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Abstract: This paper extends the equivalent-input-disturbance (EID) approach to deal with
the problem of aperiodic disturbance rejection for a plant with an input dead zone in a repetitive-
control system so as to improve control performance for the tracking of a periodic signal. Since
a dead zone greatly degrades control performance, we apply the EID approach to design a
compensator for the nonlinearity by treating it as an input-dependent disturbance. An EID
estimator is constructed by making the best use of a full-order generalized state observer (GSO).
And a method of designing the GSO is explained. The EID estimate, which exhibits the synthetic
effect of the nonlinearity and the aperiodic disturbance, is incorporated into a repetitive control
law to compensate for the nonlinearity and the aperiodic disturbance. This method does not
require any information about the dead zone. It guarantees perfect tracking for periodic reference
input and satisfactory compensation of input dead zone and aperiodic disturbance at the same
time. Simulation results demonstrate the effectiveness of this method.

Keywords: Dead zone, disturbance rejection, equivalent input disturbance (EID), generalized
state observer (GSO), pole placement, repetitive control.

1. INTRODUCTION

Repetitive control (RC) [Inoue et al., 1981] is a widely
used control approach that enables the perfect tracking of
a periodic reference input and/or the perfect rejection of
a periodic disturbance. The core of RC is the use of an
internal model of a periodic signal that simulates human
behavior of repetitive training with learning.

A dead zone is a common nonlinearity existed in an
actuator. It may seriously degrade control performance.
We can use an inverse model to directly compensate for
it [Recker et al., 1991]. However, it is not a easy task to
build a precise model. [Wang et al., 2004] used a sliding
mode to deal with a dead zone, but the chatter may
damage the plant or cause other problems. Intelligent
control methods, such as neural networks and adaptive
fuzzy control, have also been used to solve this problem
[Selmic & Lewis, 2000, Nishikawa & Yoneyama, 2010], but
they are computationally expensive.

The equivalent-input-disturbance (EID) approach is an ac-
tive disturbance rejection method [She et al., 2008, 2011].
It was extended to compensate for an unknown input dead
zone by treating the effect of a dead zone as a state-
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dependent disturbance [Ouyang et al., 2012]. This study
extends the above result to a repetitive-control system
(RCS) and presents a method of designing an EID-based
RCS that actively compensates for an input dead zone
and effectively rejects aperiodic disturbances. The design
of the system is divided into two parts: a conventional
state-feedback RCS and an EID compensator. A gener-
alized state observer (GSO) is employed in the design
of the EID estimator, and a pole-assignment method is
used to find the appropriate parameters of the GSO. The
introduction of a full-order GSO in the construction of the
EID estimator [Liu et al., 2013] increases the flexibility of
the EID-based RCS. The main advantages of this method
are

• No precise information on the structure or parameters
of the dead zone is needed.

• The structure of control system is simple and easy to
implement.

• The flexibility of the GSO provides us a potential to
achieve good control performance.

• The system compensates satisfactorily for the influ-
ence of a dead zone.

2. DESCRIPTION OF PLANT

Consider a continuous-time plant with an input dead zone
that is subjected to an aperiodic disturbance
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Fig. 1. Model of dead zone.{
ẋ(t) = Ax(t) + BD(u(t)) + Bddap(t),
y(t) = Cx(t), (1)

where x(t) ∈ Rn is the state of the plant; y(t) ∈ Rq is the
control output; D(u(t)) is the input dead zone (Fig. 1);
dap(t) is an aperiodic disturbance; and A, B, Bd, and C
are constant real matrices with appropriate dimensions.

The output of the dead zone is

up(t) = D(u(t)) =

{
u(t) − r+, u(t) > r+,

0, r− ≤ u(t) ≤ r+,
u(t) + r−, u(t) < r−.

(2)

We decompose it into
up(t) = u(t) + d(u(t)), (3)

where d(u(t)) can be viewed as an input-dependent dis-
turbance.

We make the following assumptions for the plant (1).
Assumption 1. The plant (A, B,C) is controllable and
observable.
Assumption 2. The plant (A,B,C) has no zeros on the
imaginary axis.
Assumption 3. The two parameters of the dead zone in
(2), r+ and r−, have an upper bound and are unknown.

