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Abstract: This paper is concerned with the distributed receding horizon control (DRHC)
problem for large-scale linear systems with disturbances. A periodic event-triggered DRHC
scheme is proposed to reduce communication and computation load. A detailed dual-mode
periodic event-triggered DHRC algorithm is designed, and sufficient conditions for ensuring
feasibility and stability are established, respectively. We show that the feasibility depends on
the testing period, and that the stability is related with the testing period, and the cooperation
matrices. The overall system is stable and the system state converges to a set under the designed
algorithm.
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1. INTRODUCTION

The control of large-scale and complex systems is becom-
ing a new frontier in the areas of systems and control, due
to the trend of developing many large-scale systems, such
as multi-agent systems, complex process control systems,
smart grid and power systems, and cyber-physical systems.
The receding horizon control (RHC), also known as model
predictive control, has been widely used in the industrials
Qin and Badgwell (2003, 2000), and it is one of the most
promising approaches to large-scale systems. There are
three RHC schemes for the control of large-scale systems,
namely, centralized RHC, distributed RHC (DRHC) and
decentralized RHC. The implementation of centralized
RHC normally requires solving a high-dimensional opti-
mization problem in real time, which is computationally
expensive or practically infeasible. On the other hand, the
decentralized RHC generally decouples large-scale systems
into many subsystems by ignoring couplings, which may
bring poor control performance or undesired results. The
DRHC is able to convert the large-scale optimization prob-
lem into several small-size optimization problems while
considering couplings among subsystems by using commu-
nication links, and thus it is computationally efficient and
can achieve prescribed control performance.

⋆ This work was supported by the Natural Sciences and Engineering

Research Council of Canada.

In recent years, the study of the DRHC problem for
large-scale systems has received much attention, and many
results have been reported for large-scale linear systems,
nonlinear systems and their applications. For example,
the investigation of the DRHC problem for large-scale
linear systems has been conducted in Camponogara et al.
(2002); Jia and Krogh (2002); Motee and Sayyar-Rodsari
(2003); Izadi et al. (2009); Maestre et al. (2011); Venkat
et al. (2008); Richards and How (2007); Franco et al.
(2007); Borrelli and Keviczky (2008); Stewart et al. (2010);
Li and Shi (2013b). In these results, Jia and Krogh
(2002); Camponogara et al. (2002); Stewart et al. (2010);
Maestre et al. (2011); Borrelli and Keviczky (2008) are
focused on large-scale systems with coupled dynamics
among subsystems; while Franco et al. (2007); Izadi et al.
(2009); Richards and How (2007); Li and Shi (2013b) study
the DRHC problems of large-scale dynamically decoupled
linear systems, with couplings presenting in the constraints
or objective functions. Izadi et al. (2009) reports the
application result for the cooperative control of multi-
vehicle systems, and Venkat et al. (2008) investigates the
DRHC problem of a complex power system.

The DRHC of large-scale nonlinear systems and its ap-
plications have been studied in Raimondo et al. (2007);
Keviczky et al. (2008); Dunbar and Murray (2006); Ke-
viczky et al. (2006); Dunbar (2007); Stewart et al. (2011);
Dunbar and Caveney (2012); Franco et al. (2008); Li and
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Shi (2013a); Liu et al. (2009, 2010, 2012). In particular,
Raimondo et al. (2007); Keviczky et al. (2006) approach
the DRHC problems of discrete-time nonlinear systems,
where Raimondo et al. (2007) establishes the input-to-
state stability and Keviczky et al. (2006) presents the
asymptotic stability. Dunbar and Murray (2006); Dun-
bar (2007); Dunbar and Caveney (2012) investigate the
DRHC problem of continuous-time decoupled nonlinear
systems, coupled nonlinear systems and inter-connected
robot systems, respectively. In Franco et al. (2008), the
DRHC problem of decoupled nonlinear systems with con-
stant communication delays is studied, and the results
for decoupled nonlinear systems with disturbances and
time-varying communication delays is reported in Li and
Shi (2013a). Liu et al. (2009, 2010, 2012) investigate the
DRHC problem of coupled nonlinear systems based on the
Lyapunov-based model predictive control concept.

