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1. INTRODUCTION

Dynamic optimization problems for integer (not frac-
tional) order systems have been widely considered in lit-
erature (see e.g. Bellman (1957); Kaczorek (1981); Lewis
and Syrmos (1995); Naidu (2002)). Mathematical funda-
mentals of the fractional calculus are given in the mono-
graphes Ostalczyk (2008); Podlubny (1999); Samko et al.
(1993) and the fractional differential equations and their
applications have been addressed in e.g. Kilbas et al.
(2006); F.Liu et al. (2010). The numerical simulation of
the fractional order control systems has been investigated
in Cai and F.Liu (2007). One of the fractional discretiza-
tion method has been presented in Meerschaerti and Tad-
jeran (2004). Some optimal control problems for frac-
tional order systems have been investigated in Frederico
and Torres (2008); Jelic and Petrovacki (2008); Agrawal
(2008, 2007, 2006, 2004, 2002); Sierociuk and Vinagre
(2010). Fractional Kalman filter and its application have
been addressed in Sierociuk et al. (2011); Sierociuk and
Dzielinski (2006). Some recent interesting results in frac-
tional systems theory and its applications for standard
and positive systems can be found in Kaczorek (2011).
In this paper dynamic programming problem for frac-
tional discrete-time systems with quadratic performance
index will be formulated and solved. A new method for
numerical computation of optimal dynamic programming
problem will be presented. The efficiency of the method
will be demonstrated on numerical example and illustrated
by graphs. Graphs also show the differences between the
fractional and classical (standard) systems theory. Results
for other cases of the coefficient α and not illustrated with
numerical examples will be obtained through a computer
algorithm written for this purpose. The paper is organized
as follows. In section II some preliminaries are recalled
and the problem will be formulated. The solutions of the
problem are presented in section III. In section IV a pro-

cedure for computation of the optimal control is proposed
and illustrated by numerical example. A relarion with the
integer-order systems theory is demonstrated in section
V. Conclusions of the paper are given in section VI. The
following notation will be used: R - the set of real numbers,
R

n×n - the set of n × n real matrices (in particular Rn is
the set of real vectors), In - the n× n identity matrix, O
- the null matrix of appropriate dimensions, W b

a , V
b
a are

n×m or n×n matrices and a is the lower right index and
b is an upper right index. Power index is not used.

2. PROBLEM FORMULATION

Consider a fractional discrete-time system, obtained by
use of Grunwald-Letnikov’s (shifted) approximation, de-
scribed by equations

xk+1 =
k
∑

j=0

djxk−j +Buk , k ∈ Z+ , (1a)

where x ∈ R
n, u ∈ R

m are respectively the state and
control vectors, A ∈ Rn×n, B ∈ Rn×m and

d0 =Aα = A+ αIn , 0 < α < 1 , (1b)

dj = (−1)j
(

α

j + 1

)

In , j = 1, . . . , k . (1c)

Consider a performance index of the form

Ji(u) = G(xN ) +

N−1
∑

k=i

Fk(xk, uk)

= xT
NSxN +

N−1
∑

k=i

(

xT
k Qxk + uT

kRuk

)

,

(2)

where R ∈ Rm×m, Q ∈ Rn×n, S ∈ Rn×n and S ≥ 0, Q ≥ 0
and R > 0.
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Optimal trajectory starting at the point x0 and ending
at the point xk has been divided into N elementary
time intervals [0, N ]. It is desired to find optimal control
sequence u0, u1, . . . , uN−1, u ∈ U, U-set of admissible
inputs, which minimizes the performance index (2) and
satisfies the differential equation (1). The solution of
this task by searching for a conditional minimum of the
performance index (2) requires the solution of N equations
with N unknown variables of the form

∂J(u)

∂uk

= 0 , (k = 0, . . . , N − 1) ,

where J(u) is the performance index (2) after substituting
(1) for k = 1, 2, . . . , N − 1.