Assumption 1 is standard for designing an observer-based
servo system. Assumption 2 is necessary to guarantee the
internal stability of a servo system. And Assumption 3
holds in many practical systems. Since it is hard to obtain
precise information on a dead zone, an inverse model is
difficult to be applied.

Since the control input, u(t), is determined by the state,
x(t), d(u(t)) in (3) can be viewed as a state-dependent
disturbance. According to [She et al., 2010, 2012], there
exists an EID whose effect on the output is equivalent
to the overall effect of d(u(t)) and dap(t). So, (1) can be
represented as a linear plant with an EID (Fig. 2){

ẋ(t) = Ax(t) + B[u(t) + de(t)],
y(t) = Cx(t). (4)

Formulating the problem of compensating for the dead
zone and rejecting an aperiodic disturbance as the problem
of rejecting an EID enables us to design an EID estimator
that automatically compensates for the influence of the
dead zone, and suppresses the disturbance at the same
time.

3. DESIGN OF EID-BASED RCS

This section considers three aspects of the EID-based RCS:
the configuration, the stability, and the design algorithm.

Fig. 2. Equivalent expressions for plant with input dead
zone and aperiodic disturbance: (a) original plant and
(b) plant with EID.

3.1 System Configuration

An EID-based RCS (Fig. 3) has five parts: the plant, a
repetitive controller, a state observer, state feedback, and
an EID estimator.

We use a repetitive controller to track a periodic reference
input. The repetitive controller contains a time delay, e−τs,
and a low-pass filter, qR(s). τ is the period of the reference
input. And qR(s) relaxes the stability condition of the
system. It is chosen to be

qR(s) =
ωr

s + ωr
, (5)

where ωr is the cutoff angular frequency of qR(s). The
state-space representation of the repetitive controller is

ẋf (t) = −ωrxf (t) + ωrxf (t − τ) + ωre(t). (6)

In the EID estimator,
B+ := (BTB)−1BT. (7)

The EID estimator estimates the overall effect of d(u(t))
and dap(t), and feeds it back to the control input channel
to compensate for them. qd(s) in the EID estimator is a
low-pass filter that selects the bandwidth of the angular
frequency for estimation. A first-order low-pass filter is
used in the study

qd(s) =
1

Tds + 1
, ωd = 1/Td. (8)

The state feedback control law
uf (t) = KP x(t) + KRxR(t) (9)

ensures the stability of the system, where
xR(t) = e(t) + xf (t − τ). (10)

A GSO is {
ż(t) = Fz(t) + Gy(t) + Huf (t),
x̂(t) = T−1z(t). (11)

We assume that F is Hurwitz, T is nonsingular,
TA − FT = GC, (12)

and
H = TB. (13)

For the state observer, we have
˙̂x(t) = T−1[Fz(t) + Gy(t) + Huf (t)]. (14)
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Fig. 3. EID-based RCS.

Letting
δx(t) = x̂(t) − x(t) (15)

and substituting (15) into (4) yield
˙̂x(t) = Ax̂(t) + Bu(t) + Bde(t) + [δẋ(t) − Aδx(t)]. (16)

We assume that there exists a δd(t) that satisfies
Bδd(t) = δẋ(t) − Aδx(t). (17)

Substituting (17) into (16), and defining the estimated
value of an EID to be

d̂(t) = de(t) + δd(t) (18)
yield

˙̂x(t) = Ax̂(t) + B[u(t) + d̂(t)]. (19)
Combining (14) with (19) gives an estimate of the EID

d̂(t) = B+T−1GC[x(t) − x̂(t)] + uf (t) − u(t). (20)

The filtered EID, d̃(t), is

D̃(s) = qd(s)D̂(s), (21)

where D̃(s) and D̂(s) are the Laplace transform of d̃(t)
and d̂(t), respectively.

Combining the EID estimate with the original state-
feedback control law yields a new control law (Fig. 3)

u(t) = uf (t) − d̃(t). (22)

3.2 Stability Analysis

To perform the analysis on the stability of the system, we
first consider the compensation of the dead zone in the
inner loop. Then, we consider the stability issue of the
whole system under the assumption that the dead zone is
completely compensated for.

