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Abstract: The aim of this paper is to apply new results on the boundary stabilisation via
energy-shaping of distributed port-Hamiltonian systems to a nonlinear PDE, i.e. a slightly
simplified formulation of the shallow water equation. Usually, stabilisation of non-zero equilibria
via energy-balancing has been achieved by looking at, or generating, a set of structural invariants
(Casimir functions), in closed-loop. This approach is not successful in case of the shallow water
equation because at the equilibrium the regulator is supposed to supply an infinite amount
of energy (dissipation obstacle). In this paper, it is shown how to construct a controller that
behaves as a state-modulated boundary source and that asymptotically stabilises the desired
equilibrium. The proposed approach relies on a parametrisation of the dynamics provided by
the image representation of the Dirac structure associated to the distributed port-Hamiltonian
system. In this way, the effects of the boundary inputs on the state evolution are explicitly
shown, and as a consequence the boundary control action that maps the open-loop system into
a target one characterised by the desired stability properties, i.e. by a “new” Hamiltonian with
an isolated minimum at the equilibrium, is determined.

Keywords: distributed port-Hamiltonian systems, passivity-based control, stability of
distributed parameter systems

1. INTRODUCTION

This paper deals with the energy-based boundary control
of a simplified version of the shallow water equation for-
mulated as a distributed port-Hamiltonian system, van der
Schaft and Maschke [2002], Macchelli and Maschke [2009].
For such class of infinite dimensional systems, this task has
been usually accomplished by looking at, or generating, a
set of Casimir functions in closed-loop that robustly (i.e.,
independently from the Hamiltonian function) relates the
state of the infinite dimensional port-Hamiltonian system
with the state of the controller. The controller is a fi-
nite dimensional port-Hamiltonian system which is inter-
connected to the boundary of the distributed parameter
system. The shape of the closed-loop energy function is
changed by choosing the Hamiltonian of the controller for
example to introduce a minimum in a desired configura-
tion. Examples can be found e.g. in Rodriguez et al. [2001],
Macchelli and Melchiorri [2004, 2005], Pasumarthy and
van der Schaft [2007], Macchelli [2012a,b]. The result is
an energy-balancing passivity-based controller that is not
able to deal with equilibria that require an infinite amount
of supplied energy in steady state, i.e. with the “dissipation
obstacle.”

The limits of the energy-Casimir method are intrinsic, and
due to the fact that Casimir functions are invariants that
do not depend on the particular Hamiltonian and on the
resistive structure, i.e. they are completely determined by
the Dirac structure of the system, van der Schaft [2000],
Pasumarthy and van der Schaft [2007]. The class of con-
trollers can be enlarged beyond the dissipation obstacle by

focusing on the trajectories that correspond to a particular
Hamiltonian, rather than on the geometric structure of
the system only. Then, the regulator is developed to map
the open-loop trajectories into the trajectories of a target
system with (at least) a different Hamiltonian and, clearly,
characterised by the desired stability properties. This is
the same concept adopted for finite dimensional in case
of stabilisation with state-modulated sources in Ortega
et al. [2001], or with the more general IDA-PBC control
technique in Ortega et al. [2002].

The starting point are the definition of Dirac structures
on Hilbert spaces, and their kernel and image representa-
tions proposed in Iftime and Sandovici [2011]. The latter
representation, in particular, provides a natural way to
parametrize the dynamics of the system and to relate the
effect of boundary inputs on the evolution of the state.
As in the lumped parameter case, the control action is
then determined to map the open-loop dynamical system
into a “target” one, which is characterised by the same
Dirac structure, but with a different Hamiltonian, now
selected in order to have an isolated minimum at the
desired equilibrium. Asymptotic stability is obtained by
(boundary) damping injection, if needed. In this way, the
controller can be interpreted as a state-modulated source,
thus able to deal with equilibria that require a non-zero
supplied power in steady state. The methodology has been
presented in Macchelli [2013a,b] with reference to a simple
linear example, namely a lossless transmission line with
RLC load. This paper shows that the same techniques are
applicable also to nonlinear PDEs. Asymptotic stability

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1586



for the closed-loop system is then proved via La Salle’s
Invariance Principle arguments, see Luo et al. [1999].

