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Abstract: This paper develops a method for designing unity feedback systems where an
uncertain linear time-invariant (possibly distributed-parameter) plant is in cascade connection
with an uncertain backlash and a controller. The design problem considered is to determine a
robust controller so as to ensure that, despite plant uncertainties, the error and the controller
output stay within prescribed bounds for all time and for all inputs whose magnitude and whose
slope satisfy given bounding conditions. In essence, the backlash is replaced with a constant gain
and a bounded disturbance, thereby resulting in an auxiliary uncertain linear system. Then, by
applying the multi-valued version of the fixed-point theorem and the extended version of the
theory of majorants, we derive a practical condition in the form of inequalities that can be
solved in practice. Further we show that if such inequalities are satisfied for a chosen nominal
system, then the original design problem is solved. The usefulness of the method is illustrated
by a design example where the plant has a time-delay.

Keywords: Robust control, nonlinear systems, backlash, computer-aided control system design,
process control, theory of majorants.

1. INTRODUCTION

Backlash exists in many practical applications, and it has
long been known that it can severely limit system per-
formance. Moreover, the model of a backlash is often not
known accurately, and the plant often has uncertainties in
its parameters.

There are several ways to alleviate, or ideally eliminate,
undesirable effects of backlash on the performance of the
system. One among them is to design an adaptive con-
troller for the system (see, e.g., Tao and Kokotovic 1995).
However, this approach often results in a complicated con-
troller. An alternative way is to design a robust controller
where the uncertainty of the backlash is taken into account
(see, e.g., Barreiro and Baños 2006). The advantage of this
method is that although there may be a certain amount
of conservatism, the controller obtained (if exists) is much
simpler and easier to implement.

The purpose of this paper is to develop a computational
method for designing a robust controller for feedback
systems in which an uncertain backlash model and the
plant uncertainties are explicitly taken into account in
the design formulation. Moreover, in the formulation, all
inputs that can happen or are likely to happen in practice
are explicitly taken into account as a set of functions whose
magnitude and whose slope satisfy bounding conditions.

� This work was supported by the AUN/SEED-Net collaborative
research program.
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Specifically, the paper considers the feedback control sys-
tem displayed in Fig. 1, which is described by

u = gc ∗ e
e = f − us ∗ gp = f − ψ(u) ∗ gp, Gp(s) ∈ Gp

}
, (1)

where ψ is a backlash, gp : [0,∞) → R represents the
plant (which can be either lumped or distributed) and
has Laplace transform equal to Gp(s), gc : [0,∞) → R

represents the controller and has Laplace transform equal
toGc(s,p), and p ∈ R

n denotes a design parameter vector.
Assume that the plant has uncertainties such that Gp(s) is
known to belong to a set Gp. As usual, the asterisk denotes
the convolution; that is,

(gc ∗ e)(t) =
∫ t

0

gc(t− τ)e(τ)dτ, t ≥ 0. (2)

The backlash ψ(·) in the system (1) is described by the
uncertain band model (Barreiro and Baños 2006)

ψ(x) = Kx+ n(x)
n(x) = [−h, h] ∀x

}
, (3)

where K is a constant gain and n(·) denotes the interval
valued function mapping R to 2R (see Fig. 2). From the
above, it follows that for the backlash with bandwidth γ,

Gc(s,p) ψ(·) Gp(s) ∈ Gp

controller backlash plant

f + e u us y

−

Fig. 1. Uncertain feedback system with backlash
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||n(·)||∞ ≤ h where h = Kγ. (4)

Now assume that the input f is known only to the extent
that it belongs to a possible set P (defined as the set
of inputs that can or are likely to happen in practice).
For clarity, assume that the possible set P considered
throughout the paper is defined by

P � {f : R+→ R| ||f ||∞ ≤M, ||ḟ ||∞ ≤ D}, (5)

where the bounds M and D are given. However, it is
important to note that the method to be developed is
applicable to any possible set of bounded signals. For
different ways of characterizing the possible set and the
detailed discussion on this, see Zakian (2005); Silpsrikul
and Arunsawatwong (2010) and the references therein.