In the EID-based RCS, the repetitive controller ensures
satisfactory tracking for periodic reference inputs. And the
EID estimator actively suppresses the effect of the dead
zone and aperiodic disturbances.

Let exogenous signals be zero, that is,
r(t) = 0, dap(t) = 0. (23)

We redraw Fig. 3 as Fig. 4. The plant is described as{
ẋ(t) = Ax(t) + Bup(t),
y(t) = Cx(t). (24)

Combining (12), (13), (14), (15), (22), and (24) yields
δẋ(t) = T−1FTδx(t) + B[d̃(t) − d(u(t))] (25)

and
d̂(t) = B+(T−1FT − A)δx(t) + d̃(t) (26)

Combining (25) and (26) yields
Gdl(s) = B+(T−1FT − A)(sI − T−1FT )−1B. (27)

Defining
Gd(s) = 1 + Gdl(s) (28)

gives
D̂(s) = Gd(s)D̃(s) − Gdl(s)Du(s) (29)

where Du(s) is the Laplace transform of the signal d(u(t)).
Note that Gd(s) and Gdl(s) in the above equations are
shown in Figs. 4 and 5. And Gdl(s) is stable if Gdl(s) is
stable.

The stability condition of the inner loop (the EID esti-
mation and compensation) is derived from the small gain
theorem [Zhou et al., 1996] and is given as follows.
Theorem 1. For a suitably designed state-feedback gain
[Kp KR], to guarantee the stability of the EID-based RCS,
the following conditions has to be satisfied:

(1) qd(s) and Gd(s) are stable; and
(2)

‖qdGd‖∞ < 1, (30)
where ‖qdGd‖∞ := sup

0≤ω≤∞
σmax (qd(jω)Gd(jω)) and

σmax(·) denotes the maximum singular value.

Now, we assume that the input dead zone is fully compen-
sated for by the EID estimator. This gives

up(t) = uf (t). (31)
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Fig. 4. Block diagram of EID-based RCS for (23).

Fig. 5. Simplified block diagram of Fig. 4.

So, we can write
up(t) = KP x(t) + KRxR(t). (32)

Note that the period of the repetitive controller is τ . We
define a difference operator, ∆, for any continuous vector-
valued function ξ(t)

∆ξ(t) = ξ(t) − ξ(t − τ). (33)
This gives a model for the RC{

∆ẋ(t) = Ā∆x(t) + Ād∆x(t − τ) + B̄∆up(t),
∆e(t) = C̄x(t), (34)

and the control law
∆up(t) = [FP 0]∆x(t) + [0 FR]∆x(t − τ), (35)

where

∆x(t) = [∆xT (t) ∆xf
T (t)]T ,

Ā =
[

A 0
−ωrC −ωr

]
, Ād =

[
0 0
0 ωr

]
,

B̄ =
[

B
0

]
, C̄ = [−C 0 ] ,

and
FR = KR, FP = KP − KRC. (36)

Substituting (35) into (34) yields the closed-loop system{
∆ẋ(t) = Āl∆x(t) + Ādl∆x(t − τ),
∆e(t) = C̄x(t), (37)

where

Āl =
[

A + BFP 0
−ωrC −ωr

]
, Ādl =

[
0 BFR

0 ωr

]
.

Since RC is a continuous control process, for the RCS in
Fig. 3, if there exist a continuous energy functional V (t)
that monotonically decreases with time along the closed-
loop system, then the whole system is asymptotically
stable.

We apply the analysis result of a modified RCS in the two
dimensions [Zhou et al., 2013] and obtain the following
theorem regarding the stability of the closed-loop system.
Theorem 2. For given ωr and positive scalars, α and β, if
there exist symmetrical positive-definite matrices X1, X2,
Y1, and Y2, together with arbitrary matrices W1 and W2,
the following LMI holds

L11 −αωrX1C
T 0 βBW2 αX1 0

? −2ωrX2 0 ωrβY2 0 X2

? ? −Y1 0 0 0
? ? ? −βY2 0 0
? ? ? ? −Y1 0
? ? ? ? ? −βY2

 < 0, (38)

where

L11 = αX1A
T + αAX1 + αW1B

T + αBW1,

then the closed-loop system (37) is asymptotically stable,
and the control gains in (35) are

FP = W1X
−1
1 , FR = W2Y

−1
2 . (39)

3.3 System Design

The first algorithm is for the design of the GSO in the EID
estimator. The parameters of the GSO are determined by
the following steps.