3. PROBLEM SOLUTION

We shall show that the task of determining the u0, u1, . . . ,
uN−1 can be reduced to N tasks minimizing functions of
one variable.

For i = N the performance index has the form

JN (u) = G(xN ) = xT
NSxN ,

which in the general case is a function of final state.

Consider the last N -th section of the optimal trajectory.
The corresponding performance index of that section has
the form

JN−1(u) = JN (u) + FN−1(xN−1, uN−1)

= xT
NSxN + xT

N−1QxN−1 + uT
N−1RuN−1 ,

(3)

Denoting SN−1(ΣxN−1) = SN−1(
∑N−1

j=0
xN−1−j), as a

minimum of the performance index JN−1(u) we can write

SN−1(ΣxN−1) = min
uN−1∈U

{

JN−1(u)
}

. (4)

Substituting (1) for k = N −1 to (4) equation above takes
the form

SN−1(ΣxN−1) = min
uN−1∈U

{

xT
N−1QxN−1 + uT

N−1RuN−1

+

(

N−1
∑

j=0

djxN−1−j + BuN−1

)T

S

(

N−1
∑

j=0

djxN−1−j + BuN−1

)







(5)
Calculating the first derivative of the equation (5) and
comparing it to zero we obtain

0 =
∂JN−1(u)

∂uN−1

=
(

R+RT
)

uN−1

+BT
(

S + ST
)





N−1
∑

j=0

djxN−1−j +BuN−1



 .

We determine uN−1 as a function of xN−1, . . . , x0, i.e.

uN−1 =

N−1
∑

j=0

W 1
N−1djxN−1−j , (6)

where

W 1
N−1 = −

[

R+RT + BT
(

S + ST
)

B
]−1

BT
(

S + ST
)

.

Substituting (6) to (5) we obtain

SN−1(ΣxN−1) = xT
N−1QxN−1

+





N−1
∑

j=0

V R01

N−1
djxN−1−j





T

R





N−1
∑

j=0

V R01

N−1
djxN−1−j





+





N−1
∑

j=0

V S1

N−1
djxN−1−j





T

S





N−1
∑

j=0

V S1

N−1
djxN−1−j



 .

(7)

where

V R01

N−1
= W 1

N−1, V S1

N−1
=
(

In +BW 1
N−1

)

.

Consider the N -th and N − 1-th sections of the optimal
trajectory. The corresponding performance index for those
sections has the form

JN−2(u) = JN−1(u) + FN−2(xN−2, uN−2)

= JN−1(u) + xT
N−2QxN−2 + uT

N−2RuN−2 .
(8)

Denoting SN−2(ΣxN−2) = SN−2(
∑N−2

j=0
xN−2−j) as min-

imum of the performance index JN−2(u) we can write

SN−2(ΣxN−2) = min
uN−1∈U

uN−2∈U

{

JN−2(uN−2)
}

= min
uN−2∈U

{

min
uN−1∈U

JN−1(uN−1) + FN−2(xN−2, uN−2)
}

= min
uN−2∈U

{

SN−1(ΣxN−1) + FN−2(xN−2, uN−2)
}

. (9)

Substituting (1) for k = N − 2 to (9) and calculating the
first derivative of the equation and comparing it to zero
we obtain

0 =
∂JN−2(u)

∂uN−2

=
(

R+ RT
)

uN−2 +BT
[

Q+QT
]

[

N−2
∑

j=0

djxN−2−j +BuN−2

]

+
[

V
R01

N−1
d0B
]T [

R +RT
]

[

V
R01

N−1
d0

(

N−2
∑

j=0

djxN−2−j + BuN−2

)

+

N−2
∑

j=0

V
R01

N−1
dj+1xN−2−j

]

+
[

V
S1

N−1
d0B
]T [

S + ST
]

[

V
S1

N−1
d0

(

N−2
∑

j=0

djxN−2−j + BuN−2

)

+

N−2
∑

j=0

V
S1

N−1
dj+1xN−2−j

]

.