The design problem considered in the paper is to deter-
mine a design parameter p (or equivalently the controller
transfer function Gc(s,p)) such that the following design
criteria are satisfied:

sup
Gp∈Gp

ê ≤ Emax and sup
Gp∈Gp

û ≤ Umax, (6)

where the bounds Emax and Umax are given. The numbers
ê and û are sometimes called the peak error and the peak
controller output, respectively, for the possible set P and
defined by

ê � sup
f∈P

‖e‖∞ and û � sup
f∈P

‖u‖∞. (7)

Clearly, ê and û depend upon p and the plant Gp(s).

Note further that the criteria (6) are equivalent to

|e(t, f)| ≤ Emax, ∀f ∈ P ∀t ∈ R+ ∀Gp(s) ∈ Gp

|u(t, f)| ≤ Umax, ∀f ∈ P ∀t ∈ R+ ∀Gp(s) ∈ Gp

}
. (8)

Once (6) are satisfied, one can ensure that despite the
plant uncertainties, both |e(t, f)| and |u(t, f)| lie within
the respective bounds Emax and Umax for all time t and
for all inputs f ∈ P .

In connection with the criteria (6) or (8), note in passing
that the design criterion of the form

v̂ ≤ ε (v̂ � sup
f∈P

‖v‖∞), (9)

where v is a system’s response and ε is a given bound, cap-
tures accurately the real meaning of control and has been
used for monitoring the performance of control systems
in practice. Furthermore, it has long been investigated
by many researchers (see, e.g., Birch and Jackson 1959;
Zakian 1979, 1989, 1991, 1996, 2005; Silpsrikul and Arun-
sawatwong 2010 and the references therein). By applying
the approach used in Mai et al. (2011) (see also Mai 2010),
this work can be considered as the extension of Zakian’s
principle of matching (Zakian 1996, 2005) to the case of
nonlinear systems (1) in which the nonlinearity ψ(·) is the
uncertain backlash (3).

It should be noted that, the uncertain band model (3)
is useful in the sense that the backlash width does not
need to be known exactly (see Fig. 2). Hence, the work
presented here can be used to find a robust controller to
compensate the backlash effect which may not be known
accurately. In addition, the uncertain model can be used
to represent some other backlash models such as a friction-
driven hysteresis model (see Fig. 3).

γ
−γ

u

us

0

Fig. 2. The uncertainty model of backlash.

γ
−γ

u

us

0

Fig. 3. The friction-driven hysteresis model of backlash.

The key tools used in the paper are the multivalued version
of the fixed point theorem which is known as Kakutani’s
theorem (see, e.g., Barreiro and Baños 2006) and the
extended version of the theory of majorants (Zakian 1984,
2005; Mai 2010; Mai et al 2011). By decomposing the
backlash as a constant gain and a bounded disturbance
(Oldak et al. 1994), we obtain an auxiliary linear system
with uncertainties. Then, by applying the fixed-point the-
orem and the theory of majorants, we derive a practical
condition in the form of inequalities that can be solved
in practice. Further we show that if such inequalities are
satisfied for a chosen nominal system, then the original
design problem is solved.

The organization of the paper is as follows. Section 2
recapitulates the version of the theory of majorants that
was extended by Mai et al. (2011). Section 3 derives
the surrogate design criteria for (6), thereby providing
practical inequalities for designing the system (1) so that
the original criteria (6) are satisfied; this is indeed the main
contribution of the paper. Section 4 provides the stability
conditions for ensuring that the associated performance
measures are finite, so as to enable a numerical algorithm
to search for a design solution in the space of design
parameters. To illustrate the usefulness and the potential
of the developed method, a design example for a time-delay
plant is carried out in Section 5. Finally, the discussion and
conclusions are given.