GSO design algorithm:

Step 1) Choose expected stable poles for the GSO,
λ1, λ2, · · · , λn, that satisfy λi 6= λj , i, j = 1, · · · , n.

Step 2) Calculate the characteristic polynomial given by
the desirable poles, {λ1, λ2, · · · , λn}:
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n∏
i=1

(s − λi) = sn + αn−1s
n−1 + · · · + α1s + α0.

Step 3) Construct an n × n matrix F0 =
[
[0 I]T αT

]T ,
where α = [−α0 − α1 · · · − αn−1].

Step 4) Choose an arbitrary nonsingular matrix S ∈
Rn×n, calculate its inverse, and let F = SF0S

−1.
Step 5) Choose a matrix G that enables the pair (F, G)

is controllable.
Step 6) Solving (12) for T .
Step 7) Check whether or not T is nonsingular. If it is,

go to the next step; otherwise, go to Step 3.
Step 8) Calculate H using (13).

The EID-based RCS is designed using the following algo-
rithm.

EID-based RCS design algorithm:

Step 1) Select the cutoff frequency ωr in (5), and positive
scalars α and β, and solve the LMI (38).

Step 2) Calculate Kp and KR using (36) and (39).
Step 3) Select the cutoff angular frequency ωd in (8).
Step 4) Calculate matrices H, G, F , and T−1 in the GSO

using the design algorithm of GSO.
Step 5) Check whether or not the conditions in Theorem

1 hold. If not, go back to Step 3; otherwise, finish.

4. SIMULATION VERIFICATION

A numerical example illustrates the design procedure and
the validity of our method. The parameters of the plant
(1) are

A =

−31.31 0 −2.833 × 104

0 −10.25 8001
1 −1 0

 , B =

[ 28.06
0
0

]
,

C = [ 1 0 0 ] .
The parameters in the dead zone are

r− = −0.8, r+ = 0.7.

Let the reference input be
r(t) = sin πt. (40)

and the aperiodic disturbance be

dap(t) =

{ sin 0.5πt + cos 0.5πt + sin t
+cos 2πt + sin 4πt, 10 ≤ t ≤ 20,
0, otherwise.

(41)
The delay time in the repetitive controller is

τ = 2 s.
The cutoff frequency of the low-pass filter was chosen to
be

ωr = 100 rad/s.
The performance index was chosen to be

J =
20∑

k=0

∫ (k+1)τ

kτ

e2(t)dt. (42)

The two parameters in the LMI (38) were selected based
on the evaluation result of the performance index and were

α = 1.57, β = 1. (43)
The corresponding gains in the feedback controller are

KR = 9.6607,KP = [1.4 0 1009.0] . (44)
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Fig. 6. Tracking error: (a) without EID compensation and
(b) with EID compensation.

For which,
J = 0.0007.

Then we set Td = 0.001 s. Selecting the poles of the GSO
to be {−40 ± 65j,−310} yielded the GSO

F =

[ 0 1 0
0 0 1

−1805750 −30625 −390

]
, G =

[ 972.31334
−11.57738
−0.11083

]
,

T =

 3.868 13.781 937.105 × 104

−156.318 −1078.355 675.193
5581.091 10377.948 −4199426.897

 ,

H =

[ 108.53837
−4386.28692
156605.40984

]
.

As a result,
‖qdGd‖∞ = 0.927 < 1.

Fig. 6 shows the tracking errors of the RCS without EID
compensation and the EID-based RCS. It is clear that,
since the EID estimator compensated for the effect of
dead zone and aperiodic disturbance, the largest steady-
state peak-to-peak tracking error decreased from 0.105 to
0.067, and the transient tracking error was also greatly
reduced. The aperiodic disturbance, the control input, and
the output of the EID-based RCS are shown in Fig. 7.