This paper is organised as follows. In Sect. 2, a brief
background on the distributed port-Hamiltonian formula-
tion of the shallow water equation, and on Dirac struc-
tures on Hilbert spaces is given. Then, the boundary
energy-shaping control is illustrated in Sect. 3. At first,
in Sect. 3.1, the case in which friction forces are neglected
is considered: the result is an energy-balancing controller
for which an interpretation in terms of Casimir functions
is given. The general case is treated in Sect. 3.2, for which
an explicit expression of the control law is provided in the
simplified case of linear friction forces. Concluding remarks
are in Sect. 4.

2. BACKGROUND

2.1 Shallow water equation in port-Hamiltonian form

Let us consider a rectangular open channel with a single,
flat reach, with length L and unitary width, which is
delimited by upstream and downstream gates, and ter-
minated by an hydraulic outfall. Moreover, it is assumed
that the fluid has a unitary density. For simplicity, we
are in fact considering a simpler situation than the one
treated in Hamroun et al. [2010]. However, all the results
discussed here can be easily extended to cope with more
general cases. The dynamics of the system are described
by the so-called shallow water equations, whose port-
Hamiltonian formulation has been extensively discussed
e.g. in Pasumarthy et al. [2008], Hamroun et al. [2010].

In this respect, denote by Z = [0, L] the spatial domain,
and by q(z, t) > 0 and p(z, t) the infinitesimal volume
and kinetic momentum density, respectively. These are
the state (energy) variables. Note that, due to the unitary
width and fluid density assumptions, these quantities are
numerically equal to the height of the fluid in the chan-
nel and to its velocity. The distributed port-Hamiltonian
formulation of the shallow water equations is

∂

∂t

(
q
p

)
=

=

{(
0 −1
−1 0

)
∂

∂z
−
(

0 0
0 D(q, p)

)}(
δqH(q, p)
δpH(q, p)

)
(1)

where δ denotes the variational derivative (e.g., refer to
van der Schaft and Maschke [2002]), and H is the total
energy of the fluid, that is given by

H(q, p) =
1

2

∫ L

0

(
qp2 + gq2

)
dz

being g the gravity acceleration. Moreover, in (1),D(q, p) ≥
0 is the dissipation term associated to the friction forces,
usually modelled by highly nonlinear empirical constitu-
tive formula (e.g., Manning–Strickler). Note that

δH

δq
(q, p) =

1

2
p2 + gq =: P

δH

δp
(q, p) = qp =: Q

are the co-energy variables, which are equal to the hydro-
dynamic pressure P and water flow Q, respectively.

The channel whose dynamic is described by the PDE (1)
exchanges power with the environment through a couple
of power ports defined in z = 0 and z = L:

(
f0(t), e0(t)

)
=

(
δH

δp
(0, t),

δH

δq
(0, t)

)
(
fL(t), eL(t)

)
=

(
−δH
δp

(L, t),
δH

δq
(L, t)

) (2)

With simple computations, it is possible to verify that the
following energy-balance relation is satisfied:

dH

dt
= −

∫ L

0

D(q, p)

(
δH

δp

)2

dz + e0f0 + eLfL

≤ e0f0 + eLfL

(3)

2.2 A class of distributed port-Hamiltonian systems

The distributed port-Hamiltonian system (1) with bound-
ary ports (2) belongs to the following class of systems:

∂x

∂t
(t, z) =

{
P1

∂

∂z
+
[
P0 −G0(x(t, z))

]} δH

δx
(x(t, z))

(4)
Such class generalizes what has been presented in Le
Gorrec et al. [2005] as far as the linear case is concerned.
Here, the spatial domain is Z = [a, b] and x ∈ L2(a, b;Rn)
denotes the state (energy) variable. Moreover, P1 = PT

1 >
0, P0 = −PT

0 , andG0(x) = GT
0 (x) ≥ 0, whileH is the total

energy of the system, that is not necessarily quadratic in
the energy variables. Note that the entries in G0 can be
non-linear.