Recently, in Åström and Bernhardsson (2002), the event-
triggered control strategy is proven to be computationally
more efficient than the traditional periodic sampling and
update scheme. Thus, many interesting results have re-
ported in the literature, such as Tabuada (2007); Heemels
et al. (2008); Donkers and Heemels (2012); Wang and
Lemmon (2011). Note that the existing results of DRHC
rely on the communication links to exchange informa-
tion among subsystems. By using the communication link,
the information transmission is synchronized periodically.
With that period, the optimization problem is solved,
and the control signal is updated accordingly. Thus, the
traditional periodic scheme in DRHC may be inefficient.
To solve such an issue, the event-triggered strategy has
been proposed in MPC Eqtami et al. (2011b); Varutti et al.
(2009) and in decentralized MPC Eqtami et al. (2011a).
However, in these results, the triggering conditions need
to be examined continuously, which may be not practical
or infeasible. Most recently, a periodic event-triggered s-
trategy is proposed in Heemels et al. (2013), where the
triggering condition only requires being testing periodical-
ly. Therefore, the periodic event-triggered strategy is more
practical while computationally more efficient. Motivated
by this fact, we propose to study the DRHC problem
of linear systems based on the periodic event-triggered
strategy.

In this paper, we will investigate the the event-triggered
DRHC problem of large-scale decoupled linear systems
with disturbances. The main contributions of this paper
are two-fold:

• A periodic event-triggered DRHC scheme is proposed
and the detailed dual-model periodic event-triggered
DRHC algorithm has been designed.

• The feasibility of the designed algorithm and the
stability of the closed-loop system are rigorously
analyzed. The conditions for ensuring feasibility and
stability are established, respectively. It is shown that
the closed-loop system is stable and the system state
converges to a set.

The remainder of the paper is organized as follows. Section
2 formulates the distributed RHC problem and presents a
preliminary result. In Section 3, the event-triggered strat-
egy is designed and the periodic event-triggered DRHC
algorithm is presented. In Section 4, the feasibility and

stability issues are analyzed, and the sufficient conditions
for guaranteeing feasibility and stability are established,
respectively. Finally, the conclusion remarks are given in
Section 5.

The following notations are adopted in this paper. The real
space is denoted by the symbol R; the set of all integers
is denoted by Z and Z>0 , {n ∈ Z : n > 0}. Given
a matrix P , its transpose and inverse (if invertible) are
denoted as PT and P−1, respectively. P > 0 means that
the matrix P is positive definite. The symbols λmax(P )
and λmin(P ) stands for the maximum and the minimum
eigenvalues of P , respectively. The symbol σ̄(P ) represents
the maximum singular eigenvalue of P . Given two matrices
P > 0 and Q > 0, λP,Q , λmax(P )/λmin(Q). Given a
column vector v and a matrix Q > 0 with appropriate
dimension, ‖v‖ stands for the Euclidean norm and ‖v‖Q ,
√

vTQv represents the Q-weighted norm. For column
vectors v1, · · · , vn, clo(v1, · · · , vn) = [vT1 , · · · , vTn ]T.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the distributed receding horizon control problem
for a group of linear agents. For each agent i, the system
dynamics is modeled as

ẋi(t) = Aixi(t) +Biui(t) + ωi(t), i = 1, · · · ,M, (1)

where xi(t) ∈ R
n is system state, ui(t) ∈ R

m is control
input, ωi(t) ∈ R

n is disturbance and M is the number
of the agents. The control input is required to satisfy
constraint

ui(t) ∈ Ui, (2)
where Ui ⊆ R

m is a convex and compact set containing the
origin. The disturbance has an energy bound ‖ωi(t)‖ 6 ρi.

There is a communication network among the agent sys-
tem, in which each agent can communicate with some of
the agents. For each agent i, its neighbors are defined as
the agents from which it can receive information. Denote
the neighbors’ index set of agent i by Ni, where Ni 6= ∅.
The collection of agent i’s neighbors’ states is denoted by
x−i(t).