5. CONCLUSION

In this study, we treated an input dead zone as an input-
independent disturbance and inserted an EID estimator in
an RCS to estimate and compensate for the synthetic effect
caused by the dead zone and the aperiodic disturbance.
A GSO was introduced in the EID estimator so as to
increase the flexibility in the design of the system. Under
the assumption that the dead zone was fully compensated
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Fig. 7. Simulation results of EID-based RCS.

for, the design of the system was divided into two parts:
the EID compensator and the conventional state-feedback-
based RCS. We carried out an analysis on the stability of
the system, and presented the design algorithms for the
EID estimator and the EID-based RCS.

The advantage of this method is that we do not need any
information on a dead zone or construct an inverse model
to compensate for it. The simulation results show that the
designed system is stable, and tracking performance was
improved by the incorporation of the EID estimator.

This paper present only with constant input dead zone.
Variable input dead zone and relationship between the
dead zone and control performance will be considered in
the near future.

REFERENCES

T. Inoue, S. Iwai, and M. Nakano. High accuracy control of
a proton synchrotron magnet power supply. Proceedings
of the 8th IFAC World Congress, 1981: 3137-3142.

P. P. Khargonek, I. R. Petersen, and K. Zhou. Robust
stabilization of uncertain linear systems: quadratic sta-
bilizability and H∞ control theory. IEEE Transactions
on Automatic Control, 1990, 35(3): 356-361.

R. Liu, M. Wu, G. Liu, J.She, and C. Thomas. Active
Disturbance Rejection Control Based on an Improved
Equivalent-Input-Disturbance Approach. IEEE/ASME
Transactions on Mechatronics, 2013, 18(4): 1410-1413.

S. Nishikawa, and J. Yoneyama. Guaranteed cost output
feedback control of fuzzy systems via LMI approach.
Journal of Advanced Computational Intelligence and
Intelligent Informatics, 2010, 14(6): 567-573.

L. Ouyang, J. She, M. Wu, and H. Hashimoto. Compensa-
tion of unknown input dead zone using equivalent-input-
disturbance approach. Proceedings of the 9th Interna-
tional Conference on Informatics in Control, Automa-
tion and Robotics, 2012: 605-609.

D. Recker, P. Kokotovic, D. Rhode, and J. Winkelman.
Adaptive nonlinear control of systems containing a
deadzone. Proceedings of the 30th IEEE Conference on
Decision and Control, 1991: 2111-2115.

R. R. Selmic and F. L. Lewis. Deadzone compensation
in motion control systems using neural networks. IEEE
Transactions on Automatic Control, 2000, 45(4): 602-
613.

J. She, M. X. Fang, Y. Ohyama, H. Hashimoto, and
M. Wu. Improving disturbance - rejection perfor-
mance based on an equivalent-input-disturbance ap-
proach. IEEE Transactions on Industrial Electronics,
2008, 55(1): 380-389.

J. She, K. Sekiya, M. Wu, and Q. Lei. Active structural
control with input dead zone based on equivalent-input-
disturbance approach. IECON 2010 36th Annual Con-
ference on IEEE Industrial Electronics Society, 2010:
47-52.

J. She, X. Xin, and Y. D. Pan. Equivalent-input-
disturbance approach-analysis and application to dis-
turbance rejection in dual-stage feed drive control sys-
tem. IEEE/ASME Transactions on Mechatronics, 2011,
16(2): 330-340.

J. She, A. Zhang, X. Lai, and M. Wu. Global stabi-
lization of 2-DOF underactuated mechanical systems
- an equivalent-input-disturbance approach. Nonlinear
Dynamics, 2012, 69: 495-509.

X. S. Wang, C. Y. Su, and H. Hong. Robust adaptive
control of a class of nonlinear systems with unknown
dead-zone. Automatica, 2004, 40(3): 407-413.

K. Zhou, J. Doyle, and K. Glover, Robust and Optimal
Control, Prentice Hall, 1996.

L. Zhou, J. She, M. Wu, and Y. He. Design of a robust
observer-based modified repetitive-control system. ISA
Transactions, 2013, 52: 375-382.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2757