To define a distributed port-Hamiltonian system, the PDE
(4) has to be “completed” with a boundary port. In this
respect, the boundary port variables associated to (4) are
the vectors f∂ , e∂ ∈ Rn defined by(

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)
︸ ︷︷ ︸

=:R

(
δxH(b)
δxH(a)

)
(5)

which turn out to be a linear combination of the restric-
tions on the boundary of the spatial domain of the co-
energy variables. To have a so-called boundary control
system e.g. in the sense of Curtain and Zwart [1995], inputs
and outputs have to be defined. From Le Gorrec et al.
[2005], a simple procedure to have system (4) in impedance

form is the following. Let W and W̃ a pair of n × 2n full
rank real matrices, such that (WT W̃T) is invertible, and

WΣWT = 0 WΣW̃T = I W̃ΣW̃T = 0

being

Σ =

(
0 I
I 0

)
The (boundary) input u and output y can be defined as

u(t) = W

(
f∂(t)
e∂(t)

)
y(t) = W̃

(
f∂(t)
e∂(t)

)
(6)

and it is easy to prove that the following energy balance
equation is satisfied:

dH

dt
= −

∫ b

a

G0(x)

(
δH

δx
(x)

)2

dz + yTu ≤ yTu

Note the similarities with (3), as expected.

As discussed in Macchelli [2013a,b] in the linear case, the
distributed port-Hamiltonian system (4) is characterised
by a constant Dirac structure D on the space of flows

F = FS ×FR ×FC
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with FS = L2(a, b;Rn), FR = L2(a, b;Rr), and FC = Rn,
being r = rankG0, supposed constant. Refer e.g. to van
der Schaft [2000] for a rigorous definition in the lumped
parameter case. For simplicity, it is assumed that the space
of efforts E is equal to the space of flows, i.e. E ≡ F .
Here, (fS , eS) represets the energy-storage port, (fR, eR)
the dissipative port, and (fC , eC) ≡ (y, u) the control port,
that is assumed with effort-in causality, and is responsible
for the interaction between system and “environment,” e.g.
a (boundary) controller. The Dirac structure admits the
kernel representation

D =
{

(f, e) ∈ F × E | Ff + Ee = 0
}

(7)

where F : F → Λ and E : E → Λ the linear operators

F = (FS FR FC) E = (ES ER EC) (8)

where

FS =

I00
0

 FR =

0
I
0
0

 FC =

0
0
0
I



ES =


P1

∂

∂z
+ P0

−GT
R

−WRB
−W̃RB

 ER =

GR

0
0
0

 EC =

0
0
I
0


(9)

being

B(e) =

(
e(b)
e(a)

)
, e ∈ L2(a, b;Rn)

andGR a matrix of proper dimensions such that rankGR =
r, and there exists a function Ḡ(x) ≥ 0 for which G0(x) =
GT

RḠ(x)GR. As discussed in Iftime and Sandovici [2011], Λ
is a “supporting” space that is required to be isometrically
isomorphic to F . The simplest choice is

Λ = L2(a, b;Rn)× L2(a, b;Rr)× {0} × Rn (10)

where {0} ⊂ Rn is the set that contains the null vector of
Rn. From (10), we have that

dom (F E) =

{
(f, e) ∈ F × E | eS abs. continuous,

∂eS
∂z
∈ L2(a, b;Rn), and eC = WRB(eS)

}
while it is quite easy to prove that

dom

(
F ∗

E∗

)
=
{
λ ∈ Λ | λu = WRB(λS)