Based on (1), the overall system can be represented as

ẋ(t) = Ax(t) +Bu(t) + ω(t), (3)

with u(t) ∈ U , where x = clo(x1, · · · , xM ), u =
clo(u1, · · · , um), ω = clo(ω1, · · · , ωM ), A = diag(A1, · · · ,
AM ), B = diag(B1, · · · , BM ), and U = U1 × · · · × UM .

The nominal system of (1) is defined as follows

ẋi(t) = Aixi(t) +Biui(t). (4)

Assumption 1. For the system in (1), there exists a ro-
bustly control invariant set Blanchini (1999) Xi, i.e., for all
ui(t) ∈ Ui, if xi(t0) ∈ Xi, then xi(t) ∈ Xi, for all bounded
disturbances with ‖ωi(t)‖ 6 ρi.

The conditions for ensuring such an Xi can be referred to
Blanchini (1999). Define δ̄i = supxi(t)∈Xi

‖xi(t)‖.
Assumption 2. For each agent i, the pair (Ai, Bi) is con-
trollable.

Using Assumption 2, it is well known that there exists
a state feedback control law ui(t) = Kixi(t) such that
Āi = Ai +BiKi is stable.
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Theorem 3. For the system in (4), given a stabilizing
control law ui(t) = Kixi(t) and two symmetric matrices
Qi > 0, Ri > 0, there exists a parameter εi > 0, such that
xi(t0) ∈ Ωi(εi) implies xi(t) ∈ Ωi(εi), and the constraint in

(2) is satisfied, for all t > t0. Here, Ωi(εi) , {xi(t) ∈ R
n :

‖xi(t)‖Pi
6 εi}, and Pi is the solution to the Lyapunov

equation ĀT
i Pi + PiĀi +Qi +KT

i RiKi = 0.

Proof. The proof can be derived by following the similar
lines in Dunbar (2007); Chen and Allgöwer (1998); Michal-
ska and Mayne (1993); Li and Shi (2014b,a), and thus is
omitted here.

3. PERIODIC EVENT-TRIGGERED DRHC
ALGORITHM

In this section, the optimization problem associated with
each agent i is firstly formulated. Then the periodic event-
triggered strategy is proposed and the detailed periodic
event-triggered DRHC is designed.

3.1 Distributed Optimization

For each agent i, at each time instant tki
p
, define an

optimization problem Pi:

û∗
i (s; tki

p
) =arg min

ûi(s;tki
p
)
Ji(x̂i(s; tki

p
), ûi(s; tki

p
)), subject to:

˙̂xi(s; tki
p
) = Aix̂i(s; tki

p
) +Biûi(s; tki

p
),

˙̂xa
j (s; tki

p
) = Aj x̂

a
j (s; tki

p
) +Bj û

a
j (s; tki

p
),

ûi(s; tki
p
) ∈ Ui, s ∈ [tki

p
, tki

p
+ T ],

‖x̂i(tki
p
+ T ; tki

p
)‖Pi

6 αiεi. (5)

Here, the cost function is designed as follows

Ji(x̂i(s; tki
p
), ûi(s; tki

p
))

,

∫ t
ki
p
+T

t
ki
p

‖x̂i(s; tki
p
)‖2Qi

+ ‖ûi(s; tki
p
)‖2Ri

+
∑

j∈Ni

‖x̂i(s; tki
p
)− x̃a

j (s; tki
p
)‖2Qij

ds

+ ‖x̂i(tki
p
+ T ; tki

p
)‖2Pi

, (6)

where Qi > 0, Ri > 0, and Qij are symmetric matrices,
and Pi and εi are designed according Theorem 3. αi ∈
(0, 1) is the shrinkage rate Li and Shi (2013a). T = n0τ is
the prediction horizon, with n0 > 1, being a given integer
and τ > 0 being the testing period. In (6), x̂i(s; tki

p
) is

called predicted state trajectory and it is generated by

˙̂xi(s; tki
p
) = Aix̂i(s; tki

p
) +Biûi(s; tki

p
), s ∈ [tki

p
, tki

p
+ T ].

