk|kA
T +Q)

= Nxk+1
(mi

k+1|k, Sk+1|k).

When yk+1 is observed, by using (6), we have

p(xk+1|Θ
i
k, Ik+1)

= Nxk+1

(

mi
k+1|k +Kk+1(yk+1 − Cmi

k+1|k), Sk+1|k+1

)

= Nxk+1
(mi

k+1|k+1, Sk+1|k+1).

Therefore (9) and (12) hold for k + 1 when 1 ≤ i ≤ 2k.
For 2k+1 ≤ i ≤ 2k+1, corresponding to the case without
packet loss, by following a similar line, (9) and (12) can
be proved to be true as well, and thus the derivation is
omitted here for brevity. This completes the proof.

Lemma 2. Let αi
k|k−1

, p(Θi
k−1|Ik−1) and αi

k|k ,

p(Θi
k−1|Ik), for 1 ≤ i ≤ 2k. Then αi

k|k−1
and αi

k|k evolve

as (11) with initial condition α1
0|0 = 1.

Proof. We prove this lemma by mathematical induction.
It is easy to check that (11) holds at k = 1. Suppose that
(11) holds for 1, . . . , k. Then we check the condition for
k + 1 with 1 ≤ i ≤ 2k+1.

First, let 1 ≤ i ≤ 2k, by (7), αi
k+1|k = p(Θi

k|Ik) = p(γk =

0,Θi
k−1|Ik) = γ̄αi

k|k. When 2k+1≤ i≤ 2k+1, by the same

derivation, αi
k+1|k = γαi−2

k

k|k . Hence (11a) holds for k + 1.

We check (11b) for k + 1. By Lemma 1, p(xk+1|Θi
k, Ik) =

Nxk+1
(mi

k+1|k, Sk+1|k). By using (6), p(yk+1|Θi
k, Ik) =

Nyk+1
(Cmi

k+1|k, S
Y
k+1

) = φi
k(yk+1). Then by using Bayesian

formula again,

αi
k+1|k+1 , p(Θi

k|Ik+1) = p(Θi
k|yk+1, Ik)

=
p(yk+1|Θi

k, Ik)p(Θ
i
k|Ik)

∑2
k+1

j=1
p(yk+1|Θ

j
k, Ik)p(Θ

j
k|Ik)

=
φi
k(yk+1)α

i
k+1|k

∑2
k+1

j=1
φj
k(yk+1)α

j

k+1|k

.

Therefore (11) holds for k+1. This completes the proof.

Theorem 3. For the system SN with i.i.d Bernoulli packet
loss in the C/A channel, p(xk|Ik−1) and p(xk|Ik) are
Gaussian mixture, that is, for k ≥ 1

p(xk|Ik−1) =
∑2

k

i=1
αi
k|k−1

Nxk
(mi

k|k−1
, Sk|k−1) (10a)

p(xk|Ik) =
∑2

k

i=1
αi
k|kNxk

(mi
k|k, Sk|k) (10b)

where

αi
k|k−1 =

{

γ̄αi
k−1|k−1

, for 1 ≤ i ≤ 2k−1

γαi−2
k−1

k−1|k−1
, for 2k−1+1 ≤ i ≤ 2k

(11a)

αi
k|k =

φi
k−1(yk)α

i
k|k−1

∑2k

j=1
φj
k−1

(yk)α
j

k|k−1

(11b)

and

mi
k|k−1 =

{

Ami
k−1|k−1

, for 1 ≤ i ≤ 2k−1

Ami−2
k−1

k−1|k−1
+Buk−1, for 2k−1+1 ≤ i ≤ 2k

(12a)

mi
k|k = mi

k|k−1 +Kk(yk − Cmi
k|k−1) (12b)

with initial condition, α1
0|0 = 1 and m1

0|0 = x̄0, where

φi
k−1

(yk) , p(yk|Θi
k−1

, Ik−1) = Nyk
(Cmi

k|k−1
, SY

k ), SY
k ,

CSk|k−1C
T + R, γ̄ , 1 − γ. Sk|k−1, Kk and Sk|k are

calculated by (2)-(4).

Proof. Based on (8) and the conditional pdfs of xk

derived in Lemma 1 and 2, the proof is straightforward.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5019



Remark 1. Unlike the cases of S/E or C/A(ACK) in
Schenato et al. (2007) where the pdf of xk is Gaussian,
the pdf of xk is Gaussian mixture with exponentially
increasing terms for the C/A(NACK) case. Moveover for
each term in the Gaussian mixture the covariance is
the same and is equal to Sk|k, which is the estimation
covariance of the system SA and can be determined off-
line.