}
(11)

where λ = (λS , λR, 0, λu), and F ∗S = FT
S , F ∗R = FT

R ,
F ∗C = FT

C , E∗R = ET
R, and

E∗S =

(
−P1

∂

∂z
− P0 −GR 0 0

)
E∗C =

(
W̃RB 0 0 0

)
More details in Macchelli [2013b]. Note that from (7)
and (8), the distributed port-Hamiltonian system (4) is
obtained once the following behaviour at the energy-
storage and dissipative ports is imposed:

fS = −∂x
∂t

eS =
δH

δx
eR = −Ḡ(x)fR

3. BOUNDARY CONTROL VIA ENERGY-SHAPING

In this section, energy-shaping methodologies are applied
to the boundary stabilisation of the shallow water equation

(1). The controller acts on the boundary ports (2) with the
following causality:

u(t) =

(
f0(t)
eL(t)

)
y(t) =

(
e0(t)
fL(t)

)
(12)

This choice is coherent with the most general case (6),

thanks to a proper choice of the matrices W and W̃ . To
stabilise (1), it is required to determine a state-feedback
law in the form

u = β(q, p) + u′ (13)
being u′ an auxiliary input signal, such that the equilib-
rium (q?, p?) is asymptotically stable. Such equilibrium is
solution of

∂

∂z

δH

δp
(q?, p?) = 0

∂

∂z

δH

δq
(q?, p?) +D(q?, p?)

δH

δp
(q?, p?) = 0

(14)

or, equivalently, of
∂

∂z
Q? = 0

∂

∂z
P? +D(q?, p?)Q? = 0 (15)

where Q? = q?p? and P? = 1
2p

2
? + gq?. Another problem,

treated e.g. in Hamroun et al. [2010] but in the finite
dimensional case only, is to stabilise the channel around
a desired water flow δpH(q?, p?) = Q?, somehow indepen-
dently from the hydrodynamic pressure P?, which is not
constant on Z in case internal friction forces are present,
i.e. when D(q, p) 6= 0.

With reference to the more general case (4), the control
problem can be stated as follows: determine the (bound-
ary) control action u = β(x) + u′ that maps the port-
Hamiltonian system (4) into

∂x

∂t
(t, z) =

{
P1

∂

∂z
+
[
P0 −G0(x(t, z))

]} δHd

δx
(x(t, z))

(16)
i.e., into a desired systems that is characterised by the
same Dirac structure and resistive relation of the original
one, but with a different Hamiltonian Hd(x) = H(x) +
Ha(x). By following Macchelli [2013a,b] with just minor
modifications, the class of functions Ha that can be em-
ployed in the energy-shaping procedure, together with the
corresponding control action β, are solution of:

0
δHa

δx
(x)

0
−β(x)

 =

 E∗S
F ∗S

Ḡ(x)E∗R + F ∗R
F ∗C

λ(x) (17)

where λ is an element of (11). The physical interpretation
of this relation is that we are looking for a state-dependent
control action β that is able to “generate” part of the
dynamics that is missing in the open-loop system and that
is preventing to match the desired one.

In the remaining part of this section, (17) is solved with
reference to the shallow water equation (1), where the
boundary input is given as in (12). In this respect, the
matrices appearing in the associated Dirac structure de-
fined by (8) and (9) can be easily computed.

3.1 First case: D(q, p) = 0

If the internal friction forces are neglected, the dissipative
port (fR, eR) in the Dirac structure is not present. Beside
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the trivial simplification in the operators defined in (9),
the supporting space Λ introduced in (10) is now

Λ = L2(0, L;R2)× {0} × R2 (18)

where {0} ⊂ R2. Given λ = (λq, λp, 0, 0, λu0, λuL), in
this particular case (11) implies that λu0 = λp(0) and
λuL = λq(0). Consequently, from (17) we have that

∂

∂z

(
λq
λp

)
= 0

(
δqHa

δpHa

)
=

(
λq
λp

)
−β =

(
λp(0)
λq(L)

)
that implies

∂

∂z

δHa

δq
(q, p) = 0

∂

∂z

δHa

δp
(q, p) = 0

β(q, p) = −
(
δpHa(q, p) |z=0

δqHa(q, p) |z=L

) (19)

This means that the class of functions Ha is such that

Ha(q, p) = Ĥa

(
ξ1(q, p), ξ2(q, p)

)
(20)

with

ξ1(q) =

∫ L

0

q(z) dz ξ2(p) =

∫ L

0

p(z) dz (21)

and Ĥa that can be freely chosen.