We determine uN−2 as a function of xN−2, . . . , x0, i.e.

uN−2 =

N−2
∑

j=0

[

W 1
N−2dj +W 2

N−2dj+1

]

xN−2−j , (10)

Substituting (1) for k = N − 2 and (10) to (9) we obtain
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SN−2(ΣxN−2) = xT
N−2QxN−2

+





N−2
∑

j=0

(

V
Q01

N−2
dj + V

Q02

N−2
dj+1

)

xN−2−j





T

×Q





N−2
∑

j=0

(

V
Q01

N−2
dj + V

Q02

N−2
dj+1

)

xN−2−j





+





N−2
∑

j=0

(

V R01

N−2
dj + V R02

N−2
dj+1

)

xN−2−j





T

×R





N−2
∑

j=0

(

V R01

N−2
dj + V R02

N−2
dj+1

)

xN−2−j





+





N−2
∑

j=0

(

V R11

N−2
dj + V R12

N−2
dj+1

)

xN−2−j





T

×R





N−2
∑

j=0

(

V R11

N−2
dj + V R12

N−2
dj+1

)

xN−2−j





+





N−2
∑

j=0

(

V S1

N−2
dj + V S2

N−2
dj+1

)

xN−2−j





T

× S





N−2
∑

j=0

(

V S1

N−2
dj + V S2

N−2
dj+1

)

xN−2−j



 ,

(11)

where

V
Q01

N−2
= In +BW 1

N−2 , V
Q02

N−2
= BW 2

N−2 ,

V R01

N−2
= W 1

N−2 , V R02

N−2
= W 2

N−2 ,

V R11

N−2
= V R01

N−1
d0V

Q01

N−2
, V R12

N−2
= V R01

N−1
d0V

Q02

N−2
+ V R01

N−1
,

V S1

N−2
= V S1

N−1
d0V

Q01

N−2
, V S2

N−2
= V S1

N−1
d0V

Q02

N−2
+ V S1

N−1
.

In the same way for the last three sections of the optimal
trajectory we obtain the corresponding performance index
for those sections in the form

JN−3(u) = JN−2(u) + FN−3(xN−3, uN−3)

= JN−2(u) + xT
N−3QxN−3 + uT

N−3RuN−3 .

(12)

Denoting SN−3(ΣxN−3) = SN−3(
∑N−3

j=0
xN−3−j) as min-

imum of the performance index JN−3(u) we can write

SN−3(ΣxN−3) = min
uN−1∈U

uN−2∈U

uN−3∈U

{

JN−3(u)
}

= min
uN−3∈U

{

min
uN−1∈U

uN−2∈U

JN−2(u) + FN−3(xN−3, uN−3)
}

= min
uN−3∈U

{

SN−2(ΣxN−2) + FN−3(xN−3, uN−3)
}

.

(13)

Substituting (1) for k = N − 3 to (13) and calculating the
first derivative of the equation and comparing it to zero
we obtain

0 =
∂JN−3(u)

∂uN−3

=
(

R+ RT
)

uN−3 +BT
(

Q+QT
)

×

(

N−3
∑

j=0

djxN−3−j + BuN−3

)

+
[(

V
Q01

N−2
d0 + V

Q02

N−2
d1
)

B
]T

×

(

Q+QT
)

[

(

V
Q01

N−2
d0 + V

Q02

N−2
d1
)

(

N−3
∑

j=0

djxN−3−j +BuN−3

)

+

N−3
∑

j=0

(

V
Q01

N−2
dj+1 + V

Q02

N−2
dj+2

)

xN−3−j

]

+
[(

V
R01

N−2
d0 + V

R02

N−2
d1
)

B
]T (

R +RT
)

×

[

(

V
R01

N−2
d0 + V

R02

N−2
d1
)

(

N−3
∑

j=0

djxN−3−j +BuN−3

)