x̃a
j (s; tki

p
) is called assumed state trajectory which is gener-

ated by agent j and transmitted to agent i. In particular,
x̃a
j (s; tki

p
) fulfills the following equation

˙̃xa
j (s; tki

p
) = Aj x̃

a
j (s; tki

p
) +Bjũ

a
j (s; tki

p
), s ∈ [tki

p
, tki

p
+ T ],

where ũa
j (s; tki

p
) is produced as follows:

ũa
j (s; tki

p
) =

{

û∗
j (s; tkj

q
), if s ∈ [tki

p
, t

k
j
q
+ T ]

Kj x̃
a
j (s; tkj

q
+ T ), if s ∈ [t

k
j
q
+ T, tki

p
+ T ].

Here, t
k
j
q
= sup{kjn ∈ Z≥0 : tki

p
> t

k
j
n
}.

3.2 Periodic Event-triggered Strategy

Unlike the classical DRHC using the fixed period to update
the control input in Dunbar (2007); Franco et al. (2008),
for each agent i, we design an event-triggered strategy to
determine the time interval for updating control input and
transmitting information. In particular, given some tki

p
,

p = 0, 1, · · · , the next time instant tki
p+1

for update is

determined as follows: a) Test the triggering condition

‖xi(tki
p
+ nτ)− x̂∗

i (tki
p
+ nτ ; tki

p
)‖Pi

> σi, (7)

at t = tki
p
+ nτ , n = 1, · · · , n0, where σi > 0 is the

triggering level. If the triggering condition in (7) holds for
some n, take nt as the minimum value of such n; otherwise,
take nt = n0. b) Determine tki

p+1
= tki

p
+ ntτ .

Due to the existence of disturbances, it would be computa-
tionally costly to execute the optimal control input when
the system state trajectory enters a small region around
the origin. Like the robust RHC in Michalska and Mayne
(1993) and DRHC in Dunbar (2007); Li and Shi (2013a),
we also take the so-called dual-mode strategy here. That is,
for each agent i, if the optimal state trajectory x∗

i (s; tki
p
),

s ∈ [tki
p
, tki

p
+ T ], enters the set Ωi(riαiεi) at some time

instant s = to + tki
p
, where ri ∈ (0, 1), then the con-

trol input is switched to the state feedback control law
ui(t) = Kixi(t), for all t > to + tki

p
.

Remark 4. From the testing criterion in (7), it can been
seen that, for each agent i, the triggering condition is only
examined with a fixed interval τ , and the optimization
problem Pi is only required to be solved with time-varying
intervals n(tki

p
)τ when the triggering condition is satisfied,

where 1 6 n(tki
p
) 6 n0 is an integer depending on time

instant tki
p
. The information sent from agent i to its

neighbors also follows such a time-varying interval. This,
in fact, reduces the computation and communication load.

3.3 Periodic Event-triggered DRHC

Combining the periodic event-triggered strategy and the
dual-mode strategy, the periodic event-triggered DRHC
algorithm is summarized as follows:

Algorithm 1. For each agent i, i = 1, · · · ,M ,

S1) Initialize the optimization problem at t = tki
0
.

S2) Solve Problem Pi at tki
p
to generate û∗

i (s; tki
p
), p > 0.

S3) If ‖x̂∗
i (s; tki

p
)‖Pi

6 riαiεi for some s0 ∈ [tki
p
, tki

p
+ T ],

then apply the control input u∗
i (s; tki

p
) for s ∈ [tki

p
, s0]

and go to S6).
S4) Apply û∗

i (s; tki
p
) and at time s = tki

p
+ nτ , n =

1, · · · , n0, test (7) to determine tki
p+1

.

S5) Set tki
p
= tki

p+1
, and go to S2).

S6) Apply ui(t) = Kixi(t).