2. THEORY OF MAJORANTS FOR UNCERTAIN
LINEAR SYSTEMS

The theory of majorants (Zakian 1983, 1984, 1996, 2005)
has been used for the design of robust control systems in
Taiwo (2005, 1986); Bada (1987). The theory have been
extended by Mai et al. (2011) (see also Mai (2010)) in
a straightforward manner to the case of uncertain linear
feedback systems with inputs f and d (see below). The
following summarizes the theory to be used in Section 3.

Consider the uncertain linear system that is described by
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G1(s) G2 ∈ G2

f + v1 v2

+−

d

+

Fig. 4. An uncertain linear system with two inputs.

G1(s) G∗
2(s)

f + v∗1 v∗2
+−

d

+

Fig. 5. The nominal system for the system (10).

v2 = v1 ∗ g1
v1 = f − g2 ∗ (d+ v2), G2(s) ∈ G2

}
, (10)

where G2(s) belongs to a set of plant transfer functions G2

(see Fig. 4). As before, the Laplace transforms of g1 and
g2 are G1(s) and G2(s), respectively. The inputs f and d
are assumed to belong to the sets P and D, respectively,
where

D � {d ∈ L∞|||d||∞ ≤ h}. (11)

Let the nominal system be obtained by replacing G2(s) in
the system (10) by a fixed transfer function G∗

2(s) = L[g∗2 ]
(see Fig. 5). Then, the nominal system is given by

v∗2 = v∗1 ∗ g1
v∗1 = f − g∗2 ∗ (d+ v∗2)

}
. (12)

Define the peak outputs for the systems (10) and (12) as
follows.

v̂i � sup
f∈P, d∈D

||vi||∞
v̂∗i � sup

f∈P, d∈D
||v∗i ||∞

⎫⎪⎬
⎪⎭ , i = 1, 2. (13)

In relation to the nominal system (12), the following
theorem provides useful sufficient conditions for ensuring

sup
G2∈G2

v̂i ≤ Vi (i = 1, 2), (14)

where the bounds V1 and V2 are given.

Theorem 1. (Mai et al. 2011). Consider the nominal sys-
tem (12). Let v∗i (1) be the waveform of v∗i in response to
f being the unit step function 1 and d = 0, and let v∗i (t,1)
be the value of v∗i (1) at time t. For a given G∗

2(s), let

z � g2 − g∗2 and define

μ̃i � A|σi|+B||v∗i (1)− σi||1, σi = lim
t→∞ v∗i (t,1), (15)

where
A = sup{||z||1 : G2 ∈ G2}
B = sup{|z(0)|+ ||ż||1 : G2 ∈ G2}

}
. (16)

Suppose that the system (12) is BIBO stable, and let
μ̃1 <∞ and μ̃2 < 1. The design criteria (14) are satisfied
if, for i = 1, 2,

φ̂i ≤ Vi, where φ̂i �
v̂∗i + μ̃ih

1− μ̃2
. (17)

Now let G1(s) = G1(s,p) be characterized by a design
parameter vector p. Zakian (1984, 1996, 2005) advocates
that in solving the inequalities (17) by numerical methods,
the numbers v∗i , σi and μ̃i have to be computed repeatedly

for different values of p. However, it is clear from (16) that
the numbers A and B do not depend on G1(s) and thus
need to be computed only once.

From the above, one can see for a chosen nominal transfer
function G∗

2(s), the condition (17) provides useful inequal-
ities for determining G1(s) by numerical methods so that
the criteria (14) are satisfied.

3. DESIGN OF UNCERTAIN NONLINEAR SYSTEM

This section develops the design criteria in the form of
inequalities that can be solved by numerical methods for
the uncertain nonlinear system (1) to satisfy (6). Indeed,
Theorems 2 and 3 are the main results of the paper.

Assumption 1. For every input f ∈ P, there exists at
least a solution (e, u) that satisfies (1), where e : R+ → R

and u : R+ → R. Assume that all initial conditions are
zero for t ≤ 0.