+

N−3
∑

j=0

(

V
R01

N−2
dj+1 + V

R02

N−2
dj+2

)

xN−3−j

]

+
[(

V
R11

N−2
d0 + V

R12

N−2
d1
)

B
]T (

R +RT
)

×

[

(

V
R11

N−2
d0 + V

R12

N−2
d1
)

(

N−3
∑

j=0

djxN−3−j +BuN−3

)

+

N−3
∑

j=0

(

V
R11

N−2
dj+1 + V

R12

N−2
dj+2

)

xN−3−j

]

+
[(

V
S1

N−2
d0 + V

S2

N−2
d1
)

B
]T (

S + ST
)

×

[

(

V
S1

N−2
d0 + V

S2

N−2
d1
)

(

N−3
∑

j=0

djxN−3−j +BuN−3

)

+

N−3
∑

j=0

(

V
S1

N−2
dj+1 + V

S2

N−2
dj+2

)

xN−3−j

]

.

We determine uN−3 as a function of xN−3, . . . , x0, i.e.

uN−3 =

N−3
∑

j=0

[

W 1
N−3dj +W 2

N−3dj+1 +W 3
N−3dj+2

]

xN−3−j

(14)
Substituting (1) for k = N − 3 and (14) to (13) we obtain

SN−3(ΣxN−3) = xT
N−3QxN−3

+

[

N−3
∑

j=0

(

V
Q01

N−3
dj + V

Q02

N−3
dj+1 + V

Q03

N−3
dj+2

)

xN−3−j

]T

Q

×

[

N−3
∑

j=0

(

V
Q01

N−3
dj + V

Q02

N−3
dj+1 + V

Q03

N−3
dj+2

)

xN−3−j

]

+

[

N−3
∑

j=0

(

V
Q11

N−3
dj + V

Q12

N−3
dj+1 + V

Q13

N−3
dj+2

)

xN−3−j

]T

Q

×

[

N−3
∑

j=0

(

V
Q11

N−3
dj + V

Q12

N−3
dj+1 + V

Q13

N−3
dj+2

)

xN−3−j

]

+

[

N−3
∑

j=0

(

V
R01

N−3
dj + V

R02

N−3
dj+1 + V

R03

N−3
dj+2

)

xN−3−j

]T

R

×

[

N−3
∑

j=0

(

V
R01

N−3
dj + V

R02

N−3
dj+1 + V

R03

N−3
dj+2

)

xN−3−j

]

+

[

N−3
∑

j=0

(

V
R11

N−3
dj + V

R12

N−3
dj+1 + V

R13

N−3
dj+2

)

xN−3−j

]T

R

×

[

N−3
∑

j=0

(

V
R11

N−3
dj + V

R12

N−3
dj+1 + V

R13

N−3
dj+2

)

xN−3−j

]
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+

[

N−3
∑

j=0

(

V
R21

N−3
dj + V

R22

N−3
dj+1 + V

R23

N−3
dj+2

)

xN−3−j

]T

R

×

[

N−3
∑

j=0

(

V
R21

N−3
dj + V

R22

N−3
dj+1 + V

R23

N−3
dj+2

)

xN−3−j

]

+

[

N−3
∑

j=0

(

V
S1

N−3
dj + V

S2

N−3
dj+1 + V

S3

N−3
dj+2

)

xN−3−j

]T

S

×

[

N−3
∑

j=0

(

V
S1

N−3
dj + V

S2

N−3
dj+1 + V

S3

N−3
dj+2

)

xN−3−j

]

. (15)

In the general case for q last sections of the optimal
trajectory the value which minimize performance index
(2) with constraints (1) is given by the relation