From (14) or (15), it is easy to find out that the equilibrium
configuration is given by

q(t, z) = q? > 0 p(t, z) = p? (22)

which means constant water level and velocity along the
channel or, equivalent, constant hydrodynamic pressure
P? and water flow Q?. In order to have in closed-loop a
port-Hamiltonian system (16) with Hamiltonian Hd with

a minimum in (22), a possible choice of Ĥa in (20) is

Ĥa(ξ1, ξ2) =
1

2
K1(ξ1 − ξ1?)2 +

1

2
K2(ξ2 − ξ2?)2

−
(

1

2
p2
? + gq?

)
︸ ︷︷ ︸

≡P?

ξ1 − q?p?︸︷︷︸
≡Q?

ξ2 (23)

where ξ1? and ξ2? are the values of ξ1 and ξ2 at the
equilibrium, i.e. ξ1? = Lq?, and ξ2? = Lp?, while K1, K2

are two positive gains. Note the similarities with Hamroun
et al. [2010], where a finite-element approximation of the
channel dynamics has been used.

In this respect, the finite dimensional formulation of the
shallow water equation adopted in Hamroun et al. [2010]
follows from the general discretisation technique for dis-
tributed port-Hamiltonian systems discussed in Golo et al.
[2004]. It has been shown in Macchelli [2011] that for the
“full-order” system, i.e. the distributed parameter one,
there exists an energy-shaping controller based on the
energy-Casimir method if and only if the same kind of
controller exists for the corresponding spatially discretised
system. This is clearly true also for the shallow water
equation. In this respect, let us consider the following
control system in port-Hamiltonian form:

ξ̇ = JC
∂HC

∂ξ
(ξ) + uC

yC =
∂HC

∂ξ
(ξ)

(24)

where now ξ ∈ R2 denotes the state variable of the con-
troller, JC = −JT

C and HC is the to-be-assigned Hamilto-
nian. Let us interconnect (24) at the boundary ports (12)
of the shallow water equation in power conserving way, i.e.
u = −yC+u′ and uC = y, being u′ an auxiliary input, as in
(13). The energy-Casimir method requires to select JC in
(24) such that there exists a set of functions C(ξ, q, p) that
are constant along system trajectories for every possible
Hamiltonians H and HC . In particular, we are looking for
invariants in the form C(ξ, q, p) = ξ − F (q, p), being F
some functional to be determined. If it is the case, the
closed-loop Hamiltonian becomes HCL(q, p) = H(q, p) +
HC(F (q, p) + κ), with κ some constant that depends on
the initial conditions only, i.e. it is at the end just function
of the state variables of the plant, and it can be properly
shaped by acting on the controller Hamiltonian HC .

It is quite easy to check that Casimir functions are not
present in closed-loop if JC = 0. From a physical point of
view, this result is obvious. With this choice, in fact, the
boundary controller (24) consists of two separate systems,
each required to provide a constant power flow in steady
state. So, they are not energy-balancing controllers. So,
it is necessary to couple these regulators and allow for
an internal power flow at the controller side. This can be
achieved by choosing

JC =

(
0 I
−I 0

)
which implies that the closed loop system is characterised
by the following Casimir functions:

C1(ξ1, q) = ξ1 −
∫ L

0

q(z) dz

C2(ξ2, p) = ξ2 −
∫ L

0

p(z) dz

Note the similarities with (21). As a consequence, the
class of functions HC that can be employed in the energy
shaping are the same as in (20), and also the control
action is exactly the same determined in (19) by relying
on energy-balancing considerations. In both the cases, the
closed-loop system is lossless, so only simple stability has
been achieved e.g. in the sense of Swaters [2000]. However,
asymptotic stability can be obtained by damping injection
at the boundary. This point is not investigated here due to
space limitations, but the rationale can be deduced from
the case treated in the next section.