3.2 Optimal estimation

Since p(xk|Ik−1) and p(xk|Ik) are Gaussian mixture pdfs,
the optimal estimation of xk can be directly calculated by
Gaussian sum filter (Anderson and Moore (1979)), and is
formulated as follows:

x̂k|k =
∑2

k

i=1
αi
k|km

i
k|k (13a)

Pk|k = Sk|k +
∑2

k

i=1
αi
k|k(m

i
k|k − x̂k|k)

2
I (13b)

x̂k+1|k =
∑2

(k+1)

i=1
αi
k+1|km

i
k+1|k (13c)

Pk+1|k = Sk+1|k+
∑2

(k+1)

i=1
αi
k+1|k(m

i
k+1|k−x̂k+1|k)

2
I .

(13d)

By some algebraic computations, time update formulas of
the estimator take the form as follow:

x̂k+1|k = Ax̂k|k + γuk (14)

Pk+1|k = APk|kA
T +Q + γ̄γBuku

T
kB

T . (15)

Remark 2. Due to the complexity of coupled coefficients
in (11b), x̂k|k and Pk|k cannot be derived from x̂k|k−1

and Pk|k−1 recursively, and must be computed by (13a)
and (13b), which results in a requirement of exponentially
increasing memory and time. To address this problem, a
fast filtering is proposed in the next section.

4. FAST FILTERING ALGORITHM

In this section, we develop a fast filtering algorithm by
constructing an auxiliary estimator.

4.1 Construction of auxiliary estimator

Based on the (8), an auxiliary system state, denoted by
x̃k, is defined by assuming that it has the following pdfs,

p(x̃k|Ik−1) ,
∑2

k

i=1
p(x̃k|Θi

k−1, Ik−1)p(Θ
i
k−1) (16a)

p(x̃k|Ik) ,
∑2

k

i=1
p(x̃k|Θi

k−1, Ik)p(Θ
i
k−1). (16b)

where p(x̃k|Θi
k−1

, Ik−1) and p(x̃k|Θi
k−1

, Ik) are the same

functions as p(xk|Θ
i
k−1, Ik−1) and p(xk|Θ

i
k−1, Ik) in (8)

respectively, just by replacing the symbol xk with x̃k.

It is necessary to point out that p(x̃k|Ik) and p(x̃k+1|Ik)
defined above are indeed pdfs. They satisfy two conditions:
p(x) ≥ 0 and

∫∞

−∞ p(x)dx = 1, which are easy to verify and
are not presented here.

To compute the estimation of x̃k, its pdfs are required and
are formulated in following lemma.

Lemma 4. p(x̃k|Ik−1) and p(x̃k|Ik) defined in (16) can be
presented as follows:

p(x̃k|Ik−1) =
∑2

k

i=1
α̃i
k|k−1

Nx̃k
(mi

k|k−1
, Sk|k−1) (17a)

p(x̃k|Ik) =
∑2

k

i=1
α̃i
k|kNx̃k

(mi
k|k, Sk|k) (17b)

where

α̃i
k|k−1 =

{

γ̄α̃i
k−1|k−1

, for 1 ≤ i ≤ 2k−1

γα̃i−2
k−1

k−1|k−1
, for 2k−1+1 ≤ i ≤ 2k

(18a)

α̃i
k|k = α̃i

k|k−1, for 1 ≤ i ≤ 2k (18b)

with initial condition α̃1
0|0 = 1. mi

k|k−1
and mi

k|k evolve in

the same way as (12).

Proof. Since p(x̃k|Θi
k−1

, Ik−1) and p(x̃k|Θi
k−1

, Ik) are the

same functions as p(xk|Θi
k−1

, Ik−1) and p(xk|Θi
k−1

, Ik),
respectively. By Lemma 1, we readily have

p(x̃k|Θ
i
k−1, Ik−1) = Nx̃k

(mi
k|k−1, Sk|k−1)

p(x̃k|Θ
i
k−1, Ik) = Nx̃k

(mi
k|k, Sk|k)

where mi
k|k−1

and mi
k|k evolve in the same way as (12).

Next define p(Θi
k−1) in (16a) as α̃i

k|k−1
, and p(Θi

k−1) in

(16b) as α̃i
k|k. Since they are equal, α̃i

k|k = α̃i
k|k−1

is readily

obtained. Thus (18b) holds.

Then we check (18a). Let 1 ≤ i ≤ 2k−1, by (7), Θi
k−1 =

{γk−1 = 0,Θi
k−2}. α̃i

k|k−1
, p(Θi

k−1) = p(γk−1 =

0,Θi
k−2)=p(γk−1=0)p(Θi

k−2)= γ̄α̃i
k−1|k−1

. By the similar

derivation procedures, we get α̃i
k|k−1

= γα̃i−2
k−1

k−1|k−1
, for

2k−1+1 ≤ i ≤ 2k. It shows that (18a) holds.