SN−q(ΣxN−q) = xT
N−qQxN−q

+

q−2
∑

l=0















N−q
∑

j=0

(

q−1
∑

p=0

V
Ql,p+1

N−q dj+p

)

xN−q−j





T

Q

×





N−q
∑

j=0

(

q−1
∑

p=0

V
Ql,p+1

N−q dj+p

)

xN−q−j











+

q−1
∑

r=0















N−q
∑

j=0

(

q−1
∑

p=0

V
Rr,p+1

N−q dj+p

)

xN−q−j





T

R

×





N−q
∑

j=0

(

q−1
∑

p=0

V
Rr,p+1

N−q dj+p

)

xN−q−j











+





N−q
∑

j=0

(

q−1
∑

p=0

V
Sp+1

N−q dj+p

)

xN−q−j





T

S

×





N−q
∑

j=0

(

q−1
∑

p=0

V
Sp+1

N−q dj+p

)

xN−q−j



 .

(16)

Control uN−q, which minimizes the performance index
JN−q(u), in the general case is given by the relation

uN−q =

N−q
∑

j=0

(

q−1
∑

p=0

W
p+1

N−qdj+p

)

xN−q−j , (17)

4. PROCEDURE AND EXAMPLES

From the above considerations, the following procedure
followed for solving the dynamic optimization problem:

Procedure:
Step 1. Knowing the matrices A and B of the system
(1) and the coefficient α and the number of elementary
sections N of the optimal trajectory, we determine the
matrix Aα and coefficients dj for j = 0, 1, . . . , N .
Step 2. Knowing the matrices R, Q, S of the performance
index (2) and the coefficients dj for j = 0, 1, . . . , N and
using known methods of minimization, we determine the
value of the control (6) which minimizes the performance
index (3), and its minimum value (7) for q = 1. Knowing
(7) we determine the value of control (10) which minimizes
the performance index (8) and its minimum value (11)

for q = 2. Continuing the procedure we determine the
equations (16) and (17) for q = 3, 4, . . . , N .
Step 3.Using the formula (17) for q = N we determine u0,
the control value in a discrete time k = 0 depending on the
initial conditions x0. Using (16) we determine minimum
of the performance index S0(Σx0). Knowing u0 and x0

from the relation (1) for k = 0 we determine x1. Using the
formula (17) for q = N−1 we determine u1 as a function of
x1, x0. Using (16) we determine the minimum value of the
performance index S1(Σx1). Knowing u1 and x1, x0 from
the relation (1) for k = 1 we can find the x2. Using the
formula (17) for q = N − 2 we determine u2 as a function
of x2, x1, x0 and using (16) we can determine S2(Σx2).
Continuing this procedure we can determine the discrete
values of control sequence u0, u1, . . . , uN−1 ∈ U, which
minimizes the performance index (2) and satisfies the
differential equation (1) for given initial conditions x0 and
the subsequent minimum value S0(Σx0), . . . , SN (ΣxN ) of
the performance index (2).

Example 1. Consider the fractional discrete-time system
(1) with matrices

A =

[

1 2
3 4

]

, B =

[

1
2

]

, x0 =

[

0.5
0.7

]

, (18)

and the performance index (2) with matrices

S =

[

4 1
1 4

]

, Q =

[

3 2
2 3

]

, R = [ 1 ] . (19)

Using the above Procedure we obtain.
Step 1. Assuming α = 0.5 and N = 3, the matrix Aα has
the form

Aα = A+ αIn =

[

1.5 2
3 4.5

]

, (20)

and the coefficients dj for j = 0, 1, . . . , N are as follows

d0 =

[

1.5 2
3 4.5

]

, d2 =

[

0.063 0
0 0.063

]

,

d1 =

[

0.125 0
0 0.125

]

, d3 =

[

0.039 0
0 0.039

]

.