Assumption 2. Let the backlash ψ(·) be represented by
the uncertain band model (3).

By using the decomposition technique (Oldak et al. 1994),
the backlash is replaced by a constant gain and a bounded
disturbance as follows.

ψ(u) = Ku+ d, (18)

where d ∈ D and the set D is defined by

D � {d ∈ L∞| ||d||∞ ≤ h}. (19)

Thus, we obtain the auxiliary system displayed in Fig. 6
and described by

u′ = gc ∗ e′
e′ = f − gp ∗ [Ku′ + d], Gp(s) ∈ Gp

}
, (20)

where f ∈ P . Note that the replacement (18) is valid
when û is finite. See more details on this in Nguyen and
Arunsawatwong (2013).

Next, define the peak values of e′ and u′ for each Gp(s) ∈
Gp as follows.

ê′ � sup
f∈P, d∈D

||e′||∞, and û′ � sup
f∈P, d∈D

||u′||∞. (21)

In connection with the system (20), let g be the impulse
response of the transfer function from d to u′; that is,

G(s) � Gp(s)Gc(s,p)[1 +KGp(s)Gc(s,p)]
−1. (22)

Let A denote the set of the impulse responses of all BIBO
stable transfer functions, which has the form

g(t) =

⎧⎪⎨
⎪⎩
ga(t) +

∞∑
i=0

giδ(t− ti), t ≥ 0

0, t < 0

, (23)

where δ(·) denotes the Dirac delta function, 0 ≤ t0 < t1 <
t2... are constants,

∑∞
i=0 |gi| < ∞ and

∫∞
0 |ga(t)|dt < ∞.

See Desoer and Vidyasagar (1975) for more details on A.

Assumption 3. For G(s) defined by (22), the impulse
response g satisfies the conditions that g ∈ A and ġ ∈ A
for every Gp(s) ∈ Gp.

It is worth noting that, by virtue of the convolution rep-
resentation, Gp(s) can be either a lumped- or distributed-
parameter plant provided that Assumption 3 holds.
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Gc(s,p) K Gp(s) ∈ Gp

f + e′ u′

+

y′

−

d

+

Fig. 6. The auxiliary linear system for the system (1).

Gc(s,p) K G∗
p(s)

f + e∗ u∗

+

y∗

−

d

+

Fig. 7. The nominal system for the uncertain system (20).

The following theorem reveals that a design solution
associated with the auxiliary system (20) is also a solution
to the original design problem (6).

Theorem 2. Consider the system (1) where û < ∞.
Let Assumptions 1, 2 and 3 hold. The original design
criteria (6) are satisfied if, for the auxiliary system (20),
the following conditions hold:

sup
Gp∈Gp

ê′ ≤ Emax, sup
Gp∈Gp

û′ ≤ Umax. (24)

Proof By the application of Kakutani’s theorem (see, e.g.,
Barreiro and Baños 2006), the theorem follows. The detail
can be found in Nguyen’s (2014) thesis. �

From Theorem 2, it readily follows that a solution to the
inequalities (24), which is associated with the uncertain
linear system (20), is also a solution to the inequalities
(6). However, the inequalities (24) are not suitable for
solution by numerical methods because the computation
of supGp∈Gp

ê′ and supGp∈Gp
û′ is intractable. Therefore,

(24) will be replaced by readily computable inequalities to
be derived by using Theorem 1.

Consider the nominal system shown in Fig. 7 where f ∈
P , d ∈ D and G∗

p(s) denotes the nominal transfer function
for Gp(s) ∈ Gp.