The proof is completed.

The pdfs of x̃k remain to be Gaussian mixture, then the
estimator of x̃k can be computed by Gaussian sum filtering
as well.

x̃k|k =
∑2

k

i=1
α̃i
k|km

i
k|k (19a)

P̃k|k = Sk|k + Ψ̃k|k (19b)

x̃k+1|k =
∑2

k+1

i=1
α̃i
k+1|km

i
k+1|k (19c)

P̃k+1|k = Sk+1|k + Ψ̃k+1|k, (19d)

where

Ψ̃k|k ,
∑2

k

i=1
α̃i
k|k(m

i
k|k − x̃k|k)

2
I (20)

Ψ̃k+1|k ,
∑2

k+1

i=1
α̃i
k+1|k(m

i
k+1|k − x̃k+1|k)

2
I . (21)

By some algebraic calculation it is easy to obtain the
following equations from (20) and (21),

Ψ̃k+1|k = AΨ̃k|kA
T + Uk (22)

Ψ̃k+1|k+1 = (I −Kk+1C) Ψ̃k+1|k (I −Kk+1C)
T
, (23)

where Uk , γ̄γBuku
T
kB

T and Ψ̃0|0 = 0.

4.2 Fast filtering Algorithm

Compared to xk, the estimator of x̃k still contains expo-
nentially increasing terms, but there are recursive formulas
for them as follows, which enables the estimator to be com-
puted recursively and avoid the exponentially increasing
computation.

For the system SN , a fast filtering algorithm (FF) is
formulated as a set of Kalman-filtering-like equations as
follows:

x̃k+1|k = Ax̃k|k + γBuk (24a)
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P̃k+1|k = AP̃k|kA
T + Uk +Q (24b)

x̃k+1|k+1 = x̃k+1|k +Kk+1(yk+1 − Cx̃k+1|k) (24c)

P̃k+1|k+1 = (I−Kk+1C)P̃k+1|k(I−Kk+1C)T

+Kk+1RKT
k+1. (24d)

The above equations can be obtained from (19) by some
algebraic computations, and thus the detailed derivation
is not included here due to page length consideration.

Remark 3. The pdfs of x̃k differs from xk only in (18b). It
is such a minor difference that brings the recursive form
(24c) and (24d) for x̃k and P̃k.

Remark 4. The equations in (24) appear to be the same
as the estimator for the UDP-like case in Schenato et al.
(2007). In fact they are quite different. In Schenato et al.
(2007) it might assume the pdf of p(xk+1|Ik) is Gaussian,
then the estimator is obtained by Kalman filter. Kk+1

is calculated by Pk+1|k, and Pk+1|k evolves in Riccati
equation. In this paper, (24) is derived from the auxiliary
system state x̃k by Gaussian sum filter, and the pdfs of
p(x̃k|Ik) and p(x̃k+1|Ik) are Gaussian mixture. Moreover,
in (24), Kk+1 is computed via Sk+1|k, not by Kk+1 =

P̃k+1|kC
T (CP̃k+1|kC

T +R)−1. Thus by substituting (24d)
into (24b), the obtained formula is not standard Riccati
equation.

5. STABILITY OF THE FAST FILTERING
ALGORITHM

As previously shown, the computation of optimal estima-
tion is time-consuming. In general, the stability of those
suboptimal filtering algorithms mentioned above is un-
certain. Hence in this section, we show that under some
condition the proposed FF algorithm is stable. Before
presenting this result, we introduce three Lemmas.

Lemma 5. Let L = CA, and define Φk
i , for 0 ≤ i ≤ k

Φk
i ,

(
∏k

j=i+1
(A−Kj+1L)

)

(I −Ki+1C), for i < k

Φk
k , (I −Kk+1C), for i = k,

(25)

where Ki is computed via Si|i−1 in (3). Then Ψ̃k|k in (23)
can be written as

Ψ̃k|k =
∑k−1

i=0
Φk−1

i Ui(Φ
k−1

i )T , (26)

with Ψ̃1|1 = Φ0
0U0(Φ

0
0)

T as initial values.

Proof. This lemma can be readily proved by mathemat-
ical induction, and the detailed process is not presented
here.

Lemma 6. Suppose that {uk} ∈ R
q are bounded, that is,

||uk|| ≤ u for all k. Then there exits a positive semidefinite
matrix, denoted by U such that uku

T
k ≤ U for all k.

Proof. The proof of this lemma is straightforward, then
is omitted.

Lemma 7. Let U be a positive semidefinite matrix. Then
there exits a positive semidefinite matrix, denoted by Sτ

such that
∑k

i=0
Φk

i U(Φk
i )

T ≤ Sτ for all k where Φk
i is

defined in Lemma 5.