3.2 Second case: D(q, p) 6= 0

To introduce the effect of the friction forces, the dissipative
port (fR, eR) in the Dirac structure (7) must be present
and “terminated” on a proper resistive element. If in (9)
we assume that GR = 1 since r = 1, we can write
that eR = −D(q, p)fR. At first, it is immediate to prove
that, if the aim is to stabilise the channel around some
desired water flow value Q? = q?p? without any particular
requirement on the hydrodynamic pressure, the control
action (13) with β given in (19) is able to accomplish
this task, provided that K2 = 0 in (23). In fact, due
to the boundary control action, the closed-loop system
satisfies the PDE (1), but with the shaped Hamiltonian
Hd = H +Ha in place of H, and with the boundary input
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u′ =

(
δpHd(0)
δqHd(L)

)
=

(
Q(0)−Q?

P (L)− P? +K1(ξ1 − ξ1?)

)
that is equal to zero. Then, from the energy-balance
relation (3), we have that energy decreases until in steady
state δpHd(q, p) = 0 on Z, which implies that the steady
state configuration with Q = qp = Q? is reached. A similar
result holds with K2 6= 0, but only if further boundary
damping is injected through the auxiliary input u′ in (13).

Due to dissipation, the control action obtained in the
previous section is not able to stabilise the channel with
desired water flow Q?(z) and hydraulic pressure P?(z) or,
equivalently, at some q?(z) and p?(z) solution of (14) or
(15). With the image representation of the Dirac structure
in mind, the supporting space Λ now is

Λ = L2(0, L;R2)× L2(0, L;R)× {0} × R2

where as in (18) we have that {0} ⊂ R2. Similarly to
the previous section, given λ = (λq, λp, λR, 0, 0, λu0, λuL),
from (11), we have that in this particular case λu0 = λp(0),
and λuL = λq(L). Then, from (17), there exists an energy
shaping control action in the form (13) if there exists Ha

and β such that (17) holds for some λ ∈ Λ, i.e.:

∂

∂z

(
λq
λp

)
=

(
λR
0

) (
λq
λp

)
=

(
δqHa

δpHa

)
D(q, p)λp = λR β = −

(
λp(0)
λq(L)

)
that implies

∂

∂z

δHa

δq
(q, p) = −D(q, p)

δHa

δp
(q, p)

∂

∂z

δHa

δp
(q, p) = 0

β(q, p) = −
(
δpHa(q, p) |z=0

δqHa(q, p) |z=L

) (25)

Solving (25) in the general case, or with the empiric expres-
sions associated to the viscous friction term D(q, p) is very
difficult. To simplify the problem a lot, let us assume that
the friction forces are just proportional to the water flow,
i.e. that D(q, p) = D̄ > 0. Under this assumption and if
written in terms of the co-energy variables, the equilibrium
configuration takes the following form

Q?(z) = Q̄? P?(z) = −D̄Q̄?z + P̄? (26)

where Q̄?, P̄? are some real constants.

From the second relation in (25), we obtain that

δHa

δp

(
q(z), p(z)

)
= κp

being κp some constant function Z, ant then from the first
one we have that

δHa

δq

(
q(z), p(z)

)
= −κpD̄z + κq

with κq another constant function on Z. Consequently, in a
slightly different manner than in (20) a class of admissible
Ha takes the form

Ha(q, p) = Ĥa

(
ξ(q, p)

)
where now

ξ(q, p) =

∫ L

0

[
q(z)

(
γ − D̄z

)
+ p(z)

]
dz

with γ a constant that is determined later on. Stability
of the desired equilibrium either expressed in terms of

hydrodynamic pressure P?(z) and water flowQ?(z) defined
in (26), or in terms of the corresponding water level q?(z)
and velocity p?(z) profiles is achieved by properly selecting

Ĥa. Similarly to (23), a possible choice is

Ĥa(ξ) =
1

2
(ξ − ξ?)