Assume that the nominal system is BIBO stable. Conse-
quently, the following limits exist

σ1 � lim
t→∞ e∗(t,1), σ2 � lim

t→∞u∗(t,1), (25)

where e∗(t,1) and u∗(t,1) are the values of e∗ and u∗ at
the time t in response to the inputs f = 1(t) and d(t) = 0.
Define

μ̃1 � A|σ1|+B||e∗(1)− σ1||1
μ̃2 � A|σ2|+B||u∗(1)− σ2||1

}
, (26)

where
A = sup{||z||1 : Gp ∈ Gp, z = gp − g∗p}
B = sup{|z(0)|+ ||ż||1 : Gp ∈ Gp}.

}
. (27)

Let ê∗ and û∗ denote the peak values of e∗ and u∗ and be
given by

ê∗ � sup
f∈P, d∈D

||e∗||∞, û∗ � sup
f∈P, d∈D

||u∗||∞. (28)

Sufficient conditions for ensuring the satisfaction of the
inequalities (24) are stated below in terms of ê∗ and û∗.
Theorem 3. Consider the system (1) where û < ∞. Let
Assumptions 1, 2 and 3 hold. Assume that the nominal
system in Fig. 7 is BIBO stable and that μ̃1 and μ̃2 defined

in (26) are finite. The inequalities (24) for the auxiliary
system (20), and hence the criteria (6), are satisfied if
μ̃2 < 1 and if

φ̂e ≤ Emax, where φ̂e �
ê∗ + μ̃1h

1− μ̃2

φ̂u ≤ Umax, where φ̂u � û∗ + μ̃2h

K(1− μ̃2)

⎫⎪⎪⎬
⎪⎪⎭
. (29)

Proof By using Theorem 1, the theorem readily follows.
The detail can be found in Nguyen’s (2014) thesis. �

For the possible set P in (5), the formulae for computing

φ̂e and φ̂u are given in the following. Since ê∗ and û∗ are
the peak outputs of the nominal linear system, which has
no uncertainty, one can easily deduce by the principle of
superposition that

ê∗ = φef + h||e∗d(δ)||1, û∗ = φuf + h||u∗d(δ)||1, (30)

where e∗d(δ) and u∗d(δ) are the responses of e∗ and u∗,
respectively, subject to the inputs d(t) = δ(t) and f(t) = 0,
and

φef � sup
f∈P, d=0

||e∗||∞, φuf � sup
f∈P, d=0

||u∗||∞. (31)

It should be noted that φef and φuf can be computed by
using method developed in Silpsrikul and Arunsawatwong
(2010). Therefore, the peak values ê∗ and û∗ can be readily
obtained in practice.

From the above, it is easy to deduce that

φ̂e = (h||e∗d(δ))||1 + φef + hμ̃1)/(1− μ̃2)

φ̂u = (hK||u∗d(δ))||1 +Kφuf + hμ̃2)/K(1− μ̃2)

}
. (32)

Therefore, the design problem now becomes the problem
of determining a design parameter p satisfying

φ̂e(p) ≤ Emax

φ̂u(p) ≤ Umax

}
, subject to μ̃2(p) < 1. (33)

It should be noted that, if there is no pole-zero cancellation
between Gc(s,p) and G

∗
p(s), μ̃2(p) < 1 implies that μ̃1(p)

is finite.

From the above discussion, it is easy to see that φ̂e(p),

φ̂u(p) and μ̃i(p) can be readily computed in practice.
Thus, the inequalities (33) are to be used instead of (6)
and hence are called the surrogate design criteria.

4. STABILITY CONDITIONS

In solving the design inequalities (33) by numerical meth-
ods, a search algorithm needs to start from a stability point
(that is, a point p for which the associated performance

measures φ̂e and φ̂u are finite).

It is important to note that Theorems 2 and 3 require the
assumption that û is finite for all Gp(s) ∈ Gp in order
to guarantee the validation of the decomposition of ψ.
Hence, a stability condition that ensures the finiteness of
supGp∈Gp

ê and supGp∈Gp
û is needed.

The following reveals that the BIBO stability of the
auxiliary linear system (20) implies that of the original
nonlinear system (1).