(21)

Step 2. Taking into account the matrices (19) and the
coefficients (21) and for q = 1 we determine a matrix

W 1
N−1 = [−0.2400 −0.3600 ] , (22a)

and matrices

V R01

N−1
= [−0.2400 −0.3600 ] ,

V S1

N−1
=

[

0.7600 −0.3600
−0.4800 0.2800

]

.
(22b)

for q = 2 we determine matrices

W 1
N−2 = [−0.2677 −0.3575 ] ,

W 2
N−2 = [−0.0028 −0.0474 ] ,

(23a)

and matrices

V
Q01

N−2
=

[

0.7323 −0.3575
−0.5353 0.2850

]

,

V
Q02

N−2
=

[

−0.0028 −0.0474
−0.0055 −0.0949

]

,

(23b)

V R01

N−2
= [−0.2677 −0.3575 ] ,

V R02

N−2
= [−0.0028 −0.0474 ] ,

V R11

N−2
= [ 0.0696 −0.0836 ] ,

V R12

N−2
= [−0.2244 −0.0925 ] ,

(23c)
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V S1

N−2
=

[

0.0975 −0.0499
−0.0727 0.0426

]

,

V S2

N−2
=

[

0.7604 −0.3534
−0.4820 0.2458

]

.

(23d)

Continuing the procedure for q = 3 we obtain

W 1
N−3 = [−0.2689 −0.3566 ] ,

W 2
N−3 = [−0.0187 −0.0403 ] ,

W 3
N−3 = [ 0.0019 −0.0068 ] ,

(24a)

V
Q01

N−3
=

[

0.7311 −0.3569
−0.5378 0.2861

]

,

V
Q02

N−3
=

[

−0.0187 −0.0403
−0.0373 −0.0806

]

,

V
Q03

N−3
=

[

0.0019 −0.0068
0.0039 −0.0135

]

,

V
Q11

N−3
=

[

0.0994 −0.0521
−0.0701 0.0389

]

,

V
Q12

N−3
=

[

0.7375 −0.3465
−0.5437 0.2668

]

,

V
Q13

N−3
=

[

−0.0033 −0.0456
−0.0047 −0.0979

]

,

(24b)

V R01

N−3
= [−0.2689 −0.3569 ] ,

V R02

N−3
= [−0.0187 −0.0403 ] ,

V R03

N−3
= [ 0.0019 −0.0067 ] ,

V R11

N−3
= [ 0.0785 −0.0889 ] ,

V R12

N−3
= [−0.1599 −0.1249 ] ,

V R13

N−3
= [−0.0141 −0.0085 ] ,

V R21

N−3
= [ 0.0062 −0.0089 ] ,

V R22

N−3
= [ 0.0821 −0.0566 ] ,

V R23

N−3
= [−0.2257 −0.0879 ] ,

(24c)

V S1

N−3
=

[

0.1066 −0.0538
−0.0718 0.0369

]

,

V S2

N−3
=

[

0.0985 −0.0477
−0.0748 0.0381

]

,

V S3

N−3
=

[

0.7603 −0.3529
−0.4818 0.2451

]

.

(24d)

Step 3. Using (17) for q = N = 3 and (21), (24a) we
determine

u0 = −2.2429 . (25)

Knowing u0 and x0 from (1) for k = 0 we determine

x1 =

[

−0.0929
0.1642

]

. (26)

Using (16) and (21), (24b)-(24d) we determine the mini-
mum value of the performance index as

J0(Σx0) = 8.7699 . (27)

Continuing this procedure we can determine subsequent
discrete values of control as

u1 = −0.2662 , u2 = −0.0386 . (28)

The values of state vector are given as

x2 =

[

−0.0147
0.0152

]

, x3 =

[

−0.0106
0.0114

]

. (29)
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Fig. 1. Optimal trajectory for α = 0.5, 0.7, 0.9 andN = 10.
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Fig. 2. Optimal trajectory for α = 0.5, 0.7, 0.9 and N = 10
(zoom).
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Fig. 3. The minimum values of the performance index for
α = 0.5, 0.7, 0.9 and N = 10.