2 − Γξ (27)

with K a positive gain, and ξ? the value of ξ at the desired
equilibrium. Stability of (Q?, P?) is obtained by selecting
Γ = Q̄? in (27), and γ = P̄?/Q̄? in (26). Finally, the
associated control action β follows from the last relation
in (25), i.e.:

β(q, p) =

(
−K

(
ξ(q, p)− ξ?

)
+ Q̄?

−K
(
ξ(q, p)− ξ?

)
− D̄Q̄?L+ P̄?

)
To enforce asymptotic stability of (26), the auxiliary input
u′ in (13) is used to introduce (boundary) damping in the
system. With (12) in mind, the “new” boundary port for
the closed-loop system is

(u′, y′) =

((
δpHd(0)
δqHd(L)

)
,

(
δqHd(0)
−δpHd(L)

))
that has to be terminated over a dissipative element, i.e.

u′ = Πy′, Π =

(
π1 0
0 π2

)
(28)

with π1, π2 > 0. Under the assumptions of existence of
solutions, and of pre-compactness of the orbits, asymptotic
stability is a consequence of La Salles Invariance Principle,
Luo et al. [1999]. More precisely, from energy-balancing
considerations, we have that the total Hamiltonian Hd

decreases until a steady state configuration characterised
by

δHd

δp
(q, p) = 0 on Z u′ = y′ = 0 (29)

is reached. The first condition in (29) means that

Q(z)− Q̄? +K
(
ξ
(
q(z), p(z)

)
− ξ?

)
= 0 (30)

on Z, and also that q reaches a constant (as function of
time) profile. Time differentiation of (30) implies that also
ξ is constant in steady state, and consequently also p and
P . Moreover, again from (30) and due to the fact that ξ is

constant in time and independent from z, Q(z) = Q̃, with

Q̃ a constant to be determined later on. On Z, we have
also that

δHd

δq

(
q(z), p(z)

)
=

= K

(
P̄?

Q̄?
− D̄z

)(
ξ
(
q(z), p(z)

)
− ξ?

)
+ P (z) + Q̄?D̄z − P̄? = 0 (31)

This is a consequence of the fact that in steady state
∂p
∂t = 0, and of the second condition in (29) enforced by the
damping injection. From (30) and (31), it is immediate to
determine that the steady state profile of P (z) is related

to Q(z) ≡ Q̃ as follows:

P (z) = −Q̃D̄z + P̄?

Finally, from (28) and (30), we can deduce that in steady
state ξ = ξ? provided that π1, π2 > 0, i.e. only if full-
boundary dissipation is present. This fact immediately
implies that Q̃ = Q̄? and, finally that P (z) = −Q̄?D̄z +
P̄? ≡ P?(z) in steady state. So, the only invariant solution
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compatible with Ḣd = 0 is the equilibrium (26), which
turns out to be asymptotically stable from La Salle’s
Invariance Principle considerations.

4. CONCLUSIONS

In this paper, novel techniques devoted to the bound-
ary stabilisation via energy-shaping of distributed port-
Hamiltonian systems have been applied to a nonlinear
PDE, namely a simplified version of the shallow water
equation. The method relies on the parametrisation of the
system trajectories provided by the image representation
of the Dirac structure associated to the system, and the
control action is determined in order to map the open-loop
dynamic into a target one with the desired stability prop-
erties. For the shallow water equation, stability has been
obtained at first in case no internal dissipation is present,
i.e. when viscous friction forces are set equal to zero. In
this case, the controller is an energy-balancing kind of,
and the equivalence between the proposed approach and
the energy-Casimir method is shown. The stabilisation
problem is then solved also when (linear) internal friction
forces are present. In this situation, the controller behaves
as a state modulated source able to properly shape the
energy function of the system. Asymptotic stability is
obtained via damping injection, and proved thanks to La
Salle’s arguments.
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