Theorem 4. Consider the nonlinear system (1). Let As-
sumptions 1, 2 and 3 hold. Define the composite transfer
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function Ĝ(s) � Gc(s,p)Gp(s). For every Gp(s) ∈ Gp, let

Ĝ(s) be strictly proper and suppose that gc ∈ A where gc is
the impulse response of Gc(s,p). Then it follows that the
responses u and e are bounded for any f ∈ P.

Proof Note that Assumption 3 implies that the transfer
function G(s) = Gp(s)Gc(s,p)[1 + KGp(s)Gc(s,p)]

−1 is
BIBO stable for every Gp(s) ∈ Gp. Then by applying a
Lemma in Mai (2010) and Barreiro and Baños’s (2006)
result to the uncertain system (1), the theorem is obtained.
The detail can be found in Nguyen’s (2014) thesis. �

From Theorem 4, it readily follows that to ensure the
finiteness of supGp∈Gp

ê and supGp∈Gp
û for the system

(1), one needs to determine the controller Gc(s,p) that
makes the transfer function G(s) = Gp(s)Gc(s,p)[1 +
KGp(s)Gc(s,p)]

−1 BIBO stable for all Gp(s) ∈ Gp.

For retarded delay differential systems (which of course
includes rational systems), it is well known (see, e.g., Arun-
sawatwong (1996) and the references therein) that the sys-
tem (or alternatively its transfer function) is BIBO stable
if and only if all the characteristic roots (or alternatively
all the poles of the transfer function) have negative real
parts. Let f(s) be the characteristic function of a retarded
delay differential system. Let φ0 denote the abscissa of
stability of f(s) defined by

φ0 � sup{Re(s) : f(s) = 0}.
Then it follows that the system is BIBO stable if

φ0(p) ≤ −ε where 0 < ε
 1. (34)

It should be noted that the inequality (34) can be used in
practice to determine a value of p for which the system is
BIBO stable, by numerical methods. For further details,
see Zakian and Al-Naib (1973); Arunsawatwong (1994,
1996); Zakian (2005). In this work, the abscissa of stability
for retarded delay differential systems is computed by
using the method developed in Arunsawatwong (1994,
1996).

5. NUMERICAL EXAMPLE

In this section, we carry out a case study in process control
system where the plant has time delay.

As shown in Hägglund (2007); Choudhury et al. (2005),
in process control systems, wear (or erosion) leads to the
appearance of the backlash phenomenon in the linkage
mechanism in the positioner and actuator of valves. Ac-
cording to Hägglund (2007), it is reported that a backlash
of 10% increases the peak error at load disturbance with
50%. When the backlash becomes too large, the valve
needs to be replaced. However, replacing the valve cannot
be done without interrupting the process. For this and for
economical reasons, it may be better to take into account
the backlash phenomenon in the controller design process.

Consider an uncertain plant with time-delay whose trans-
fer function is described by

Gp(s) =
ae−0.2s

s2 + bs+ 2
, a ∈ [2.5, 3.5], b ∈ [2.9, 3.1]. (35)

The backlash is assumed to have a unity slope and its
bandwidth is only known to the extent that it is in the
interval (0,0.1]. Assume that the control objective is to

ensure that both |e(t, f)| and |u(t, f)| stay within the
respective bounds 0.2 and 10 for all time and for all inputs
f ∈ P where

M = 1 and D = 0.1. (36)

Accordingly, the design criteria are expressed as

φ̂0(p) ≤ −0.01, μ̃2(p) ≤ 0.5, φ̂e(p) ≤ 0.2, φ̂u(p) ≤ 10,
(37)

where

φ̂0 = sup{φ0 : a ∈ [2.5, 3.5], b ∈ [2.9, 3.1]}. (38)

From (32), one can see that if μ̃2(p) is close to 1, then the

values of φ̂e(p) and φ̂u(p) become very large. Therefore,
any p for which μ̃2(p) is close to 1 is not likely to yield a
design solution.