The minimum values of the performance index are given
as

J1(Σx1) = 0.1193 , J2(Σx2) = 0.0027 , (30)

and

J3(u) = G(x3) = 0.0007 . (31)

The figures Fig. 1-6 show the above considerations for
the system (1) with matrices (18) and the performance
index (2) with matrices (19) for three different values of
α = 0.5, 0.7, 0.9, and the number of elementary sections
of the optimal trajectory N = 10. Individual results
were obtained with the help of written for that purpose
computer algorithm implementing the above issues.

5. RELATION WITH INTEGER-ORDER SYSTEMS
THEORY

We shall show that the above considerations for fractional
discrete-time systems for α = 1 are identical to the result
for classical discrete-time systems.
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Fig. 4. The minimum values of the performance index for
α = 0.5, 0.7, 0.9 and N = 10 (zoom).
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Fig. 5. Optimal control for α = 0.5, 0.7, 0.9 and N = 10.
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Fig. 6. Optimal control for α = 0.5, 0.7, 0.9 and N = 10
(zoom).

Equations describing fractional discrete-time system (1)
for α = 1 take the form of a classical discrete-time system,
i.e.

xk+1 = Adxk +Buk , (32)

since the coefficients dj for α = 1 have the form

d0 = Aα = A+ In = Ad , dj = O , j = 1, . . . , k . (33)

In this case the relationship (16), for q last sections of the
optimal trajectory, minimizing the performance index (2)
with constraints (32) is given as

SN−q(xN−q) = xT
N−qQxN−q

+

q−2
∑

l=0

{

[

V
Ql,1

N−qd0xN−q

]T

Q
[

V
Ql,1

N−qd0xN−q

]

}

+

q−1
∑

r=0

{

[

V
Rr,1

N−qd0xN−q

]T

R
[

V
Rr,1

N−qd0xN−q

]

}

+
[

V S1

N−qd0xN−q

]T

S
[

V S1

N−qd0xN−q

]

.

(34)

where

V
Q01

N−q = In +BW 1
N−q , V

Ql,1

N−q = V
Ql−1,1

N−q+1
d0V

Q01

N−q ,

(35a)

V R01

N−q = W 1
N−q , V

Rr,1

N−q = V
Rr−1,1

N−q+1
d0V

Q01

N−q ,

(35b)

V S1

N−1
= In +BW 1

N−1 , V S1

N−q = V S1

N−q+1
d0V

Q01

N−q .

(35c)

Substituting repeatedly (35), for the indexesN−q, . . . , N−

1, we can write the equation (34) as

SN−q(xN−q) = xT
N−q

{

Q+
(

V R01

N−qd0

)T

R
(

V R01

N−qd0

)

+
(

V
Q01

N−qd0

)T
[

Q+
(

V R01

N−q+1
d0

)T

R
(

V R01

N−q+1
d0

)

+
(

V
Q01

N−q+1
d0

)T
[

· · ·+
(

V
Q01

N−2
d0

)T
[

Q+
(

V R01

N−1
d0

)T

R

×

(

V R01

N−1
d0

)

+
(

V
Q01

N−1
d0

)T

S
(

V
Q01

N−1
d0

)

]

(

V
Q01

N−2
d0

)

]

· · ·

]

×

(

V R01

N−q−1
d0

)](

V R01

N−qd0

)}

xN−q .

Denoting as S = SN we can write the above relationship
in the form

SN−q = xT
N−q

{

Q+
(

V R01

N−qd0

)T

R
(

V R01

N−qd0

)

+
(

V
Q01

N−qd0

)T

SN−q+1

(

V R01

N−qd0

)

}

xN−q ,

(36)

which, after adoption of proper notation is the same as
shown in Naidu (2002); Lewis and Syrmos (1995).