Proof. By substituting (2) into (4),

Sk|k = (I−KkC)(ASk−1|k−1A
T+Q)(I−KkC)T+KkRKT

k .

By the same algebraic computation, Sk|k can formulated
in a closed expression as follows.

Sk|k =Φk−1
0 (AS0A

T )(Φk−1
0 )T +

∑k−1

i=0
Φk−1

i Q(Φk−1

i )T

+
∑k−1

i=1
Ωk

iKiRKT
i (Ω

k
i )

T +KkRKT
k , for k ≥ 2

where Ωk
i ,

∏k

j=i+1
(A − KjC). Note that all the four

terms in the preceding equation are positive semidefinite
matrices. Since Sk|k is convergent, then it is bounded, i.e.,

Sk|k ≤ S. Hence the second term
∑k−1

i=0
Φk−1

i Q(Φk−1

i )T ≤
S for all k. For a positive semidefinite matrix U , there
always exists a real number τ > 0 such that U ≤ τQ. Then
∑k−1

i=0
Φk−1

i U(Φk−1

i )T ≤
∑k−1

i=0
Φk−1

i τQ(Φk−1

i )T ≤ Sτ .

where Sτ , τS. The proof is completed.

Theorem 8. Consider the system SN with i.i.d Bernoulli
packet loss in C/A channel without acknowledgement and

assume that the control inputs are bounded. Then P̃k|k is
bounded if and only if Sk|k converges.

Proof. If Sk|k diverges, from (19b) Pk|k diverge as well.
So the necessary condition is obvious and we check for
the sufficient case. Firstly, consider the term Uk in Ψ̃k|k.
As assumed in Theorem 8 that uk is bounded, then by
Lemma 6, there exits a positive defined matrix U , such
that uku

T
k ≤ U . Since γ + γ̄ = 1, then γγ̄ ≤ 1/4. So

Uk ≤ BUBT

4
. As shown in (19d), P̃k|k is consist of Sk|k

and Ψ̃k|k.

P̃k|k = Sk|k +
∑k

i=1
Φk

i Ui(Φ
k
i )

T

≤ Sk|k +
∑k

i=1
Φk

i
BUBT

4
(Φk

i )
T

≤ Sk|k + Sτ (27)

The equation (27) is obtained due to the Lemma 7. Sk|k

is convergent and thus is bounded. Therefore P̃k|k is
bounded.

6. NUMERICAL EXAMPLE

In this section by a example, we compare the fast filtering
algorithm with the optimal one, verify the boundedness
of error covariance, and analyze the impact of packet loss.
Consider the system in (1) with following parameters,

A =
[

0.9 0.1
−0.1 0.8

]

, B =
[

−1
1

]

, C = [0 1] , Q =
[

1 0
0 2

]

, R = 1.

Firstly, the performance of the fast filtering and optimal
one are compared. We choose a bounded control inputs
with packet loss rate 0.2 in the C/A channel, and use the
trace of covariance to evaluate the performance. Subject
to exponentially increasing computation of the optimal
filtering, we run the simulation for 40 steps in a common
desktop computer with CPU frequency 2.3 GHz. A com-
parison of running efficiency and performance between the
optimal estimation and FF algorithm is listed in Table 1.

Table 1. Efficiency and performance of the
optimal estimation and the fast filtering

Filtering CPU time
Average of trace
of covariance

Optimal estimation 104 minutes 6.26

Fast filtering 2.54 seconds 6.87
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The simulation results are illustrated in Fig. 2 and 3. It is
shown that Sk|k ≤ Pk|k ≤ P̃k|k. The performance of fast
algorithm is a little bit inferior to the optimal one, but is
acceptable.
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Fig. 2. System state and the estimated states.
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Fig. 3. Trace of covariances: Sk|k, Pk|k, and P̃k|k

By fixing the input sequence and changing the packet
loss rate from 0 to 1, the performance under different
packet loss rate is illustrated in Fig. 4. The trace of
covariance increases along with packet loss rate, attains
a maximum when γ = 0.5, then descends when packet loss
rate increases from 0.5 to 1.
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Fig. 4. Relationship between trace of covariance and packet
loss rate

7. CONCLUSIONS

In this paper, we have studied the optimal estimation
problem for the C/A(NACK) case and developed a fast
filtering algorithm to improve computational efficiency.
Hence for the case where minor degradation of estimation
performance can be tolerated, the NACK setting together
with FF algorithm is a fairly good alternate. Not only
because it provides a stable and efficient filtering algorith-
m, but it brings some unique advantages such as simple
implementation, less energy consumption, less restrictions
on hardware, etc..
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