The nominal plant transfer function G∗
p(s) is chosen with

a = 3 and b = 3. (39)

According to Assumption 3 and Theorem 4, it is required
for every a ∈ [2.5, 3.5] and every b ∈ [2.9, 3.1] that G(s)
(see (22)) be strictly proper and BIBO stable and that the

composite transfer function Ĝ(s) be strictly proper. All
these requirements can be fulfilled for this example when
Gc(s,p) is chosen to be a proper transfer function.

In order to compute φ̂e and φ̂u, the impulse responses
of the system need to be computed repeatedly for many
different values of p (see Section 3). In this example, we
use the efficient and reliable algorithms described in Arun-
sawatwong (1998, 1994), which are based on Zakian IMN

approximations, to evaluate such responses. Furthermore,
the design inequalities are solved by using a numerical
search algorithm called the moving boundaries process
(MBP) (Zakian and Al-Naib 1973; Zakian 1996, 2005).

After exhaustive searches with first order controllers, no
solution was found. Thus, a second-order controller which
has the form

Gc(s,p) =
p1(s

2 + p2s+ p3)

s2 + p4s+ p5
(40)

is to be tried where p = [p1, p2, p3, p4, p5]
T ∈ R

5 is the
design parameter to be determined.

After a number of iterations, a design solution p is found
where

p = [6.770, 2.860, 1.901, 12.127, 0.010]T (41)

and the corresponding performance measures are

φ̂0(p) = −0.969, μ̃2(p) = 0.273,

φ̂e(p) = 0.199, φ̂u(p) = 1.191.
(42)

To verify the performance of the obtained controller, a

test input f̂ is generated randomly so that its magnitude
and its slope do not exceed the bounds given in (36).

The waveform of f̂ and the corresponding responses of the
system are shown in Fig. 8. The backlash model used in the
simulation is the friction-driven hysteresis model, which is
one particular case included in the uncertainty model (see
Barreiro and Baños 2006 ). To illustrate the uncertainty
of the backlash, sufficiently many different values of the
bandwidth of the backlash is used in the range (0, 0.1].
The simulation results clearly show that the error and
the controller output responses stay within the specified
bounds.
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Fig. 8. Simulation results with the controller (40) and
the backlash with sufficiently many different values
of bandwidth in the range (0, 0.1] and the parameters
a = 2.5(0.1)3.5, b = 2.90(0.02)3.10

6. DISCUSSION AND CONCLUSIONS

This paper has developed a practical method for designing
the feedback control system (1). The control objective is
to ensure that the error e and the controller output u stay
within the prescribed ranges ±Emax and ±Umax, respec-
tively, for all time and for all inputs f ∈ P in the pres-
ence of uncertainties appearing in both the backlash and
the plant models. The backlash is decomposed using the
technique due to Oldak et al. (1994). By using Kakutani’s
theorem (e.g., Barreiro and Baños 2006) in conjunction
with the extension of the theory of majorants in Mai
et al. (2011), the paper has developed computationally
tractable design inequalities (33) associated with a chosen
nominal system. Since the nominal system is linear and
has no uncertainty, the performance measures are readily
computed by known methods. The method developed in
this work is applicable to both lumped- and distributed-
parameter plants as long as Assumption 3 holds.

The method developed in the paper is applied to the design
of a robust controller for process control systems where
backlash characteristics appear in the linkage mechanism
in the actuator of valves. Taking the uncertain backlash
into account is an advantageous alternative solution since
replacing the valve in which the backlash becomes too
large is not feasible all the time, especially when the system
is in operation. The simulation results have illustrated the
usefulness of the proposed method.

It is interesting to note (Barreiro and Baños 2006) that,
unlike design methods based on a direct cancellation
that requires the backlash to be at the plant input, the
approach used in developing the design method in the
paper can be applied to the cases where the backlash is
at the output of the plant (see Mai et al. 2010).
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