4. ANALYSIS

In order to make the designed algorithm practically useful,
we need to investigate the feasibility and stability issues.
This section provides conditions on how to design the
parameters to ensure feasibility and stability.
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4.1 Feasibility Analysis

Before proceeding to conduct the feasibility analysis, a
feasible control trajectory candidate should be construct-
ed. Given the optimal control trajectory u∗

i (s; tki
p
), at

time instant tki
p
, a feasible control trajectory candidate

ũi(s; tki
p+1

) at time instant tki
p+1

is constructed as follows

Li and Shi (2013a), Michalska and Mayne (1993):

ũi(s; tki
p+1

) =

{

û∗
i (s; tki

p
), s ∈ [tki

p+1
, tki

p
+ T ],

Kix̃i(s; tki
p+1

), s ∈ (tki
p
+ T, tki

p+1
+ T ].

Theorem 5. For each agent i with dynamics in (1), given
u∗
i (s; tki

p
), at tki

p
, if the testing period τ is designed, such

that

ρinτσ̄(
√

Pie
Ai(n−n0)τ ) 6 (1− αi)εi, (8)

σ̄(
√

Pie
Āinτ (

√

Pi)
−1) 6 αi, (9)

for n = 1, · · · , n0, then ũi(s; tki
p+1

), s ∈ [tki
p+1

, tki
p+1

+ T ],

is a feasible solution to Problem Pi at tki
p+1

.

Proof. We know that ũi(s; tki
p+1

), s ∈ [tki
p+1

, tki
p
+ T ],

makes the constraint in (2) be fulfilled. We next need to
show that ũi(s; tki

p+1
), s ∈ [tki

p+T , tki
p+1

+ T ] renders the

constraints in (2) being satisfied.

According to (4), we have

x̂∗
i (s; tki

p
) =e

Ai(s−t
ki
p+1

)
x̂∗
i (tki

p+1
; tki

p
)

+

∫ s

t
ki
p+1

eAi(s−t)Biû
∗
i (t; tki

p
)dt, s > tki

p+1
,

x̃∗
i (s; tki

p+1
) =e

Ai(s−t
ki
p+1

)
xi(tki

p+1
)

+

∫ s

t
ki
p+1

eAi(s−t)Biû
∗
i (t; tki

p
)dt, s > tki

p+1
.

Therefore, it can be obtained that

x̃∗
i (tki

p
+ T ; tki

p+1
)− x̂∗

i (tki
p
+ T ; tki

p
)

=e
Ai(tki

p
+T−t

ki
p+1

)
[xi(tki

p+1
)− x̂∗

i (tki
p+1

; tki
p
)]

=e
Ai(tki

p
+T−t

ki
p+1

)
[

∫ t
ki
p+1

t
ki
p

ωi(t; tki
p
)dt],

where the solution to the differential equation in (1) is
used. As a result, we can get

‖x̃∗
i (tki

p
+ T ; tki

p+1
)‖Pi

6‖x̂∗
i (tki

p
+ T ; tki

p
)‖Pi

+ ‖e
Ai(tki

p
+T−t

ki
p+1

)
[

∫ t
ki
p+1

t
ki
p

ωi(t; tki
p
)dt]‖Pi

6αiεi + ρinτ
√

λmax((eAi(n−n0)τ )TPieAi(n−n0)τ ),

where t(kip+1)− tki
p
= nτ , n = 1, · · · , n0 is used. By using

the condition in (8), it follows ‖x̃∗
i (tki

p
+ T ; tki

p+1
)‖Pi

6 εi.

As a consequence, the result in Theorem 3 can be used,
and it implies ũi(s; tki

p+1
) ∈ Ui, s ∈ [tki

p+T , tki
p+1

+ T ].

Furthermore, we have

‖x̃i(tki
p+1

+ T ; tki
p+1

)‖Pi

=‖e
Āi(tki

p+1

−t
ki
p
)
x̃i(tki

p
+ T ; tki

p+1
)‖Pi

6

√

λmax(((
√

Pi)−1)T(eĀinτ )TPieĀinτ (
√

Pi)−1)εi

6αiεi, ∀n = 1, · · · , n0,

where the condition in (9) is applied. Thus, x̃i(tki
p+1

+

T ; tki
p+1

) ∈ Ω(αiεi) and the terminal constraint is satisfied.