The control sequence (17), which minimize JN−q(u), in
this case is given as

uN−q = W 1
N−qd0xN−q , (37)

where
W 1

N−q = −
{

R +RT +BT
[

Q+QT
]

B

+

q−3
∑

w=0

[

(

V
Qw,1

N−q+1
d0B

)T
[

Q+QT
]

(

V
Qw,1

N−q+1
d0B

)

]

+

q−2
∑

z=0

[

(

V
Rz,1

N−q+1
d0B

)T
[

R +RT
]

(

V
Rz,1

N−q+1
d0B

)

]

+
(

V S1

N−q+1
d0B

)T
[

S + ST
]

(

V S1

N−q+1
d0B

)

}−1

×
{

BT
[

Q+QT
]

+

q−3
∑

w=0

[

(

V
Qw,1

N−q+1
d0B

)T
[

Q+QT
]

(

V
Qw,1

N−q+1
d0

)

]

+

q−2
∑

z=0

[

(

V
Rz,1

N−q+1
d0B

)T
[

R +RT
]

(

V
Rz,1

N−q+1
d0

)

]

+
(

V S1

N−q+1
d0B

)T
[

S + ST
]

(

V S1

N−q+1
d0

)

}

,

Substituting repeatedly (35), for the indexesN−q, . . . , N−

1, we can write the above relationship as

W 1
N−q = −

{

R+RT +BT
[(

Q+QT
)

+
(

V R01

N−q+1
d0

)T
(

R+RT
)

(

V R01

N−q+1
d0

)

+
(

V
Q01

N−q+1
d0

)T

×

[

(

Q+QT
)

+
(

V R01

N−q+2
d0

)T
(

R +RT
)

(

V R01

N−q+2
d0

)
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+
(

V
Q01

N−q+2
d0

)T
[

· · ·+
(

V
Q01

N−2
d0

)

[

(

Q+QT
)

+
(

V R01

N−1
d0

)T

×
(

R+RT
)

(

V R01

N−1
d0

)

+
(

V
Q01

N−1
d0

)T
(

S + ST
)

(

V
Q01

N−1
d0

)

]

×

(

V
Q01

N−2
d0

)]

· · ·

] (

V
Q01

N−q+1
d0

)](

V
Q01

N−q+1
d0

)]

B
}−1

×

{

BT

[

(

Q+QT
)

+
(

V R01

N−q+1
d0

)T
(

R+RT
)

(

V R01

N−q+1
d0

)

+
(

V
Q01

N−q+1
d0

)T
[

(

Q+QT
)

+
(

V R01

N−q+2
d0

)T
(

R+ RT
)

×

(

V R01

N−q+2
d0

)

+
(

V
Q01

N−q+2
d0

)T [

· · ·+
(

V
Q01

N−2
d0

)

×

[

(

Q +QT
)

+
(

V R01

N−1
d0

)T
(

R+RT
)

(

V R01

N−1
d0

)

+
(

V
Q01

N−1
d0

)T
(

S + ST
)

(

V
Q01

N−1
d0

)

]

×

(

V
Q01

N−2
d0

)]

· · ·

] (

V
Q01

N−q+1
d0

)](

V
Q01

N−q+1
d0

)]

B
}

.

Denoting as S = SN and taking into account (36) we can
write the above relationship in the form

W 1
N−q = −

{(

R+RT
)

+BT
(

SN−q+1 + ST
N−q+1

)

B
}−1

×BT
(

SN−q+1 + ST
N−q+1

)

, (38)

which, after adoption of proper notation is the same as
shown in Naidu (2002); Lewis and Syrmos (1995).

6. CONCLUSION

Dynamical programming problem for fractional discrete-
time systems with quadratic performance index has been
formulated and solved. A new method for numerical com-
putation of optimal dynamic programming problem has
been presented. The efficiency of the method has been
demonstrated on numerical example and illustrated by
graphs. A link to the classical theory has been demon-
strated. The differences between the fractional and classi-
cal (standard) systems theory have been shown. A com-
puter algorithm for solving dynamic programming prob-
lems with quadratic performance index for fractional
discrete-time systems has been tested for different cases
of coefficient alpha. Detailed description of a computer al-
gorithm can be found in Dzielinski and Czyronis (2013).
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