This completes the proof.

Remark 6. It is worth noting that Theorem 5 provides
sufficient conditions on how to design τ to guarantee
feasibility. From (8) and (9), it can been seen that the
design of τ depends on the choice of the parameter αi and
the disturbance bound ρi after the parameter εi, Pi and
Ki are given.

4.2 Stability Analysis

Using the designed Algorithm 1, we can show that the
closed-loop system is stable and converges to a robustly
invariant set. To facilitate the presentation, we define two
terms as follows:

C1(τ, n) ,(1 − αi)
2ε2i + (n0 − n)τλQi,Pi

δ2i

− β1nτλ
−1
Pi,Qi

(1− ri)
2α2

i ε
2
i ,

C2(Qij , n) ,λQij ,Pi
[(n0 − n)τδ2i + nτα2

jε
2
j ]

+ λQij ,Pj
[(n0 − 1)τδ2j + n0τα

2
jε

2
j ]

− β2nτλ
−1
Pi,Qi

(1− ri)
2α2

i ε
2
i ,

where β1 ∈ (0, 1), β2 ∈ (0, 1) and β1 + β2 < 1, and
δi = λmax(

√
Pi)δ̄i. The stability result is reported in the

following theorem.

Theorem 7. For the overall system in (3), if (A): The
testing interval τ is designed, such that (8) and (9) holds;
(B): C1(τ, n) 6 0 for n = 1, · · · , n0, and the cooperation
matrices Qij , j ∈ Ni, are designed such that C2(Qij , n) 6
0, for n = 1, · · · , n0, then closed-loop system is stable and
the system state converges to a robustly invariant set.

Proof. The proof consists of two parts. Firstly, we show
that the system trajectory of each agent i will enter a set
in finite time. Define

∆i ,Ji(x̃i(s; tki
p+1

), ũi(s; tki
p+1

), x̃a
−i(s; tki

p+1
))

− Ji(x̂
∗
i (s; tki

p
), û∗

i (s; tki
p
), x̃a

−i(s; tki
p
)).

By substituting all the terms in ∆i, we have

∆i 6

∫ t
ki
p+1

+T

t
ki
p
+T

‖x̃i(s; tki
p+1

)‖2Qi
+ ‖ũi(s; tki

p+1
)‖2Ri

ds

+ ‖x̃i(tki
p+1

+ T ; tki
p+1

)‖2Pi
− ‖x̂∗

i (tki
p
+ T ; tki

p
)‖2Pi

+

∫ t
ki
p
+T

t
ki
p+1

‖x̃i(s; tki
p+1

)‖2Qi
− ‖x̂∗

i (s; tki
p
)‖2Qi

ds

+

∫ t
ki
p+1

+T

t
ki
p+1

∑

j∈Ni

‖x̃i(s; tki
p+1

)− x̂a
j (s; tki

p+1
)‖2Qij

ds

−
∫ tikp+1

t
ki
p

‖x̂∗
i (s; tki

p
)‖2Qi

ds. (10)
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Next, we consider the terms in the right hand side of (10)
one by one. According to Theorem 5, x̃i(tki

p
+ T ; tki

p+1
) ∈

Ωi(εi) and ũi(s; tki
p+1

) = Kix̃i(s; tki
p+1

), s ∈ [tki
p
+T, tki

p+1
].

By using Theorem 3, it can be obtained
∫ t

ki
p+1

+T

t
ki
p
+T

‖x̃i(s; tki
p+1

)‖2Qi
+ ‖ũi(s; tki

p+1
)‖2Ri

ds

+ ‖x̃i(tki
p+1

+ T ; tki
p+1

)‖2Pi
− ‖x̂∗

i (tki
p
+ T ; tki

p
)‖2Pi

=‖x̃i(tki
p
+ T ; tki

p+1
)‖2Pi

− ‖x̂∗
i (tki

p
+ T ; tki

p
)‖2Pi

6(1− α2
i )ε

2
i . (11)

In terms of the fact that ‖x̂∗
i (s; tki

p
)‖Pi

> (1 − ri)αiεi,

s ∈ [tki
p+1

, tki
p+1

+ T ], and ‖x̃i(s; tki
p+1

)‖Pi
6 δi, we get

∫ t
ki
p
+T

t
ki
p+1

‖x̃i(s; tki
p+1

)‖2Qi
− ‖x̂∗

i (s; tki
p
)‖2Qi

ds

6(n0 − n)τ(λQi,Pi
δ2i − λ−1

Pi,Qi
(1 − ri)

2α2
i ε

2
i ). (12)

By using the same reasoning, we can obtain
∫ t

ki
p+1

+T

t
ki
p+1

∑

j∈Ni

‖x̃i(s; tki
p+1

)− x̂a
j (s; tki

p+1
)‖2Qij

ds

62
∑

j∈Ni

∫ t
ki
p+1

+T

t
ki
p+1

‖x̃i(s; tki
p+1

)‖2Qij
+ ‖x̂a

j (s; tki
p+1

)‖2Qij
ds

62|Ni|[λQij ,Pi
((n0 − n)τδ2i + nτα2

i ε
2
i )

+ (λQij ,Pj
(n0 − n)τδ2j + λQij ,Pj

nτα2
i ε

2
i )]. (13)

Finally, it can be obtained
∫ tikp+1

t
ki
p

‖x̂∗
i (s; tki

p
)‖2Qi

ds > nτλ−1
Pi,Qi

(1− ri)
2α2

i ε
2
i . (14)

By plugging (11) - (14) into (10), and using the condition
of C1(τ, n) 6 0 and C2(Qij , n) 6 0, we can obtain

∆Ji 6 −(1− β1 − β2)nτλ
−1
Pi,Qi

(1− ri)
2α2

i ε
2
i .

Due to the optimality, we have

Ji(x̂
∗
i (s; tki

p+1
), û∗

i (s; tki
p+1

), x̃a
i (s; tki

p+1
))

− Ji(x̂
∗
i (s; tki

p
), û∗

i (s; tki
p
), x̃a

−i(s; tki
p
))

6∆Ji 6 −(1− β1 − β2)nτλ
−1
Pi,Qi

(1− ri)
2α2

i ε
2
i .

By using the same argument in Michalska and Mayne
(1993), it can be shown that for some s > 0, x̂∗

i (s; tki
p
)

enters Ωi(riαiεi) in finite time, i.e., xi(s) enters Ωi((1 −
riαi)εi).

Secondly, we show that the closed-loop system under the
control law ui(t) = Kixi(t) is stable and the system state
converges to a set after xi(t) ∈ Ωi((1 − riαi)εi). Taking
Vi(xi(t)) = ‖xi(t)‖Pi

as a Lyapunov function candidate,
we have

V̇i(xi(t)) =xT
i (t)(Ā

T
i Pi + PiĀi)xi(t) + 2xT

i Ā
T
i ωi(t)

=− xT
i (t)Q

∗
i xi(t) + 2xT

i Ā
T
i ωi(t)

6− ‖xi(t)‖2Q∗

i
+ 2ρiλmax(

√

Q∗
i )‖Āi‖‖xi(t)‖Q∗

i
,

where Q∗
i = Qi +KT

i RiKi. Thus, the closed-loop system
is stable as desired and the system state of agent i
will converge to the set {xi(t) ∈ R

n : ‖xi(t)‖Q∗

i
6

2ρiλmax(
√

Q∗
i )‖Āi‖}.

Remark 8. Theorem 7 reals that the stability of the closed-
loop system is related with the testing period τ , the
parameter δi, αi, and the cooperation matrices Qij when
the other parameters are fixed.

5. CONCLUSION

In this paper, we have investigated the event-triggered
DRHC problem of decoupled linear systems. The periodic
event-triggered DRHC algorithm has been proposed to
reduce the communication and computation load. The
conditions for guaranteeing the feasibility and stability
have been established. The future work will be the con-
sideration of the event-triggered DRHC problem of large-
scale nonlinear systems.
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